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Abstract—An MIMD multiprocessor digital signal- processing
(DSP) chip containing four 64-b processing elements (PE’s)
interconnected by a 128-b pipelined split transaction bus (STBus)
is presented. Each PE contains a 32-b RISC core with DSP
enhancements and a 64-b single-instruction, multiple-data
vector coprocessor with four 16-b MAC/s and a vector reduction
unit. PE’s are connected to the STBus through reconfigurable
dual-ported snooping L1 cache memories that support shared
memory multiprocessing using a modified-MESI data coherency
protocol. High-bandwidth data transfers between system memory
and on-chip caches are managed in a pipelined memory controller
that supports multiple outstanding transactions. An embedded
RTOS dynamically schedules multiple tasks onto the PE’s.
Process synchronization is achieved using cached semaphores.
The 200-mm2, 0.25- m CMOS chip operates at 100 MHz and
dissipates 4 W from a 3.3-V supply.

Index Terms—Digital signal processor, multiprocessing systems,
multiprocessor interconnection, split-transaction bus.

I. INTRODUCTION

NEXT-GENERATION digital signal processing (DSP)
applications like modem banks, cellular base stations,

broad-band access modems, and multimedia processors require
levels of DSP performance that far exceed the capability of
today's programmable processors. Although ASIC solutions
provide the most cost-effective implementations, systems
implemented in software reduce prototype development times
and enable faster market penetration.

Recently, new DSP architectures have been proposed
and built to address the needs of these applications [1], [2].
High performance is achieved through some combination of
very long instruction word, single-instruction, multiple-data
(SIMD), and multiple-instruction, multiple-data (MIMD)
parallelism. Invariably, the result represents a tradeoff among
performance, code density, scalability and programmability.

This work presents a scalable DSP architecture, called Day-
tona, that offers a wide range of implementation choices from
a purely homogeneous multiprocessor to application specific
solutions based on a programmable core enhanced by hard-
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Fig. 1. The Daytona multiprocessor DSP architecture.

ware accelerators. Performance is achieved by a combination
of MIMD and SIMD parallelism. Scalability is provided by the
simplicity and flexibility of the bus-based architecture. Code
density and programmability are achieved by using a combina-
tion of RISC plus DSP coprocessor technology together with a
powerful software development environment.

This paper is organized as follows. First, a description of the
Daytona multiprocessing platform is described including de-
scriptions of the bus protocol, bus arbitration, I/O, and memory
interface. Section III describes the DSP processing element in
detail. Section IV describes the software development environ-
ment, and Section V describes the four-processing-element (PE)
test-chip implementation.

II. A RCHITECTUREOVERVIEW

The chip described in this paper is the first implementation
of the Daytona MIMD-DSP architecture. Shown in Fig. 1, it
contains four PE’s that communicate with each other and with
off-chip components over an on-chip 128-b split transaction bus
(STBus) operating at 100 MHz. A cache hierarchy is used to
provide low-latency memory accesses to the processors and to
ensure that the bus does not become a performance bottleneck.

A. The Operation of the Split Transaction Bus (STBus).

In a bus-based multiprocessor, the bus is the principal shared
resource. After many simulations with typical applications, a
split transaction bus was chosen. The bus is designed to min-
imize the average latency in a multiprocessor system where
several simultaneous requests are made for large amounts of
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Fig. 2. The STBus protocol.

data. The STBus, with multiple outstanding data transactions,
achieves this with a cost of increased complexity in the bus con-
trollers.

The STBus has separately arbitrated address and data buses.
A transaction ID is associated with every transaction on the
32-b address bus and then matched to the ID’s of the appropriate
128-b data transactions. This enables multiple outstanding
transactions to be serviced by the system. Transactions have
variable sizes and can be prioritized under program control
(e.g., with instruction cache refills having high priority). The
bus protocols are deeply pipelined to maximize the peak sus-
tainable bandwidth on the data bus to 1.6 GB/s. The protocol is
shown in Fig. 2. It is possible to initiate a new bus transaction
every cycle.

On the address bus, the first cycle is used for bus arbitration.
Round-robin bus arbitration is performed with programmable
levels of priority. When a PE receives a grant, it drives a trans-
action record containing transaction ID, type, address, size, and
priority. The next cycle is reserved to allow PE’s on the bus to
snoop their data caches and prepare responses. Responses can
be ACK to accept, MEMINH to indicate that the transaction will
be processed on-chip without need for memory controller inter-
vention, SHARED to indicate that the address is shared between
one or more caches, or RETRY’d. Any bus element that is un-
able to process a transaction can RETRY the transaction. This
can occur when a PE's bus interface is busy or its resources are
all in use. A RETRY'd transaction may be attempted again at a
later time.

The bus supports shared memory multiprocessing with data
coherency in the level-1 cache memories using a modified
version of the MESI write-invalidate snoopy coherency pro-
tocol [3]. Each data cache line has one of five states: invalid,
exclusive clean, exclusive modified, shared clean, and shared
modified. Accesses to variables in shared memory result in
coherent transactions. Various types of coherent transactions
are supported: coherent read (CR), coherent invalidate (CI),
coherent read with invalidate (CRI) and coherent write with
invalidate (CWI). This protocol enables one cache to supply
modified data to another cache without the intervention of the
main memory controller—a feature not supported by other

write-invalidate protocols [4]. Normally, the memory controller
(and central direct memory access (DMA) controller) services
all requests for data. Coherent address transactions trigger
snooping of all the data caches. If a PE has modified data in its
cache, it responds to the transaction with MEMINH to prevent
the memory controller from servicing the request with off-chip
data.

B. The Memory and I/O Controller

The memory and I/O subsystem contains a memory con-
troller, DMA controller, transaction manager, and host I/O
interface. The external memory is designed to be a unified mul-
timedia memory subsystem. This is opposed to the approach
of using memories dedicated to particular media storage. Care
is taken to ensure that the memory subsystem has enough
bandwidth to handle all the data streams and is responsive to
the real-time constraints of the streams.

The STBus, with its multiple outstanding transactions of
variable size, enables the internal bus bandwidth to be matched
to the burst modes of off-chip synchronous and multibank
DRAM’s. For memories with large access latencies, the use of
pipelining and fine-grained transfers allow multiple accesses to
be overlapped resulting in higher external memory utilization.
By tightly coupling the external memory and internal bus con-
trollers, we can achieve high utilization for different external
memory configurations.

The transaction manager implements simultaneous point-to-
point transfers between external memory, I/O interfaces, and
the on-chip STBus. Internal bus bandwidth is not used for ex-
ternal transfers. The DMA controller can perform two-dimen-
sional data transfers for video processing, including operations
like subsampling and shuffling. Large transfers are partitioned
into smaller packets enabling bus bandwidth to be better uti-
lized.

C. Semaphores

A semaphore block is included that supports up to 64 sema-
phores. These can be used via system calls for access to shared
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Fig. 3. The PE architecture.

resources. The STBus coherency protocol is used so that sema-
phores can be cached in the local PE memories to reduce bus
traffic when PE’s are waiting for a semaphore to be released.

III. D IGITAL SIGNAL-PROCESSINGELEMENT

Each of the processing elements (shown in Fig. 3) features a
SPARC RISC processor and an SIMDcoprocessor that operate
simultaneously to form a two-slot LIW machine. The instruc-
tion slots may be filled with instructions for either processor
to minimize code size. Each PE also contains a dual-ported re-
configurable level-1 cache memory, a bus interface and DMA
controller, a least recently used (LRU) cache line replacement
unit, and a hardware debug support (HDS) processor. This sec-
tion will describe each of these in detail.

A. The 32-b SPARC RISC Core

The RISC core is a 32-b SPARC V8 core with the five-stage
pipelined architecture shown in Fig. 4. An off-the-shelf SPARC
C compiler can therefore be used for application development.
The RISC core is optimized for loop control, address calcula-
tion, and the execution of control code. It features additional
DSP-oriented instructions as well as some functions specific
for use in the Daytona PE. These include support for two-cycle
signed/unsigned 16 × 32 multiply/accumulate, divide step,
single-cycle decrement and branch, conditional call, leading
one/zero count, coprocessor operations, and cache manage-
ment. Assembly macros are defined for all new instructions.
Thetouchinstruction is used to explicitly prefetch data, and the
force instruction is used to force the write-back of data in the

data cache. Special I/O’s are provided to assist the HDS pro-
cessor in formulating a trace of execution history—informing
the HDS when the processor is taking branches, etc.

The register file contains 144 registers—eight register win-
dows for nested single-cycle subroutine calls and two sets of
eight global registers that speed up interrupt processing. The
capacitance of the bit lines is halved by folding the register file
into a 72 × 64-b structure. Pairs of bit lines are multiplexed into
a single-ended charge redistribution sense amp (from [5]) using
an nMOS-only MUX.

The datapath uses a regular three-bus architecture with two
operand buses feeding execute units and a result bus. A prefix
tree adder [6] is used for add/subtract instructions and can be
connected to the MAC to resolve the carry-save MAC outputs
for multiply/MAC instructions. A zero look-ahead circuit [7] is
used to speed up zero-flag evaluation. The hardware MAC is
an array multiplier structure using Booth-add circuits from [8].
Power is reduced by preventing data transitions on the operand
buses from entering the MAC when it is not being used. This is
achieved without increasing the critical path through the MAC.
The critical path for the circuit passes through the X1, X2 inputs
to the partial product output (indicated “pp” in Fig. 5). TheAND

gates on the A inputs (multiplicand) can be inserted without af-
fecting the critical path. The NEG output of the Booth recoder
is also gated out of the critical path. When ENABLE is low, the
internal node X remains at logic zero independent of the multi-
plier and multiplicand inputs. Simulations predict a 40% saving
in the total power consumption of the SPARC processor using
this technique (with a MAC instruction on average every ten in-
structions). Power can be further saved by tristating the output
of the XOR gate (holding its current state rather than forcing it
to zero when the MAC is not being used). By implementing the
XOR with a MUX, the output of theXOR gate can be tristated
by zeroing both the NEG and NEGB control signals. TheAND

gates on the multiplicand inputs are not needed, but a keeper
is required to prevent short circuit currents caused by leakage
during long periods of inactivity [9].

B. The 64-b Vector Coprocessor

The vector coprocessor [called the reduced precision vector
unit (RVU)] is provided in each PE for speedup of core DSP
functions [10]. Fig. 6 shows a block diagram of the RVU copro-
cessor.

An SIMD-type coprocessor that operates on 64-b split-word
data was chosen because it takes advantage of the data paral-
lelism and reduced precision requirements typically found in
multimedia and DSP algorithms. Furthermore, an SIMD pro-
cessor is very area efficient because instruction memory and
control logic is shared among the multiple arithmetic elements.
The use of split-word operations allows for a flexible, instruc-
tion-by-instruction tradeoff between parallelism and computa-
tional precision. The RVU supports 8 × 8-b, 4 × 16-b and 2 ×
32-b modes. While 8-b precision is sufficient for video and
image processing algorithms, 16 or 32 b are required for modem
and mobile wireless base-station applications.

The RVU is a tightly coupled coprocessor in the sense that it
shares the address generator and instruction fetch mechanism, as
well as data and instruction memory with the SPARC. A tightly
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Fig. 4. The Sparc RISC core.

Fig. 5. Low-power partial product circuit.

coupled coprocessor was chosen because of its area efficiency
and ease of use. No additional controller and memories are re-
quired and the programmer does not need to load instructions
and data into coprocessor memories before starting a subrou-
tine.

1) Datapath and Instruction Set:The RVU contains a five-
port, 16 × 64-b register file (see Fig. 6). Two 128-b ports permit
the loading or storing of two 64-b registers from/to the data
memory, while the other three 64-b ports are used for the si-
multaneous reading of two operands and the write-back of one
result. The wide load/store path to memory is necessary to keep
the datapath fed and all execution units busy.

The datapath is structured as a pipeline with four logical sec-
tions. The first section contains an alignment unit, which can
rearrange (shift, swap, replicate, etc.) elements in the split-word
data read from the register file. The vector operation unit per-
forms component-wise operations such as four 16-b multiplica-
tions or eight 8-b multiplications in a single cycle. Many other
componentwise operations such as add, subtract, shift, abso-
lute difference, signum, min-max, select, and Boolean opera-
tions are supported as well. Most of these instructions can set
vector condition codes controlling a “select” instruction later
on, thus avoiding inefficient conditional branching. The next
section, the vector reduction unit, provides two ways to accu-
mulate results from the previous section: 1) results are accu-
mulatedwithin each vector component or 2) results are accu-
mulatedacrossvector components. Fig. 7 illustrates how both
types of accumulation can be used to compute four MAC’s in
parallel. Component-wise accumulation is useful when multiple
dot-products must be computed in parallel, while across-com-

ponent accumulation is preferable when a single dot-product or
related vector operation must be computed. Eight 64-b accumu-
lators are provided besides the register file. The full precision
of the computations is kept and overflow is avoided with guard
bits throughout the pipeline until the data formatting section is
reached. This last section performs scaling, rounding, satura-
tion, data packing/unpacking, etc., on both scalar and vector re-
sults without the need for additional formatting instructions. The
physical implementation of the RVU compute pipeline consists
of four stages, but due to pipeline balancing these stages do not
match exactly the logical sections described above.

The RVU instruction set is embedded into the SPARC 32-b
instruction space. Unused SPARC op-codes are used to control
the RVU. The instructions are encoded in an orthogonal way:
each datapath section is controlled by a field in the instruction
word, making the RVU flexible and easy to program. Due to
the limit in available instruction bits, mode registers are used to
fully control the datapath function. Sixteen mode registers are
implemented and can be selected quickly through an indexing
mechanism.

The peak performance of the RVU is 2400 Megaoperations
per second (MOPS), which is achieved when computing the
8-b Manhattan distance (e.g., used in video motion search).
Twenty-four arithmetical operations, not counting scaling,
rounding, etc., are performed every cycle. For algorithms based
on 16-b MAC operations, the peak performance is 800 MOPS.
Table I gives examples of the actual performance achieved.

2) Integration with SPARC Processor:The SPARC pro-
cessor and RVU vector coprocessor together form a two-slot
LIW machine. Two instructions (64-b) are fetched in one cycle
and decoded simultaneously by the SPARC and RVU. If one
instruction is a SPARC instruction and the other an RVU in-
struction, they are issued simultaneously in a single cycle. If the
two instructions are of the same type (two SPARC or two RVU
instructions), they are issued sequentially on the respective
processor. It is the programmer's goal to alternate SPARC and
RVU instruction to get the highest possible performance. A
typical instruction pairing is 1) a load instruction to the RVU
register file—which counts as a SPARC instruction and 2)
an SIMD MAC instruction executed on the RVU. Similarly,
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Fig. 6. The architecture of the RVU vector coprocessor.

(a)

(b)

Fig. 7. Two types of parallel MAC: (1) Componentwise accumulation versus
(2) across-component accumulation.

SPARC pointer operations and flow-control operations can be
paired with SIMD-type operations.

The SPARC and RVU pipelines are shown schematically in
Fig. 8; they always operate in lockstep. An RVU instruction
is fetched in the I stage and delayed by three cycles (stages

TABLE I
DSP PERFORMANCE OF THEDAYTONA PE

ON APPLICATION KERNELS

D1–D3) before the RVU register file is read (RD stage). Subse-
quently, the instruction enters the four execution stages (E1–E4)
performing the datapath functions described earlier; then the re-
sult is written back to the RVU register file (WR stage). The
delay stages together with the load bypass make it possible to
issue a load instruction and a vector operation instruction using
this loaded data in the same cycle. This feature simplifies the
code writing process significantly. Full pipeline bypassing is
provided (not shown in Fig. 8) to avoid pipeline hazards and
simplify application development.

C. The DSP Performance of the PE

The DSP performance of the PE (assuming no cache misses)
for different core routines is shown in Table I. The routines were
coded for the SPARC with and without the coprocessor. When
operating without the RVU, the SPARC is executing a single
instruction every cycle at 100 MHz (with two cycles needed
for a multiplication). The ratio of the execution times is re-
ported as the RVU gain—shown to be as high as 27 for motion
estimation. To date, we have successfully mapped three com-
plete asymmetrical digital subscriber line (ADSL) discrete mul-
titone (DMT)-lite modem applications onto a single PE—and
correctly executed 12 ADSL DMT-lite modems on the four-PE
test chip when operating at 100 MHz. This demonstrates the
high DSP performance available for central-office DSL appli-
cations.
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Fig. 8. SPARC/RVU pipeline architecture (only one bypass is shown).

D. The PE STBus Controller

The PE communication controller performs the following op-
erations.

1) Generate the appropriate transfers on the STBus to ac-
complish the processor's request for data transfers

2) Snoop the STBus to identify memory-mapped operations
for the PE and maintain data coherency

3) Perform the DMA transfers that are requested by the pro-
cessor.

The architecture of the local memory greatly affects the area
and performance of the PE. As an example, consider a local
memory that provides a single read/write port. Such a memory
has a smaller footprint than a dual ported memory. However,
there is a large performance penalty since accesses from the
processor side and from the STBus will need to be serialized
to resolve access contention for the single port. In order to pro-
vide maximal concurrency of operations, we should be able to
perform the following accesses:

• cache reads for the Instruction Bus (cached or direct ad-
dressing);

• load/store accesses from the Data Bus of the processor
(cached and direct addressing);

• cache state and tag queries and stores to determine the op-
erations required to handle nonblocking operations (touch,
stores);

• snoop the state of data cache lines to determine appropriate
responses to coherent transactions;

• update the state of data cache lines based on the coherent
transactions that are accepted on the STBus;

• read/write the state, tag, and data RAM’s to source/sink
data to/from the bus.

The operations suggested above may be simultaneous or sep-
arated in time. The correctness of the memory operations needs
to be enforced by the appropriate control protocol based on the
capabilities of the memory.

Fig. 9. The PE STBus Interface unit.

The PE bus controller manages the local cache memory to
maximize the performance of the system by performing many
of the above operations transparently while ensuring correct op-
eration of the STBus. The architecture of the PE STBus Inter-
face is shown in Fig. 9. It contains a transaction controller that
manages the PE buses as well as separate units for the man-
agement of nonblockingtouchand DMA operations. The trans-
action controller can store up to four outstanding transactions.
The bus interface unit can also manage up to eight outstanding
data operations. If these resources are full, coherent transaction
on the bus will be RETRY'd. An address snooper executes in
unison with the transaction controller. The snooper must also
check for outstanding read/write transactions that might be af-
fected by coherent transactions on the STBus. The read/write
tables therefore support associative search mechanisms to sup-
port snooping. One of the most complex functions is the imple-
mentation of the cache coherency protocol. To demonstrate this,
consider the actions taken when the processor writes to a shared
variable in data cache—the state diagram is shown in Fig. 10.
This is further complicated by the fact that the STBus protocol
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Fig. 10. The state diagram for a processor WRITE to data cache.

is pipelined so that many coherent transactions may need to be
processed simultaneously.

One important consideration in the design of the memory ar-
chitecture is that there is no RETRY of transactions on the STB
data bus. This means that the local memory must be able to
sink data off the bus. The write to the cache from the STBus
is therefore the highest priority access to the cache. Also, the
nonblocking data accesses (DMA andtouchof cache blocks)
are made lower priority than the blocking accesses (load of in-
struction and data caches). The PE STBus Interface prioritizes
all cache accesses and handles all cache access collisions—ac-
cesses to the same cache line. When the processor writes to data
cache, the processor is not stalled on a cache miss—the data are
stored in a write buffer (as shown in the state diagram in Fig. 10)
and the store is completed later. Once the write buffer is occu-
pied, subsequent memory accesses stall the processor until the
outstanding write is completed. Hence, it is important to handle
this transaction with high priority.

E. The Reconfigurable Level-1 Cache Memory

In a bus-based multiprocessor system, the bus bandwidth is
a precious resource. If it is not balanced correctly, the proces-
sors may be starved of data, and the desired MIMD speedup is
not achieved. Whereas it is common practice to include a large
amount of single-cycle SRAM on a DSP chip for instructions,
we chose to have a limited amount of dynamically reconfig-
urable level-1 cache memory with each processor. This has the
advantages of allowing more processors to be integrated onto
a single chip and optimizing the use of the local memory de-
pending on the application.

Fig. 11. An example of a reconfigurable set-associative cache.

Each PE has 8 KB of reconfigurable memory that is divided
into 16 banks of 512 bytes. Every bank can be configured to be
instruction cache, data cache, or local buffer for explicit storage
of instructions or data. When configured as local buffers, the
memory is accessed by the processor via a dedicated part of
the address map. Each cache bank has its own data RAM, tag
RAM, state RAM, and comparators for supporting set-asso-
ciative caching. It also performs cache snooping for shared-
memory coherency. Using operating system calls, an applica-
tion can change the configuration of the memory banks as it
needed change. For example, in a typical modem application,
90% of the executed instructions are inner-loop DSP code for
the transmit and receive filters. But this code only occupies
about 10% of the instruction image—with the control code oc-
cupying the bulk of the memory. It follows that when the DSP is
executing the inner-loop code, only a small amount of I-cache
is needed (see Table I) to achieve a high cache hit rate. When
the control code is executed, however, a much larger I-cache
is required. Furthermore, the inner-loop code tends to process
vast amounts of data, and so the memory banks not needed for
I-cache can be utilized for data storage. Profiling is used by the
application developer to determine the correct amount of I- and
D-cache needed to achieve the required performance. The cache
banks are then configured to provide the cache configuration.

When two or more banks are configured as instruction cache,
they act together to form a set-associative cache that further im-
proves the utilization of the memory. The same is true for data
cache. This is demonstrated in Fig. 11, where three banks are
configured as I-and two banks are configured as D-cache. The
data cache banks participate in the snooping of the address trans-
actions on the STBus for data coherency. The LRU replacement
policy is used for line replacement in caches of either flavor (de-
scribed in detail in the next section). Instruction locking is sup-
ported on a per-bank basis by modifying the cache bank con-
figuration supplied to the LRU unit. The LRU unit will never
target a locked bank for replacement. This can be used to guar-
antee that critical portions of code remain resident in cache.

The memories are 128-b wide, and the line size is 32
bytes. A cache line is filled in two STBus data cycles that
may be separated in time by data cycles of other transactions.
Critical-word forwarding is supported to minimize miss la-
tency. The processor fetches two 32-b instructions over a 64-b
instruction bus and up to four 32-b data words over a 128-b
data bus. Fig. 12 shows the circuits needed to make a cache
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Fig. 12. The reconfigurable cache bank circuit.

bank reconfigurable and set-associative. The PE instruction
address (IADDR) and data address (MADDR) are fed into a
MUX that is controlled by the I/D cache configuration bit for
that bank. The line address is decoded and used in the tag RAM
to read out the tag from cache. The tag part of the address is
sent to the comparator. In the case of a cache hit, the output
of the data RAM is driven to IDATA (for instruction cache) or
MDATA (for data cache). The appropriate hit signal is cascaded
through all banks (they are actually precharged and sensed in
the implementation). Two signals IDIRECT and MDIRECT
override the cache query mechanism and enable the processor
to directly address the cache memory as instruction buffer or
data buffer.

To support simultaneous accesses from the PE instruction
bus, the PE data bus or the system STBus, the cache banks
must have access to all three buses. Simply routing these busses
across the cache would significantly increase the bus capaci-
tance. A hierarchical bus structure with a hierarchy of sense
amps avoids this problem. Each bank has local bit lines and
sense amps. During a read operation, the contents of the memory
are sensed locally and transferred to one of the global busses.
Global sense amps are located at the top (for STB) and bottom
(for PE) of the cache. The memories are not truly dual-ported.
Each bank has a single read port and a single write port. Simul-
taneous read accesses are supported from different banks but not
from the same bank. Simulations showed that from an external
viewpoint, dual-ported access patterns were possible for most
cases—the only problem occurred when DMA reads or writes
coincided with PE accesses to the same bank of the same type
(both reading or writing). Configuring DMA transactions such
that two banks are used in a double-buffered manner avoids this
limitation. In the event of a collision within a single bank, the
local STBus controller detects these and stalls the processor ac-
cess accordingly without user intervention.

The tag RAM’s in each cache bank contain two dynamic
comparators. One for instruction or data accesses by the
PE—the other for snooping. STBus snooping occurs in the
same cycle as any PE access. The cache query mechanism is en-
tirely self-timed and triggered by a clock named TAGCLK—see
the timing diagram in Fig. 13.

The scheme proposed in [11] is supported to reduce power in
the set-associative caches when operating at low frequency (less
than 70 MHz). Normally, all cache banks will access their data
RAM’s at the same time as the tag RAM accesses are taking
place. However, only one bank will drive data onto the output

Fig. 13. Self-timing for a cache access.

bus. If time permits, the way select from the tag RAM is used to
initiate the data RAM access so that data are read out from the
data RAM of only the bank that produced a hit. No other bank
will access its data RAM. This significantly reduces power in
the caches at low frequency.

One of the features of the cache memory is that the PE can
override the bank configuration on any given access. For ex-
ample, the PE can DMA instructions into a data buffer and then
execute them. For this to occur, a cache bank configured as a
data buffer, which normally decodes MADDR, must be able to
decode IADDR and source data to IDATA. Similarly, instruc-
tion buffers can be accessed by the read/write data operations on
MADDR—useful for cache priming and self-modifying code.
This type of “direct access” could potentially impact the crit-
ical path of the cache because of the logic needed to deter-
mine the intention of the processor and select either IADDR or
MADDR for decoding. However, a direct access does not re-
quire the tag comparison process at all. It can be initiated later
than a regular cache access and still meet the cycle time. The
IADDR/MADDR address MUX has a preconditioned opera-
tion that enables a regular cache access to proceed as quickly
as possible (by always decoding the address determined by the
bank configuration bit)—but it can be cancelled when an access
override is detected. In such a case, the IADDR/MADDR ad-
dress MUX is switched over and a new line address is decoded.
When this occurs, the PECLK is used to trigger the self-timing
of the RAM’s instead of the earlier TAGCLK to allow the new
address to be fully decoded. This simple technique reduces the
timing overhead of the reconfigurable cache to the propagation
delay of a single MUX.

F. The LRU Cache Line Replacement Unit

We now describe the LRU circuit that is used in conjunction
with the reconfigurable set-associative cache memory. The LRU
instruction and data cache banks for each line are calculated si-
multaneously in accordance with the cache bank programming.
The module contains a multiported nibble-writeable 16 × 72-b
register file and a pipelined LRU computation unit complete
with forwarding to reduce memory power consumption.



420 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 3, MARCH 2000

Fig. 14. A description of the LRU algorithm.

Set-associative cache line replacement is usually imple-
mented in some pseudo-LRU form to minimize the amount of
state information that must be stored [3]. While this approach
is trivial for two-way and practical for four-way set-associative
caches, it is less feasible for memories with higher levels
of associativity. Furthermore, in our architecture, the LRU
algorithm is required to support a dynamically changing cache
with variable set-associativity.

An example of how the LRU stack is maintained is shown in
Fig. 14. In cycle 1, a “hit” on bank 0 triggers a search in the
stack for a match. The other banks are moved down one posi-
tion and the “0” is moved to the top of stack. In cycle 3, a hit
on bank 4 causes a new LRU (bank 6) to be output. Although
this computation appears trivial, it essentially involves an asso-
ciative search-and-shift operation to locate and promote a bank
to the top of the stack. It would be too time consuming to read
the stack from the RAM, locate and shift the bank ID within
the stack, and write it back to the RAM in a single cycle. For a
large number of banks (16 in our case), the LRU computation
requires a 16-stage daisy-chain of shift logic. We first describe
the LRU RAM configuration and then the logic used to compute
the LRU in a single cycle.

1) The LRU RAM: In any cycle, the LRU RAM is capable of
producing the LRU states for cache lines in both the instruction
and data caches according to the current cache access. It is also
capable of updating the LRU state for different cache lines from
a previous cache access.

This is achieved by decoding two READ line addresses and
two WRITE line addresses. In each case, one address is for the
instruction access and the other is for the data access, and both
are extracted from the processor address buses. In each READ
cycle, the RAM produces a single 72-b word containing 18 4-b
bank ID’s. Sixteen of these are used to compute the LRU-I and
MRU-D values for the I- and D-cache lines. The LRU-I and
LRU-M values are stored back into the RAM when the state
is written back. This enables the LRU to be output in the same
cycle as when a cache miss is detected without first needing
to compute the LRU. This is important in a write-back data
cache—the cache controller requires the replacement bank im-
mediately to minimize miss-latency.

The architecture of the LRU RAM is shown in Fig. 15.
Groups of 4 bits are connected to a read word line and a
write word line. The word lines are connected to global I or D

Fig. 15. The architecture of the LRU RAM.

Fig. 16. The LRU logic.

read/write word lines depending on the programming of the
cache banks. Separate read/write row decoders are needed for I
and D. These are clocked to prevent short circuit current during
the precharge cycle of the bit lines. The write decoders can be
forced high by I and D reset signals. This forces every column
in every I or D row to be written at once. The RAM cells have
separate read and write ports connected to separate read and
write bit lines. The devices are sized to make the cell directional
(similar to a register file). A single-ended charge-redistribution
sense amplifier is used for the read circuit.

2) The LRU Logic: The LRU read logic is shown in Fig. 16.
It reads a state history word from the RAM and updates the
I-cache and D-cache components of the state according to the
bank configuration bits and the status of the cache accesses. The
LRU RAM is accessed in parallel with the cache access. The
second cycle is used to compute the LRU for both I-cache and
D-cache. The state is written back to the RAM (together with
the LRU-I and LRU-D bank ID’s) in the third cycle.

Pipeline hazard detection and forwarding are used to guar-
antee correct operation when the same cache line is accessed in
consecutive cycles. Further optimizations are performed to min-
imize the accesses to the memory.

• If the LRU state for a cache line is not modified, it is not
written back to the RAM.
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Fig. 17. The hardware debug support processor.

• If the LRU state for a cache line is already in the LRU
pipeline, it is forwarded to the head of the pipe and the
RAM is not read.

When the cache is reset, the LRU RAM must be initialized
with the bank ID’s in the appropriate sequence. In addition, the
LRU states for the I- and D-caches can be separately reset.

A significant amount of look-ahead logic is used to enable
the 16-stage daisy-chain LRU logic to evaluate in a single cycle.
Look-ahead logic operates in groups of four.

G. The Hardware Debugging Support Processor

The PE’s also contain a hardware debugging system (HDS)
(shown in Fig. 17) to support the development of embedded
applications. This system includes counters and comparators to
support complex watch-point conditions and provide a history
of recent execution. The HDS systems in the PE’s are daisy-
chained and externally controlled by the host via a JTAG port.

IV. SOFTWARE DEVELOPMENT ENVIRONMENT

An architecture of this complexity requires a comprehensive
application development platform. This is described in detail in
[12]. It includes systems for static and dynamic task scheduling,
debugging, profiling, and compiling. An advantage of using a
standard RISC core in the PE is that the bulk of the application
code can be written in a high-level language (like C) and com-
piled using an off-the-shelf compiler. Core DSP routines that
use the vector coprocessor are also written in C. A prototype
vectorizing C compiler for the RVU was developed. Maximum
RVU utilization can be achieved using hand-crafted assembly
language.

An embedded Real-Time Operating System (RTOS) is em-
ployed to dynamically schedule tasks on PE's. The RTOS sup-
ports multiprocessor operation through a two-level scheduling

Fig. 18. The Daytona clock network.

Fig. 19. The delay-locked loop.

Fig. 20. A photomicrograph of the Daytona test chip.

paradigm. At the top level, a centralized control scheduler re-
sides on a control processor, say, PE0. This control scheduler
admits new tasks into the system and assigns them to an appro-
priate processor. The admission control ensures that a task is
admitted only if there is sufficient processing power to support
the new task and the task is assigned to a processor that can sus-
tain its load. At the second level, each processor runs its own
local scheduler and maintains its own task list. The local sched-
uler selects tasks to run according to the earliest-deadline-first
(EDF) scheduling policy. The EDF scheduling policy guaran-
tees that all admitted tasks will meet their deadlines.
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Considerable effort went into minimizing the cycles needed
for context switches. To this end, the local cache memory bank
configuration can be managed by the RTOS. To manage power
consumption, the RTOS has the ability to shut down any of the
PE’s using an addressable register that controls the clocks sup-
plied to each PE.

V. CHIP IMPLEMENTATION

A. Daytona Chip Design Methodology

The chip was designed using a mix of full-custom and
standard-cell design methodologies. The cache memories, LRU
memory and RISC register files are designed in full custom.
The remainder of the chip was synthesized from a VHDL
description. A C-model of the chip was used for presilicon
software application development, profiling, and architectural
investigation.

B. Clock Strategy

In the four-PE Daytona chip, each PE can be independently
powered up or down. It is important that the chip include a
method of reducing clock uncertainty. In this design, the ap-
proach taken to reduce clock skew includes a DLL. The chip
clock distribution architecture including the DLL’s in each PE
is shown in Fig. 18.

Including a DLL in each PE aligns each internal PECLK
to the global CLK signal even though the clock is gated and
buffered within the PE. Since not every application of Daytona
may require all PE's to be operating, the gating of the clock can
reduce the power dissipation by shutting off unused PE's. As de-
scribed in the previous section, this feature is controlled by the
RTOS.

A DLL was used instead of a phase-locked loop since fre-
quency synthesis is not needed, and a DLL has lower jitter accu-
mulation and a faster locking time. The DLL, shown in Fig. 19,
consists of a phase detector, charge pump, loop filter capacitor,
voltage-controlled delay line (VCDL), and duty-cycle correc-
tion circuit. The phase detector compares the PE clock, after it
has been internally buffer to the phase of the main chip clock
(CLK). The phase detector operates by setting a latch on the
rising edge of CLK and resetting the latch on the falling edge
of PECLK. If PECLK has a 50% duty cycle, then the rising
edge of CLK and PECLK will be aligned by the charge pump,
which will spend an equal amount of charging up the loop ca-
pacitor and discharging it. This maintains a steady-state loop ca-
pacitor voltage that corresponds to a clock cycle delay through
the VCDL. A duty cycle correction circuit is included in the
DLL following the VCDL to correct any duty cycle variations
that are either present in the input signal, CLK, or may occur in
the VCDL. The DLL is also used to generate additional clocks
needed in the cache. The TAGCLK used to trigger the self-timed
cache circuits can be shifted relative to the PECLK with pro-
grammable increments of phase shift. The phase shift is pre-
served independent of the clock frequency.

C. Test-Chip Specifications

The chip was fabricated in 3.3-V, 0.25-µm CMOS process
with four layers of metal. A single PE occupies 27 mm2 (4.5 ×

6 mm). Simulation results demonstrate performance in excess
of 100 MHz at 3.3 V. The core chip area is 120 mm2; however,
the pad-limited test chip has a total area of 200 mm2. The power
estimate is 4 W with all four PE's operating. A chip photomi-
crograph is shown in Fig. 20.
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