
A Coinduction Proof Rule for Hoare Doubles

Christian J. Bell
Massachusetts Institute of Technology

cj@csail.mit.edu

Adam Chlipala
Massachusetts Institute of Technology

adamc@csail.mit.edu

Abstract
We show how to implement a Hoare logic for corecursive programs
encoded by a mixed embedding in Coq in the continuation-passing
style. One of the challenges that we encountered while working
with corecursion is that Coq’s support for coinductive proofs is
(notoriously) difficult to work with directly. Hence our primary focus
is on our development of a Hoare double proof rule for coinduction
that enables compositional and incremental proofs. Our results have
been formalized and proved in Coq.1

1. Introduction
In our proof developments, we strive to take maximal advantage of
the concision of typed functional programming and higher-order
logic provided by Coq. One economical choice is to work with pro-
grams in continuation-passing style (CPS), eliminating the concept
of postconditions from our verification vocabulary and allowing us
to reason gracefully about unstructured control flow. Hoare doubles,
consisting of just a precondition and program statement, provide a
more natural way to reason about such programs than the canonical
Hoare triple, which additionally specifies a postcondition.

In this demonstration, we consider imperative programs that are
defined coinductively in CPS:

CoInductive stmt : Set :=
| ret: Z→ stmt
| abort: stmt
| act: operation→ stmt
| bind: stmt→ (Z→ stmt)→ stmt.

Statement ret v represents a program that has terminated with return
value v, abort allows a program to issue an error (unsafe), act α
performs imperative operation α (e.g. writing or reading from the
heap) and steps to state ret v for return value v, and bind s k either
steps s, or else if s = ret v, runs the continuation by stepping to
k v. We write x ← s1; s2 to denote bind s1 (fun x⇒ s2), s1; s2
to denote bind s1 (fun _⇒ s2), and x← α; s to denote bind (act
α) (fun x⇒ s). Variables, conditional branching, and looping are
not directly encoded; we instead shallowly embed them as Gallina
functions that return stmt, hence programs are ultimately written in
a “mixed” embedding style.

1.1 An example
Program isTitleCase checks whether a 0-terminated string is in
title case, returning 1 if true and 0 otherwise:

CoFixpoint parseWS a : stmt:=
x ← read a;
if x = 0 then ret 1 (* Title Case *)
else if x = " " then parseWS (1+a)
else if ¬ is_letter x ∨ is_upper x then parseLetters (1+a)
else ret 0 (* first letter of a word is lowercase *)

1 Coq source is available at https://github.com/siegebell/hdcoind

with parseLetters a :=
x ← read a;
if x = 0 then ret 1 (* Title Case *)
else if x = " " then parseWS (1+a)
else if ¬ is_letter x ∨ is_lower x then parseLetters (1+a)
else ret 0 (* cAps in woRd *).

Definition isTitleCase := parseWS.

The specification should look something like:

is title case s =⇒ `{a 7→ s ∗ F} k 1
¬is title case s =⇒ `{a 7→ s ∗ F} k 0

`{a 7→ s ∗ F} c← isTitleCase a; k c

Where is_title_case is a pure Coq function that determines if the
abstract string s is in title case. The specification states that if its
continuation is safe, then isTitleCase is safe. Our definition of
safety is a coinductive property on programs and machine states,
which holds when either the program is terminated (ret) or else is
able to take a step and, for any step taken, it continues to be safe.

There are two ways to prove safety: by induction on the abstract
string or by coinduction on the execution of the program. But proof
by induction is generally not applicable because many programs
do not terminate or else their termination may be inconvenient to
check or even nondeterministic. Coinduction applies in all cases, so
we seek a general technique to apply it in a way that is (ideally) no
harder to use than induction.

If we directly invoke the cofix tactic, however, Coq’s guard-
edness checker will not allow us to call any helper lemmas that
make use of the coinductive hypothesis, such as a separate proof
for parseLetters. This breaks modularity in two ways. First, we
cannot factor the proof of isTitleCase into two smaller lemmas
because they cannot use each other’s coinductive hypotheses. Sec-
ond, we must perform coinduction on the execution of the entire
program all at once. In other words, we must write a coinductive
hypothesis by hand that accounts for all future branching behaviors.
A more natural proof would be incremental, such that we perform
coinduction on parseWS, and then perform coinduction again when
we eventually step to parseLetters.

1.2 Hoare doubles with program invariants
Invariants are one of the central ideas in program proof, describing
properties of states of some transition system, where the property
holds initially and is preserved by all transitions. We define two
extended versions of our Hoare double to facilitate invariant-based
reasoning that will allow us to write modular and incremental
coinductive proofs.

The first is I ||={A} s, saying that either precondition A
guarantees the safety of running statement s, where we also consider
it “safe” to run at least one step and reach a state in the set I, or else
A and s satisfy I. These sets I consist of pairs of predicates and
statements. This judgment is defined in terms of I ||−{A} s, which
covers the case where at least one step must be taken.

1 2015/12/2

https://github.com/siegebell/hdcoind

I ||−{A} s
I ||={A} s H-1

(A, s) ∈ I
I ||={A} s H-2

`{A} s
I ||−{A} s

H-3

∅ ||−{A} s
`{A} s

H-4
∀x. I ||−{A(x)} s
I ||−{∃x. A(x)} s

H-5

I1 ||−{A1} s I1 ⊆ I2 A2 ` A1

I2 ||−{A2} s
H-6

I1 ||={A1} s I1 ⊆ I2 A2 ` A1

I2 ||={A2} s
H-7

(A, s) ∈ I′
∀A′, s′. (A′, s′) ∈ I′ ⇒ (I′ ∪ I) ||−{A′} s′

I ||−{A} s
H-INV

Figure 1: Selection of proof rules for Hoare doubles.

Figure 1 shows several lemmas that we have proved about Hoare
doubles with invariants. The crucial final lemma in the figure justifies
the usefulness of the new judgments. It corresponds to strengthening
the coinduction hypothesis. When we are trying to prove some
I ||−{A} s (or I ||={A} s), we may decide that the invariant I is
not general enough. We pick some I′ to extend it with, where I′
contains the current proof obligation (A, s) but may also contain
others. We are then given a proof obligation that is more work, in
the sense that we need to prove a Hoare double for every state
compatible with I′; but also less work, in that we may now assume
I′ ∪ I as the more general invariant. The choice of I′ is analogous
to picking a good loop invariant in conventional Hoare logic.

Judgments ||= and ||− work together in a coinductive proof of
safety. The first, I ||={A} s, corresponds to a proof state where
Coq’s cofixpoint guardedness checker has been satisfied: we can
use the coinductive hypothesis by appealing to (A, s) ∈ I directly.
The second corresponds to a proof state where the guardedness
checker has not yet been satisfied, so we must take at least one step
of execution before appealing to I. Each time we strengthen the
induction hypothesis, we are left with a ||− judgment, so it becomes
necessary for the program to take at least one step before we can
appeal to its induction hypothesis.

2. Application
To make the experience of performing coinduction more natural,
we have defined a tactic, hd_coind, to 1) apply rule H-INV, 2)
automatically infer I′ based on the hypotheses that the user has
generalized (i.e. reverted to the goal), and 3) pose new hypotheses
to help the user apply their generalized invariant. In our experience,
this has made the proofs of programs like isTitleCase feel much
like performing plain induction or proving a while loop (as it should
be!). Using rule H-INV, we can now break the proof into separate
lemmas, stated in terms of ||− and ||=, and parameterized over I.

Definition tc_ret s := if is_title_case s then 1 else 0.

Lemma parseLetters_ok: ∀ I0 I a s F k,
I0 ||= {a 7→ s ∧ F} k (tc_ret ("A"::s))→
I0 ⊆ I→
(∀ a s F, I0 ||= {a 7→ s ∧ F} k (tc_ret s)→
I ||={a 7→ s ∧ F} x← parseWS a; k x)→

I ||− {a 7→ s ∧ F} x← parseLetters a; k x.
Proof. . . . Qed.

To prove parseLetters_ok, we first generalize the premise:

HI0 : I0 ⊆ I
Hsafe_sws : ∀ a s F,

I0 ||={a 7→ s ∧ F} k (tc_ret s)→
I ||={a 7→ s ∧ F} x← parseWS a; k x

______________________________________(1/1)
∀ a s F,
I0 ||={a 7→ s ∧ F} k (tc_ret ("A"::s))→
I ||−{a 7→ s ∧ F} x← parseLetters a; k x

and then run hd_coind to strengthen the invariants to:

I’ = I ∪
⋃

a,s,F { (a 7→ s ∧ F , c← parseLetters a; k c)
| I0 ||= {a 7→ s ∧ F} k (tc_ret ("A"::s)) },

which results in proof state:

HI0 : I0 ⊆ I
Hsafe_sws : ∀ a s F,

I0 ||={a 7→ s ∧ F} k (tc_ret s)→
I ||={a 7→ s ∧ F} x← parseWS a; k x

H : ∀ a s F,
I0 ||={a 7→ s ∧ F} k (tc_ret ("A"::s))→
I’ ||={a 7→ s ∧ F} x← parseLetters x; k x

H0 : I ⊆ I’
Hsafe_k : I0 ||={a 7→ s ∧ F} k (tc_ret ("A"::s))
______________________________________(1/1)
I’ ||− {a 7→ s ∧ F}x← parseLetters a; k x

By automatically generating hypotheses like H, the user may use
their usual automation tactics (e.g. eauto) to access their coinductive
hypotheses instead of manually applying rules H-1 and H-2. We
continuing to step through the program, and when we reach a
corecursive call to parseLetters, it will have occurred after at least
one step, so we may appeal to I’ by applying H. Reaching parseWS,
we assume safety by Hsafe_sws even though we have not yet proved
parseWS. In the next proof, we will have to show that parseWS’s
coinductive hypothesis lines up with premise Hsafe_sws.

Lemma parseWS_ok: ∀ I a s F k,
I ||= {a 7→ s ∧ F} k (tc_ret s)→
I ||− {a 7→ s ∧ F} x← parseWS a; k x.

Proof. . . . Qed.

To prove parseWS_ok, we first generalize its premise and apply
hd_coind, resulting in proof state:

H : ∀ a s F,
I ||={a 7→ s ∧ F} k (tc_ret s)→
I’ ||={a 7→ s ∧ F} x← parseWS x; k x

H0 : I ⊆ I’
Hsafe_k : I ||={a 7→ s ∧ F} k (tc_ret s)
______________________________________(1/1)
I’ ||−{a 7→ s ∧ F} x← parseWS a; k x

When we reach parseLetters, we apply parseLetters_ok with
parameter I0 set to I and parameter I set to I’, and we are done.

Lemma isTitleCase_ok: ∀ I a s F k,
I ||= {a 7→ s ∧ F} k (tc_ret s)→
I ||− {a 7→ s ∧ F} x← isTitleCase a; k.

Proof. intros; apply parseWS_ok; assumption. Qed.

Note that the specifications above weakened the goal for the
continuation k from ||− to ||=, which implies that the functions will
take at least one step. This is a guarantee to any caller that they may
immediately use their coinductive hypotheses once the continuation
is called.

3. Conclusion
We have given a very brief introduction to using Hoare doubles for
programs in CPS encoded as a mixed embedding in Coq. Hoare

2 2015/12/2

doubles work well for reasoning about CPS and arbitrary control
flow, while CPS and the mixed embedding allow us to use reuse
language features provided by Gallina while also having operations
that mutate the machine state [1].

Our primary contributions are the invariant-based Hoare double
judgements ||− and ||= and the corresponding proof rule, H-INV.
Combined with a tactic to automatically apply coinduction and
generate user-friendly coinductive hypotheses, our proofs were of
nearly the same size and complexity as our inductive proofs of
parseLetters_ok and parseWS_ok, with the bonus of not having a
base case for the empty string. We are also using these techniques
in a separate project to verify concurrent programs.

To implement and prove the soundness of these judgments and
rules, we use Tarski’s greatest fixed point thereoms [3]. The ap-
proach for obtaining modular and incremental coinductive proofs
is also documented and available as a general purpose Coq library
named Paco [2], which takes care of some of the boiler-plate defi-
nitions and provides a generic tactic similar to hd_coind. Although
Paco could have simplified some of our definitions and tactics, it
does not provide a program-logic style interface for reasoning about
imperative corecursive programs, which is where most of our proof
effort went.

References
[1] A. Chlipala. The Bedrock structured programming system: Combining

generative metaprogramming and Hoare logic in an extensible program
verifier. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, pages 391–402,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-0. URL
http://doi.acm.org/10.1145/2500365.2500592.

[2] C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of
parameterization in coinductive proof. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, pages 193–206, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1832-7. URL http://doi.acm.org/10.
1145/2429069.2429093.

[3] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5(2):285–309, 1955. URL http://projecteuclid.
org/euclid.pjm/1103044538.

3 2015/12/2

http://doi.acm.org/10.1145/2500365.2500592
http://doi.acm.org/10.1145/2429069.2429093
http://doi.acm.org/10.1145/2429069.2429093
http://projecteuclid.org/euclid.pjm/1103044538
http://projecteuclid.org/euclid.pjm/1103044538

	Introduction
	An example
	Hoare doubles with program invariants

	Application
	Conclusion

