
Ride Technical Report TR-1. October 2014.
CONFIDENTIAL. Please do not distribute.

Route Matching Algorithm
Gleb Chuvpilo1*, Sanny Liao2, Oscar Salazar3, Sergio Botero4

Abstract
This technical report describes the Schedule Matching Algorithm and Route Matching Algorithm that we propose
to form rides in Ride Marketplace v1. It will replace the current Simple Agglomerative Clustering Algorithm used
in Ride Marketplace Alpha. The difference between the two is that Ride Marketplace v1 takes into consideration
varying amounts of overlap between a potential driver and a potential passenger’s desired travel schedule; and
instead of using great circle distance between two latitude/longitude points to group users, the new algorithm
produces optimal routes that originate at a driver’s home location, visit all of the driver’s passengers in the most
efficient order, and end at the work location, all while providing global optimality. Finally, we propose metrics
for measuring algorithm quality. They define objective criteria to allow apples-to-apples comparisons across
algorithms, and enable future research in the space.

Keywords
Matching — Clustering — Scheduling

1Vice President of Research and Development, Ride
2Data Scientist, Ride
3Chief Product and Technology Officer, Ride
4Software Engineer, Ride
*Corresponding author: gleb@ride.com

Contents

Introduction 1

1 Route Matching Algorithm 1
1.1 Overview . 1
1.2 Detailed Description . 1
1.3 Optimization . 2
1.4 Asymptotic Complexity Analysis 2
1.5 Implementation Details 2

2 Schedule Matching Algorithm 2
2.1 Overview . 2
2.2 Anchor time . 2
2.3 Overlap score . 2
2.4 Distance score . 3
2.5 Eligibility score . 3

3 Measuring Algorithm Quality 3
3.1 Overview . 3
3.2 Post-match trips in a day 3
3.3 Probability of users accepting match 3
3.4 Expected trip in a day . 4

References 4

Introduction
This technical report describes the Route Matching Algorithm
and Schedule Matching Algorithm and that we propose to

form rides in Ride Marketplace v1. It will replace the cur-
rent Simple Agglomerative Clustering Algorithm used in Ride
Marketplace Alpha. The new algorithm builds on the Sim-
ple Agglomerative Clustering Algorithm to produces optimal
routes that originate at a driver’s home location, visit all of
the driver’s passengers in the most efficient order, and end at
the work location. Furthermore, the new algorithm provides
a mean to handle repeated trips by taking into account the
amount of overlap between two traveler’s desired schdule.
Finally, we propose metrics for measuring algorithm quality.
They define objective criteria to allow apples-to-apples com-
parisons across algorithms, and enable future research in the
space.

1. Route Matching Algorithm

1.1 Overview
The pseudocode for Route Matching Algorithm is shown in
algorithm 1.

1.2 Detailed Description
We start our route matching by pre-computing directions from
each of the users to target destination (line 2). We then order
the list of drivers by decreasing distance to target destination
(line 3). This is the greedy aspect of the algorithm: we guaran-
tee that we start with the furthest driver, and then move closer
with every step. After this step we store vehicle capacities
(line 4). We then store all passengers into another set (line
5). Finally, to conclude algorithm setup, we reset the list of

Route Matching Algorithm — 2/4

Algorithm 1: Route Matching
input :U Users and T Target destination
output :R Routes

1 begin
2 M←− Distance(Ui,T)
3 D←− FindDrivers(U).sortDecreasingBy(M)
4 C←− FindCapacity(D)
5 P←− FindPassengers(U)
6 R←− /0
7 for di ∈ Ds.t.M(di)> M(d j),∀ j do
8 while TotalPassengers(di)< ci do
9 W ←− DirectionsViaWaypoint(di,r,Ui,T)

10 r←− P.sortIncreasingBy(W). f irst()

11 return(R)

routes (line 6).
The core of the Route Matching algorithm is a loop that

selects the furthest remaining driver (line 7). For this driver,
we start building up an array of passengers in the following
fashion: first, we calculate additional travel time if we add
each one of the passengers (one at a time), and choose the
passenger that adds the least additional travel time. We then
continue attempting to add additional passengers (again, one
a time) while each time computing an optimal pickup route
by solving the so-called Traveling Salesman Problem. We
continue the procedure until we either run out of capacity,
or run out of passengers that satisfy our business rules (for
instance, the total additional pickup time should not exceed x
minutes). We then save this route, and remove both the driver
and the passengers from the list of available (lines 7-10).

1.3 Optimization
Due to the fact that solving the Traveling Salesman Problem
is a very intensive computational procedure, we can prune
the search space by running an agglomerative clustering filter
[1] before attempting to add passengers to a driver (lines 7-
10). This will significantly speed up the running time of the
algorithm.

1.4 Asymptotic Complexity Analysis
Without optimization, the algorithm solves the Traveling Sales-
man Problem O(n2) times, where n is the number of users.
This is because the algorithm has to process O(n) drivers, and
for each one attempt to add O(n)passengers up to c times,
where c is capacity. With the optimization, we limit the search
space to a constant, which reduced complexity to calling the
Traveling Salesman Problem solver O(n) times.

1.5 Implementation Details
We use third-party geocoding [2] and directions [3] services,
as well as a solver of the Traveling Salesman Problem [4].

2. Schedule Matching Algorithm

2.1 Overview
Schedule mismatch poses an equally important challenge to
carpooling. When users have non-recurring trips, the algo-
rithm accounts for schedule mismatch using a mask to find
users with compatible anchor times for the trips concerned,
where anchor time can either be arrival time or departure time.
When users have recurring trips in a given time span, in ad-
dition to schedule mismatch for a single trip, the algorithm
also takes into consideration the frequency at which two travel
schedules are compatible. Optimizing for schedule mismatch
necessities a compromise in route optimality, we describe a
simple method to parametrize the tradeoffs.

2.2 Anchor time
Depending on the direction of travel, each traveler has an an-
chor time in the form of either desired arrival time or departure
time. Suppose a driver has an anchor time of A j, we fix the
driver’s anchor time and look for a set of passengers whose
anchor time falls within x minutes of the driver’s anchor time.
In other words, driver j has a mask M j:

M j = [A j− x,A j + x] (1)

For each driver j, we evaluate each user who can be a
passenger against the mask M j to createa a consideration
set of passengers C j. For non-recurring trips, C j can be used
directly by the Route Matching Algorithm to construct optimal
carpools around each driver.

2.3 Overlap score
For users with recurring trip, we construct an overlap score to
capture the degree to which a passenger’s desired set of trip
overlaps with that of a potential driver.

Let Ti be passenger i’s desired schedule, and Tj be driver
j’s desired schedule, where

Ti = [si(t1),si(t2), ...,si(tS)]

for a passenger with S desired trips (2)

Tj = [s j(t1),s j(t2), ...,s j(tT)]

for a driver with T desired trips (3)

The overlap of passenger i’s schedule to that of driver j’s
can be measured as:

OverlapScore j(passengeri) = χ(Ti,Tj) (4)

Route Matching Algorithm — 3/4

2.4 Distance score
To proxy for route optimality, we construct a distance score for
each potential passenger relative to a driver. Given destination
address Dd , passenger address Di, and driver address D j, the
distance score for each potential passenger i with respect to
driver j is:

DistanceScore j(passengeri) = ω(Dd ,Di,D j) (5)

2.5 Eligibility score
We parametrize the tradeoff between schedule overlap and
route optimality using a function with overlap-score and distance-
score as inputs.

EligibilityScore j(passengeri) =

ψ(OverlapScore j(i),DistanceScore j(i)) (6)

Eligibility score is increasing in both overlap score and
distance score. The relative effect of either overlap score or
distance score on eligibility score may be fixed, or may vary
based on outside factors, such as travel times, relationship be-
tween two carpoolers, or other individualized characteristics.
Using the eligibility score, we rank all users in the consid-
eration set C j for each driver, and use the top n poptential
passengers as inputs for the Route Matching Algorithm.

3. Measuring Algorithm Quality

3.1 Overview
We would like to be able to quantify improvements in each
algorithm update going forward. There are three main ways
in which we would like to measure algorithm quality:

1. Post-match trips in a day
2. Probability of match acceptance
3. Expected trips in a day

We propose to start using metric (1) and a simplified version
of metric (2) right away. In the meantime, we should start
collecting data on other components for (2) and (3) for future
improvements.

3.2 Post-match trips in a day
The macro goal here is to reduce the number of cars on the
road. We want to measure that. Let’s define a trip as one driver
who drives from point A to point B in a day, irrespective of
whether a driver has passengers or not. The following example
provides three scenarios1 :

In this example:

• Let T0 be the number of trips that would be taken for a
fixed number of employees to commute from home to
work and back when traveling alone

1Travel Alone is a base case when none of the employees carpool

Table 1. Scenario Analysis

Travel Alone Algo 1 Algo 2

Number of Trips T0 T1 T2

• When Ride pools employees into carpools, Ts trips are
formed, where Ts ≤ T0∀s 6= 0

• Algorithm 2 is superior to Algorithm 1 iff T2 < T1

3.3 Probability of users accepting match
We want to maximize the probability that users will accept the
matches that we have formed for them. To do this, we need to
consider a few factors:

• Utility of saving money to the user, U(dollar)
• Utility of driving or riding with a fellow carpooler, this

can include everything from companionship to environ-
ment impact, U(carpool)

• Utility of driving or riding a different car over his/her
own, U(cartype)

• Utility of the inconvenience that carpooling produces,
U(inconvenience)

Putting them together, we have:

Prob(user i accepts match) =
Prob(Ui(dollar)+Ui(carpool)+Ui(cartype)>

Ui(inconvenience)) (7)

For the time being, we will stay agnostic toward how each
of our users value dollar, carpool, car type, and inconvenience.
However, we will try to measure inconvenience as a func-
tion of difference in schedule and travel time. Generically,
inconvenience can be modeled as:

Inconvenience =

α ∗F(∆traveltime)+β ∗G(∆schedule), (8)

where α +β = 1
Functions F and G are defined as:

F(∆traveltime) = ln(T TWC−T TWDA
T TWDA +1) (9)

where

• T TWC is travel time when carpooled
• T TWDA is travel time when driving alone

G(∆schedule) = ln(DAT-CAT
(60 minutes) +1) (10)

where

Route Matching Algorithm — 4/4

• DAT is desired anchor time
• CAT is carpool anchor time

In summary, instead of comprehensively modeling the
probability that a user will accept a match, we will use a metric
that simply captures the inconvenience that a match would
have causes a user. We will operate under the assumption that
the less inconvenient a match is, the more like he/she will
accept the match.

3.4 Expected trip in a day
Given Ts, the number of trips that a matching algorithm forms
in a day, and the probability that each user accepts the match
formed for her, we can comprehensively capture the quality
of an algorithm as the expected number of trips to take place
each day:

Quality of algorithm m =

Expected number of trips in a day =

Tm

∑
1

1×Prob(users in ride i accept match) (11)

where Tm = the total number of trips formed by algorithm m

References
[1] Heather Arthur. K-means and hierarchical clustering.

https://github.com/harthur/clusterfck,
2012. [Online; accessed 24-September-2014].

[2] Google Inc. Geocoding API. https://developers.
google.com/maps/documentation/
geocoding/, 2014. [Online; accessed 24-September-
2014].

[3] Google Inc. Directions API. https://developers.
google.com/maps/documentation/
directions/, 2014. [Online; accessed 24-September-
2014].

[4] Google Inc. Traveling Salesman Solver.
https://developers.google.com/maps/
documentation/directions/#Waypoints,
2014. [Online; accessed 24-September-2014].

https://github.com/harthur/clusterfck
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/geocoding/
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/#Waypoints
https://developers.google.com/maps/documentation/directions/#Waypoints

	Introduction
	Route Matching Algorithm
	Overview
	Detailed Description
	Optimization
	Asymptotic Complexity Analysis
	Implementation Details

	Schedule Matching Algorithm
	Overview
	Anchor time
	Overlap score
	Distance score
	Eligibility score

	Measuring Algorithm Quality
	Overview
	Post-match trips in a day
	Probability of users accepting match
	Expected trip in a day

	References

