
Ride Technical Report TR-2. May 2015.
CONFIDENTIAL. Please do not distribute.

Unconstrained Route Matching Algorithm
Gleb Chuvpilo1*, Oscar Salazar2, Sanny Liao3, Sergio Botero4, Nicolás Hock5

Abstract
This technical report describes the Unconstrained Route Matching Algorithm, a proposed replacement of the
Route Matching Algorithm [1] currently used in production at Ride. The main difference between the two
algorithms is that Unconstrained Route Matching Algorithm replaces the concept of the neighborhood that limits
the search of potential matches to an area close to the origin of the trip with a channel along the route from
driver’s origin to destination. This opens up the search space and thus allows to feed the matching funnel with a
greater number of potential matches. The new algorithm preserves the rest of the features of the Route Matching
Algorithm, specifically: takes into consideration varying amounts of overlap between a potential driver and a
potential passenger’s desired travel schedule, produces optimal routes that originate at a driver’s home location,
visit all of the driver’s passengers in the most efficient order, and end at the work location, all while providing
global optimality. Finally, we expand on the metrics for measuring algorithm quality. They define objective criteria
to allow apples-to-apples comparisons across algorithms, and enable future research in the space.

Keywords
Matching — Clustering — Scheduling

1Vice President of Research and Development, Ride
2Chief Product and Technology Officer, Ride
3Data Scientist, Ride
4Software Engineer, Ride
4Software Engineer, Ride
*Corresponding author: gleb@ride.com

Contents

Introduction 2

1 Algorithm Design 2

1.1 Overview . 2
1.2 Matcher . 2
1.3 Global Optimizer . 2

2 Algorithm Details 2

2.1 Reachability Channel . 2
2.2 Distance Score . 2
2.3 Schedule Score . 3

Overview • Anchor Time • Computing the Schedule Score

2.4 Network Score . 3
2.5 Combining Scores . 3

3 Measuring Algorithm Quality 3

3.1 Overview . 3
3.2 Post-match trips in a day 3
3.3 Probability of users accepting a match 4
3.4 Expected trips in a day 4

4 Discussion 4

References 4

Introduction
We have seen vast success of the Route Matching Algorithm[1]
implemented and deployed in production at Ride, especially
compared to Simple Agglomerative Clustering Algorithm used
in Ride Marketplace Alpha. Route Matching Algorithm forms
globally-optimal pickup routes that drivers would themselves
form had they been aware of each others’ existence: the al-
gorithm takes into consideration varying amounts of overlap
between a potential driver and a potential passenger’s desired
travel schedule, produces optimal routes that originate at a
driver’s home location, visit all of the driver’s passengers in
the most efficient order, and end at the work location, all
while providing global optimality. Route Matching Algorithm
showed success and started forming rides from Day 1 of the
public launch. However, it comes with an intentional simpli-
fication that allowed for fast research and development time.
This simplification limits matches to passengers who (1) live
in the driver’s immediate vicinity called neighborhood and
(2) go to a destination within a short walking distance of the
driver’s destination. In other words, the algorithm is highly
constrained, and what we really want is to relax these con-
straints. This Technical Report describes a route matching
algorithm with these constraints removed, and we call it the
Unconstrained Route Matching Algorithm. The discussion
that follows first addresses the overall algorithm structure,
then dives into the building blocks, and finally discusses how

Unconstrained Route Matching Algorithm — 2/4

we can measure algorithm quality.

1. Algorithm Design

1.1 Overview
The Unconstrained Route Matching Algorithm has two main
components: the Matcher specified in pseudocode in algo-
rithm 1, and the Global Optimizer specified in algorithm 2.
The role of the Matcher is to produce all possible match pairs
of a user ui with other users u j: any new user can get matched
to multiple other users, with ui getting assigned either the role
of a driver or a passenger. The role of the matcher is to find all
these matches, and record them in a matrix. In other words,
Matcher produces locally-optimal matches. These matches
are then submitted to the Global Optimizer. The role of the
Global Optimizer is to analyze all possible passenger-driver
match pairs, and produce globally-optimal matches. This dual
structure is needed, because we no have the luxury of one-
to-many search by driver’s destination as constrained by the
Route Matching Algorithm. Now we have to deal with world
of many-to-many matches instead.

1.2 Matcher

Algorithm 1: Matcher
input :U Users
output :S Score Matrix

1 begin
2 for ∀ui ∈U do
3 C←− /0
4 ti←−ComputeTopologyConstraints(ui)
5 si←−ComputeScheduleConstraints(ui,U)
6 ci←−ComputeNetwork(ui,U)
7 Si←−CombineScores(ti,si,ci)
8 return(S)

We feed the Matcher with any new user information, i.e.
creation of a new user or an update of the existing user (line
2). On this new information, we first initialize the list of
candidates to an empty set (line 3). Then we compute topology
constraints (line 4), schedule constraints (line 5), and network
constraints, such as limiting matching to a single employer or
constraining by user’s social graph (line 6). We then combine
the aforementioned constraints into a combined score (line 7),
and finally produce (line 8) and return (line 9) a Score Matrix,
in Table 1.

u1 u2 ... un

u2
...
un

Table 1. Score Matrix: rows are driver roles, columns are
passenger roles

1.3 Global Optimizer

Algorithm 2: Global Optimizer
input :S Score Matrix
output :M Matches, S′ Updated Score Matrix

1 begin
2 M←− /0
3 for ∀si, j ∈ S do
4 O←− Optimize(S)
5 D←− AssignDriverRole(O)
6 for di ∈ D do
7 vi←−VehicleCapacity(di)
8 while TotalPassengers(di)< vi do
9 W ←− SolveT SPWaypoints(D)

10 M←− AddMatch(W)

11 return(M)

We feed the Score Matrix arriving from the matcher to the
Global Optimizer. We initialize this algorithm with an empty
set of matches (line 2), and start the critical section with the for
loop (line 3). Next is the core of global optimization, where
we optimize roles and waypoints in the system by taking into
account all new user and match information (line 4). We then
assign driver roles (line 5). Then, for each designated driver
(line 6), we calculate available vehicle capacity (line 7) and
attempt to fill this capacity with new passengers (lines 8-10),
which includes solving the Traveling Salesman Problem (line
9). We then produce (line 10) and return (line 11) resulting
matches.

2. Algorithm Details

2.1 Reachability Channel
We define a term Reachability Channel as the bounding poly-
gon around any given user’s route from origin to destination,
subject to the following constraint: any point inside the chan-
nel should be reachable as an additional waypoint for that
user while still complying with business rules, such as, for in-
stance, staying within 20% extra driving time. Precomputing
and storing the geometry of Reachability Channels allows to
calculate all possible channels that any give user belongs to in
time complexity of O(n).

2.2 Distance Score
To proxy for route optimality, we construct a distance score for
each potential passenger relative to a driver. Given destination
address Dd , passenger address Di, and driver address D j, the
distance score for each potential passenger i with respect to
driver j is:

DistanceScore j(passengeri) = ω(Dd ,Di,D j) (1)

Unconstrained Route Matching Algorithm — 3/4

2.3 Schedule Score
2.3.1 Overview
Schedule mismatch poses an equally important challenge to
carpooling. When users have non-recurring trips, the algo-
rithm accounts for schedule mismatch using a mask to find
users with compatible anchor times for the trips concerned,
where anchor time can either be arrival time or departure time.
When users have recurring trips in a given time span, in ad-
dition to schedule mismatch for a single trip, the algorithm
also takes into consideration the frequency at which two travel
schedules are compatible. Optimizing for schedule mismatch
necessities a compromise in route optimality, we describe a
simple method to parametrize the tradeoffs.

2.3.2 Anchor Time
Depending on the direction of travel, each traveler has an an-
chor time in the form of either desired arrival time or departure
time. Suppose a driver has an anchor time of A j, we fix the
driver’s anchor time and look for a set of passengers whose
anchor time falls within x minutes of the driver’s anchor time.
In other words, driver j has a mask M j:

M j = [A j− x,A j + x] (2)

For each driver j, we evaluate each user who can be a
passenger against the mask M j to createa a consideration
set of passengers C j. For non-recurring trips, C j can be used
directly by the Route Matching Algorithm to construct optimal
carpools around each driver.

2.3.3 Computing the Schedule Score
For users with recurring trip, we construct an overlap score to
capture the degree to which a passenger’s desired set of trip
overlaps with that of a potential driver.

Let Ti be passenger i’s desired schedule, and Tj be driver
j’s desired schedule, where

Ti = [si(t1),si(t2), ...,si(tS)]

for a passenger with S desired trips (3)

Tj = [s j(t1),s j(t2), ...,s j(tT)]

for a driver with T desired trips (4)

The overlap of passenger i’s schedule to that of driver j’s
can be measured as:

ScheduleScore j(passengeri) = χ(Ti,Tj) (5)

2.4 Network Score
We are introducing Network Score, a new score that did not
exist in the Route Matching Algorithm. This score allows to
describe the following use cases:

• Limiting matching to a single organization
• Introducing a bias to match within a user’s organization

or within a user’s social graph

2.5 Combining Scores
We parametrize the tradeoff between schedule overlap, route
optimality and network score using a function that computes
a custom function of these three scores, e.g., a weighted aver-
age:

EligibilityScore j(passengeri) =

ψ(ScheduleScore j(i),DistanceScore j(i),

NetworkScore j(i)) (6)

Eligibility score is increasing in both overlap score and
distance score. The relative effect of either overlap score or
distance score on eligibility score may be fixed, or may vary
based on outside factors, such as travel times, relationship be-
tween two carpoolers, or other individualized characteristics.
Using the eligibility score, we rank all users in the consid-
eration set C j for each driver, and use the top n potential
passengers as inputs for the Unconstrained Route Matching
Algorithm.

3. Measuring Algorithm Quality

3.1 Overview
We would like to be able to quantify improvements in each
algorithm update going forward. There are three main ways
in which we would like to measure algorithm quality:

1. Post-match trips in a day
2. Probability of match acceptance
3. Expected trips in a day

We propose to start using metric (1) and a simplified version
of metric (2) right away. In the meantime, we should start
collecting data on other components for (2) and (3) for future
improvements.

3.2 Post-match trips in a day
The macro goal here is to reduce the number of cars on the
road. We want to measure that. Let’s define a trip as one driver
who drives from point A to point B in a day, irrespective of
whether a driver has passengers or not. The following example
provides three scenarios1 :

Table 2. Scenario Analysis

Travel Alone Algo 1 Algo 2

Number of Trips T0 T1 T2

In this example:

1Travel Alone is a base case when none of the employees carpool

Unconstrained Route Matching Algorithm — 4/4

• Let T0 be the number of trips that would be taken for a
fixed number of employees to commute from home to
work and back when traveling alone
• When Ride pools employees into carpools, Ts trips are

formed, where Ts ≤ T0∀s 6= 0
• Algorithm 2 is superior to Algorithm 1 iff T2 < T1

3.3 Probability of users accepting a match
We want to maximize the probability that users will accept the
matches that we have formed for them. To do this, we need to
consider a few factors:

• Utility of saving money to the user, U(dollar)
• Utility of driving or riding with a fellow carpooler, this

can include everything from companionship to environ-
ment impact, U(carpool)

• Utility of driving or riding a different car over his/her
own, U(cartype)

• Utility of the inconvenience that carpooling produces,
U(inconvenience)

Putting them together, we have:

Prob(user i accepts match) =
Prob(Ui(dollar)+Ui(carpool)+Ui(cartype)>

Ui(inconvenience)) (7)

For the time being, we will stay agnostic toward how each
of our users value dollar, carpool, car type, and inconvenience.
However, we will try to measure inconvenience as a func-
tion of difference in schedule and travel time. Generically,
inconvenience can be modeled as:

Inconvenience =

α ∗F(∆traveltime)+β ∗G(∆schedule), (8)

where α +β = 1
Functions F and G are defined as:

F(∆traveltime) = ln(T TWC−T TWDA
T TWDA +1) (9)

where

• T TWC is travel time when carpooled
• T TWDA is travel time when driving alone

G(∆schedule) = ln(DAT-CAT
(60 minutes) +1) (10)

where

• DAT is desired anchor time
• CAT is carpool anchor time

In summary, instead of comprehensively modeling the
probability that a user will accept a match, we will use a metric
that simply captures the inconvenience that a match would
have causes a user. We will operate under the assumption that
the less inconvenient a match is, the more like he/she will
accept the match.

3.4 Expected trips in a day
Given Ts, the number of trips that a matching algorithm forms
in a day, and the probability that each user accepts the match
formed for her, we can comprehensively capture the quality
of an algorithm as the expected number of trips to take place
each day:

Quality of algorithm m =

Expected number of trips in a day =

Tm

∑
1

1×Prob(users in ride i accept match) (11)

where Tm = the total number of trips formed by algorithm m

4. Discussion
One of the potential improvements to the app is multi-match
functionality, so that users can see multiple matches simultane-
ously as cards that they can scroll through. In Unconstrained
Route Matching Algorithm we compute a Score Matrix for all
the users, so we can produce multi-matches out of the box.

References
[1] Gleb Chuvpilo, Sanny Liao, Oscar Salazar, and Sergio

Botero. Route matching algorithm. Technical Report
RIDE-TR-1, Ride, New York, NY, October 2014.

	Introduction
	Algorithm Design
	Overview
	Matcher
	Global Optimizer

	Algorithm Details
	Reachability Channel
	Distance Score
	Schedule Score
	Overview
	Anchor Time
	Computing the Schedule Score

	Network Score
	Combining Scores

	Measuring Algorithm Quality
	Overview
	Post-match trips in a day
	Probability of users accepting a match
	Expected trips in a day

	Discussion
	References

