
Optimal Gradient Clock Synchronization
in Dynamic Networks

Fabian Kuhn
University of Lugano

Switzerland
fabian.kuhn@usi.ch

Christoph Lenzen
ETH Zurich
Switzerland

lenzen@tik.ee.ethz.ch

Thomas Locher
IBM Zurich
Switzerland

thl@zurich.ibm.com
Rotem Oshman

MIT Computer Science and
Artificial Intelligence Lab
rotem@csail.mit.edu

ABSTRACT
We study the problem of clock synchronization in highly
dynamic networks, where communication links can appear
or disappear at any time. The nodes in the network are
equipped with hardware clocks, but the rate of the hard-
ware clocks can vary arbitrarily within specific bounds, and
the estimates that nodes can obtain about the clock values
of other nodes are inherently inaccurate. Our goal in this
setting is to output a logical clock at each node, such that
the logical clocks of any two nodes are not too far apart, and
nodes that remain close to each other in the network for a
long time are better synchronized than distant nodes. This
property is called gradient clock synchronization.

Gradient clock synchronization has been widely studied
in the static setting. We show that the bounds for the
static case also apply to our highly dynamic setting: if two
nodes remain at distance d from each other for sufficiently
long, it is possible to synchronize their clocks to within
O(d log(D/d)), whereD is the diameter of the network. This
is known to be optimal for static networks, and since a static
network is a special case of a dynamic network, it is optimal
for dynamic networks as well. Furthermore, we show that
our algorithm has optimal stabilization time: when a path of
length d appears between two nodes, the time required until
the skew between the two nodes is reduced to O(d log(D/d))
is O(D), which we prove is optimal.

Categories and Subject Descriptors:
F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems—computations on
discrete structures
G.2.2 [Discrete Mathematics]:
Graph Theory—network problems

General Terms: Algorithms, Theory

Keywords: clock synchronization, dynamic networks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’10, July 25–28, 2010, Zurich, Switzerland.
Copyright 2010 ACM 978-1-60558-888-9/10/07 ...$10.00.

1. INTRODUCTION
A core algorithmic problem in distributed computing is

to establish coordination among the participants of a dis-
tributed system, which is often achieved through a common
notion of time. Typically, every node in a network has its
own local hardware clock, which can be used for this pur-
pose; however, hardware clocks of different nodes run at
slightly different rates, and the rates can change over time.
This clock drift causes clocks to drift out of synch, requiring
periodic communication to restore synchronization. How-
ever, communication is typically subject to delay, and al-
though an upper bound on the delay may be known, specific
message delays are unpredictable. Consequently, estimates
for the current local time at other nodes are inherently in-
accurate.

A distributed clock synchronization algorithm computes
logical clocks at every node, and the goal is to synchronize
these clocks as tightly as possible. Traditionally, distributed
clock synchronization algorithms focus on minimizing the
clock skew between the logical clocks of any two nodes in
the network. The clock skew between two clocks is simply
the difference between the two clock values. The maximum
clock skew that may occur in the worst case between any
two nodes at any time is called the global skew of a clock
synchronization algorithm. A well-known result states that
no algorithm can guarantee a global skew better than Ω(D),
where D denotes the diameter of the network [1]. However,
in many cases it is more important to tightly synchronize
the logical clocks of nearby nodes in the network than it is
to minimize the global skew. For example, if a time division
multiple access (TDMA) protocol is used to coordinate ac-
cess to a shared communication medium in a wireless sensor
network, it suffices to synchronize the clocks of nodes that
interfere with each other when transmitting. The problem
of providing better guarantees on the synchronization qual-
ity between nodes that are closer is called gradient clock
synchronization. The problem was introduced in a seminal
paper by Fan and Lynch [5], where the authors show that
a clock skew of Ω(logD/ log logD) cannot be prevented be-
tween immediate neighbors in the network. The largest pos-
sible clock skew that may occur between the logical clocks of
any two adjacent nodes at any time is called the local skew
of a clock synchronization algorithm. For static networks,
it has been proved that the best possible local skew that an
algorithm can achieve is bounded by Θ(logD) [11, 12].

While tight bounds have been shown for the static model,
the dynamic case has not been as well understood. A dy-
namic network arises in many natural contexts: for example,
when nodes are mobile, or when communication links are
unreliable and may fail and recover. The dynamic network
model we consider in this paper is general: it allows com-
munication links to appear and disappear arbitrarily, subject
only to a global connectivity constraint (which is required
to synchronize all nodes to each other). Hence the model
is suitable for modeling various types of dynamic networks
which remain connected over time.

In a dynamic network the distances between nodes change
over time as communication links appear and disappear.
Consequently, we divide the synchronization guarantee into
two parts: a global skew guarantee bounds the skew between
any two nodes in the network at any time, and a dynamic
gradient skew guarantee that bounds the skew between two
nodes as a function of the distance between them and how
long they remain at that distance.

In [8], three of the authors showed that a clock synchro-
nization algorithm cannot react immediately to the forma-
tion of new links, and that a certain stabilization time is
required before the clocks of newly-adjacent nodes can be
brought into synch. The stabilization time is inversely re-
lated to the synchronization guarantee: the tighter the syn-
chronization required in stable state, the longer the time to
reach that state. Intuitively, this is because when strict syn-
chronization guarantees are imposed, the algorithm cannot
change clock values quickly without violating the guarantee,
and hence it takes longer to react. The algorithm given in [8]
achieved the optimal trade-off between skew bound and sta-
bilization time; however, the local skew bound it achieved
was O(

√
D), which is far from optimal.

In this paper we describe two algorithms which achieve the
same asymptotically optimal skew bounds as in the static
model: if two nodes remain at distance d for sufficiently long,
the skew between them is reduced to O(d log(D/d)), where
D is the dynamic diameter of the network (corresponding
roughly to the time it takes for information to reach from
one end of the network to the other). The two algorithms
differ in the time required to reach this guarantee: their sta-
bilization time is O(D logD) and O(D), respectively. The
first algorithm, which stabilizes in O(D logD) time, is much
simpler to describe, and this extended abstract will focus
on it. The second algorithm, which stabilizes in O(D), is
described in full in the accompanying technical report [7].
Finally, we improve the trade-off lower bound from [8] to
show that a stabilization time of Ω(D) is necessary for an
algorithm with the O(d log(D/d))-gradient skew property.
This shows that our second algorithm is optimal in its sta-
bilization time as well as its skew guarantee.

2. RELATED WORK
The fundamental problem of synchronizing clocks in dis-

tributed systems has been studied extensively and many re-
sults have been published for various models over the course
of the last approximately 30 years (see, e.g, [16, 18, 19, 20]).
Until recently, the main focus has been on bounding the
clock skew that may occur between any two nodes in the
network, and a tight bound of Θ(D) has been proved [1, 3,
12, 20].

The problem of synchronizing clocks of nodes that are
close-by as accurately as possible has been introduced by

Fan and Lynch [5]. In their work, the authors show that a
clock skew of Ω(logD/ log logD) between neighboring nodes
cannot be avoided if the clock values must increase at a
constant minimum progress rate. Subsequently, this result
has been improved to Ω(logD) [12]. If we take the min-
imum clock rate α, the maximum clock rate β, and the
maximum clock drift rate ρ into account, the more gen-
eral statement of the lower bound is that a clock skew of
Ω(logbD), where b := min{1/ρ, (β − α)/(αρ)} cannot be
avoided. The first algorithm guaranteeing a sublinear bound
on the worst-case clock skew between neighbors achieves a
bound of O(

√
ρD) [13, 14]. Recently, this result has been

improved to O(logD) [11] (the base of the logarithm is a
constant) and subsequently to O(logbD) [12]. Thus, tight
bounds have been achieved for static networks in which nei-
ther nodes nor edges fail.

The problem of synchronizing clocks in the presence of
faults has also received considerable attention (see, e.g., [2,
6, 10, 15, 17]). Some of the proposed algorithms are able
to handle not only simple node or edges failures but also
Byzantine behavior, which is outside the scope of this pa-
per. However, while these algorithms can tolerate a broader
range of failures, their network model is not fully dynamic
as their results rely on the assumption that a large part of
the network remains non-faulty and stable at all times. For
the fully dynamic setting, it has been shown that there is
an inherent trade-off between the clock skew S guaranteed
between neighboring nodes that have been connected for a
long time and the time it takes to guarantee a small clock
skew over newly added edges. In particular, the time it takes
to reduce the clock skew over new edges to O(S) is Ω(D/S),
where n denotes the number of nodes in the network [8]. In
the same work, it is shown that for S ∈ Ω(

√
ρD), there is

an algorithm that reduces the clock skew between any two
nodes to O(S) in Θ(D/S) time. In this paper, we show that
S can be reduced to Ω(logbD), i.e., the same optimal bound
as for static networks can be achieved.

3. MODEL AND DEFINITIONS

Clock synchronization. In the clock synchronization
problem, each node u is equipped with a continuous hard-
ware clock Hu : R+

0 → R+
0 , which is initialized toHu(0) := 0.

The hardware clocks do not necessarily progress at the rate
of real time; they are subject to a (relative) clock drift
bounded by ρ ∈ (0, 1). At all times t we assume that
d
dt
Hu(t) ∈ [1− ρ, 1 + ρ] for all nodes u.
The objective of a clock synchronization algorithm (CSA)

is to output a logical clock Lu : R+
0 → R+

0 (also initialized to
Lu(0) := 0), such that at all times, the logical clock values
of different nodes are close to each other. Logical clocks
must also have a bounded drift: there must exist constants
α, β > 0 such that d

dt
Lu(t) ∈ [α, β] for all times t and for all

nodes u.

The estimate graph. In [9] two of the authors intro-
duced an abstraction called the estimate layer, which sim-
plifies reasoning about CSAs. Synchronization typically in-
volves periodic exchanges of clock values between nodes, ei-
ther through messages or by other means (e.g., RBS [4]).
The estimate layer encapsulates all means by which nodes
can estimate the clock values of other nodes, and eliminates
the need to reason explicitly about delay bounds and other
parameters of the system.

The estimate layer provides an estimate graph, where each
edge {u, v} represents the fact that node u has some means
of estimating v’s current clock value and vice versa. The
edges of the estimate graph are not necessarily direct com-
munication links between nodes. Node u is provided with
a local estimate L̃vu of Lv, whose accuracy is guaranteed by
the estimate layer:

∀t ∀u ∈ V, v ∈ Nu(t) : |Lv(t)− L̃vu(t)| ≤ ε{u,v}, (1)

where ε{u,v} is called the uncertainty, or the weight, of the
edge {u, v}. Each edge is also associated with a propagation
delay T{u,v} that bounds the time needed to send a message
from u to v and vice versa. In the sequel, we refer to estimate
edges of the sort described above simply as edges; similarly,
when we say “the graph” we mean the estimate graph. We
do not reason explicitly about the communication graph, as
the salient aspects of communication are encapsulated by
the estimate layer.

Dynamic networks. We consider dynamic networks
over a fixed set of nodes V , where we denote n := |V |.
Edge insertions and removals are modeled as discrete events
controlled by a worst-case adversary. In keeping with the
abstract representation from [9], we say that there is an es-
timate edge {u, v} between two nodes u, v ∈ V at time t ≥ 0
iff u and v have a means of obtaining clock value estimates
about each other at time t. As explained above, this does
not necessarily mean that there is a direct communication
link between u and v at time t.

We assume that nodes do not necessarily detect link for-
mations and failures immediately, or even at the same time
as the other endpoint of the link. For each edge {u, v}, we as-
sume that there is a parameter τ{u,v} such that both nodes
u and v find out about the appearance or disappearance
of edge {u, v} within τ{u,v} time units of the event itself.
Hence, although we are interested in undirected networks,
we model the estimate layer as a directed graph, where edge
(u, v) exists whenever u thinks v is its neighbor. The appear-
ance and disappearance of edges induces a dynamic graph
G = (V,E), where E : R+

0 → 2V×V maps non-negative times
t > 0 to a set of directed estimate edges that exist at time t.
The graph is subject to the following constraints, which ap-
proximate symmetry up to the delay (τ{u,v}) in finding out
about link changes: (a) if for all t′ ∈ [t − τ{u,v}, t + τ{u,v}]
we have (u, v) ∈ E(t′), then (v, u) ∈ E(t); (b) if for all
t′ ∈ [t − τ{u,v}, t + τ{u,v}] we have (u, v) 6∈ E(t′), then
(v, u) 6∈ E(t). Throughout each execution, every node u
maintains a dynamic set of neighbors Nu : R+

0 → 2V , where
Nu(t) contains all nodes v such that (u, v) ∈ E(t). In the
sequel, we frequently refer to undirected edges {u, v}. When
we write {u, v} ∈ E(t) we mean that both (u, v) ∈ E(t) and
(v, u) ∈ E(t).

To simplify the presentation, in Section 6 we assume that
nodes find out about link changes immediately: that is, for
all u, v ∈ V we have (u, v) ∈ E(t) iff (v, u) ∈ E(t). This as-
sumption is not made in the accompanying technical report.

We say that edge {u, v} exists throughout a time interval
[t1, t2] if for all t ∈ [t1, t2] we have {u, v} ∈ E(t). By ex-
tension, a path p is said to exist throughout [t1, t2] if all its
edges exist throughout the interval.

Definition 1 (Weighted Paths). Let G = (V,E) be
a dynamic graph with edge weights εe, e ∈ E(t). A path
p = (u0, . . . , uk) of length k ≥ 0 in G at time t is a tu-

ple of nodes such that for all i ∈ {1, . . . , k} it holds that

{ui−1, ui} ∈ E(t). The weight of p is εp :=
Pk
i=1 ε{ui−1,ui}.

For simplicity, we will assume that the minimum edge weight
is normalized to 1 throughout this extended abstract.

We frequently refer to the skew on a path p = (u0, . . . , uk)
at time t, by which we mean |Lu0(t)− Luk (t)|.

Dynamic diameter. A fundamental lower bound [1]
shows that the performance of a CSA in a static network de-
pends on the diameter of the network. In dynamic networks
there is no immediate equivalent to a diameter. Informally,
the diameter corresponds to the length of time it takes (at
most) for information to spread from one end of the network
to the other. To formalize this idea we adopt the following
definitions.

Definition 2 (Flooding). A flood that originates at
node u is a process initiated when node u sends a Flood
message to all its neighbors. Each node that receives the
message for the first time forwards it immediately to all its
neighbors. We say that the flood is complete when all nodes
have received a Flood message.

Definition 3 (Dynamic Diameter). We say that dy-
namic graph G has a dynamic diameter of D (or simply “di-
ameter” for short) if a flood originating at any node in the
graph at any time in the execution always completes in at
most D time units.

Clock skew. To measure the quality of a CSA we con-
sider two kinds of requirements: a global skew constraint
which gives a bound on the difference between any two logi-
cal clock values in the system, and a dynamic gradient skew
constraint which becomes stronger the closer two nodes u, v
are to each other and the longer u, v stay close to each other.
In particular, for nodes that remain neighbors for a long
time, the dynamic gradient skew constraint requires a much
smaller skew than the global skew constraint.

Definition 4 (Global Skew). A CSA guarantees a
global skew of Ḡ if at all times t, for any two nodes u, v ∈ V ,
it holds that Lu(t)− Lv(t) ≤ Ḡ.

In contrast, the dynamic gradient skew constraint does
depend on the dynamic graph: the older the shortest path
between u and v, the better synchronized u and v are re-
quired to be.

Definition 5 (Dynamic Gradient Skew). Given a
function S : R+

0 × R+
0 → R+

0 that is non-decreasing in the
first parameter (distance) and non-increasing in the second
(time), we say that a CSA A guarantees a dynamic gradient
skew of S if for all time intervals [t1, t2] and each path p =
(u0, . . . , uk) that exists throughout the interval [t1, t2], we
have that

Lu0(t2)− Luk (t2) ≤ S(εp, t2 − t1).

If a CSA A guarantees a dynamic gradient skew of S, we
say that it ensures a stable gradient skew of S∞(d) :=
lim∆t→∞ S(d,∆t), where S∞ : R+

0 → R+
0 .

If a CSA A guarantees a dynamic gradient skew of S, then
we call A an “S-dynamic gradient CSA”. The literature on
gradient clock synchronization (e.g., [5, 8, 12, 14]) is typi-
cally concerned with the local skew of a CSA, which bounds

the skew on any single edge. The local skew can be consid-
ered equivalent to the stable gradient skew S∞(1), provided
that all edges are of uniform weight 1.

We will further discuss the stabilization time of a CSA,
which we define as follows.

Definition 6 (Stabilization Time). Let A be a dy-
namic gradient CSA with a dynamic gradient skew of S.
The stabilization time of A is defined as

TS := inf
˘

∆t | ∀d ∀∆t′ ≥ ∆t : S(d,∆t′) ≤ 2S∞(d)
¯
.

The dynamic and stable gradient skew and the stabilization
time are parametrized by D, the diameter of the network,
and potentially other parameters such as the bound on the
clock drift ρ or the minimum edge weight. Usually we omit
these dependencies to simplify the notation. Note that the
choice of 2 as the constant in the definition above is arbi-
trary; we are interested in the asymptotic behavior of the
clock skew as D →∞.

4. OVERVIEW OF THE OPTIMAL CSA
IN STATIC NETWORKS

The algorithms in the current paper are based on the algo-
rithm of [12], which achieves the optimal gradient property
for static networks. In [9], the algorithm is presented as fol-
lows. Each node of the network can be in one of two modes:
in slow mode, the logical clock is increased at the rate of the
node’s hardware clock; in fast mode, the logical clock pro-
gresses at a faster rate. The rate of the logical clock in fast
mode is (1 + µ) times the rate of the hardware clock, where
µ > 0 is a parameter of the algorithm. This ensures that
logical clock rates are always bounded as required: they are
between α = 1− ρ and β = (1 + ρ)(1 + µ) at all times.

The heart of the algorithm is the logic that controls which
mode a node is in at any given time. This is specified in the
form of two conditions: the fast condition (FC) tells nodes
when to enter fast mode, and the slow condition (SC) tells
nodes when to enter slow mode. To determine the appro-
priate mode, each node examines its estimate for the logical
clock values of its neighbors. Both FC and SC are condi-
tions on these estimates; informally, the fast condition FC
checks if the node is too far behind its neighbors, in which
case it enters fast mode; and the slow condition SC checks
if the node is too far ahead of its neighbors, in which case it
goes into slow mode.

The two conditions FC and SC are mutually exclusive,
and furthermore they are strictly separated and defined as
closed regions. This is necessary to ensure that (from a
control-theoretic point of view) the algorithm can be imple-
mented. If neither condition is satisfied, a node is free to
choose non-deterministically between fast and slow mode.

In contrast to [12], the algorithm in [9] also allows the use
of edges e with different uncertainties εe. For every edge e,
the algorithm uses a parameter κe ∈ Θ(εe) which, roughly
speaking, determines how much clock skew the nodes are
willing to tolerate on the edge e. Since κe is closely related
to εe, we will (in slight abuse of notation) also refer to κe
as the weight of edge e. Recall that an edge {u, v} with a
large weight κ{u,v} corresponds to a neighbor v for which
node u cannot obtain reliable estimates. Accordingly, node
u treats its estimates of node v’s clock value as less signifi-
cant than estimates along edges with a smaller weight. One
may think of each edge as a “leash” that pulls the clocks

of its endpoint together. Edges with smaller weights cor-
respond to shorter leashes, which require closer synchro-
nization than edges with larger weights. For example, if
κ{u,v1} = 2κ{u,v2}, and a skew of ∆ is required on edge
{u, v1} to cause u to enter fast mode or slow mode, then a
skew of about 2∆ is required on {u, v2} to cause u to enter
the same mode.

5. ALGORITHMS
In this section, we adapt the algorithm of [9, 12] for the

dynamic model, and obtain an algorithm with an asymp-
totically optimal global skew of O(D) and stable local skew
of O(logµ/ρD), where µ ∈ O(1) is the parameter governing
the logical clock rate in fast mode. We present two variants
of the algorithm, based on the same technique. Both vari-
ants achieve optimal skew bounds: for any two nodes that
remain at distance d from each other for sufficiently long,
the algorithms guarantee a skew of at most O(d log(D/d)).
The first algorithm we present is more elegant and simpler
to analyze, but it does not achieve the optimal trade-off be-
tween skew and stabilization time; its stabilization time is
O((D logD)/µ), which is off by an O(logD) factor from the
optimum. The proof of the second variant is more intricate,
and the algorithm achieves an optimal stabilization time of
O(D/µ). To simplify the presentation, we focus here on
the first algorithm, which we describe and analyze in detail.
The second algorithm is presented in full in the accompany-
ing technical report. We include here a brief overview.

5.1 A Dynamic-Weight Algorithm
The first of the two algorithms we present, ADW, is a

dynamic-weight algorithm. Instead of a fixed value κe for
an edge e, algorithm ADW maintains a dynamic weight κe
that starts with a large value for each newly formed edge
e and is gradually decreased. The initial edge weight is
chosen large enough such that an edge has no effect on its
endpoints’ modes immediately after insertion. Then, κe is
decreased exponentially until it reaches its final value, which
corresponds to the uncertainty εe of e (as in the static case).
Hence, edges are initially treated as unimportant, and they
continuously gain in importance while present.

Parameters and constants. Algorithm ADW involves
several parameters which can be tuned to reduce the skew
at the cost of longer stabilization time, or vice-versa. In
addition we define several constants to simplify the presen-
tation. The constants and parameters are described below.

Ḡ: an upper bound on the global skew of the algorithm. We
assume that all nodes have access to this bound. It is suf-
ficient for all nodes to know the number n of nodes in the
network, and use n as a conservative estimate for the diam-
eter D of the graph in the global skew bound established in
Section 6.1.

µ: a parameter that determines the logical clock rate in fast
mode. To allow nodes to catch up when they are behind, µ
must be sufficiently large; we require

µ ≥ 16ρ

1− ρ . (2)

On the other hand, nodes should not increase their clocks
too quickly, or synchronization will be lost; we also require
µε{u,v} ≤ 12Ḡ for any possible edge {u, v}.

λ: a constant, chosen as 0 < λ < 1/4, which determines the
slack in the fast and slow conditions (see Definitions 8 and 9).
The choice of λ does not affect the asymptotic behavior of
the algorithm.

κ∞
{u,v}: the“stable”weight of edge {u, v}. This is the weight

eventually assigned to edge {u, v} if it exists long enough in
the system, and it corresponds to the uncertainty ε{u,v}. We
require

κ∞{u,v} >
2

λ
·
“

1 +
µ

6

”
· ε{u,v}. (3)

η: a constant that controls the rate at which κ{u,v} is de-
creased. It is defined as

η :=
λ(1− ρ)

6
· µ. (4)

Next we describe the components that make up the algo-
rithm.

Dynamic weights. When an edge {u, v} appears at
time t0, nodes u, v establish and maintain a dynamic weight
κ{u,v}(t) for the edge. Both u and v maintain a local esti-
mate of the weight; we use κvu(t) to denote u’s estimate and
κuv (t) to denote v’s estimate of κ{u,v}(t). The “true” weight
induced by the two estimates is defined by κ{u,v}(t) :=
min {κvu(t), κuv (t)}.

Suppose that u < v.1 The node with the smaller identifier,
in this case u, is responsible for setting the initial weight and
decreasing it over time, while the other node, in this case v,
periodically synchronizes its estimate to u’s value. Node u
(the “master node”) changes κvu(t) over time according to
the following dynamics, decreasing it exponentially from an
initial value of Ḡ to the final value of κ∞{u,v}.

κvu(t0) := κ{u,v}(t0) = Ḡ,

d

dt
κvu(t) :=

(
− η
Ḡ ·

d
dt
Hu(t)

(1+ρ)
· κvu(t) κvu(t) > κ∞{u,v},

0 κvu(t) = κ∞{u,v}.

(5)

Using the estimate layer, node v (the“slave node”) conser-
vatively synchronizes its estimate κuv to u’s value. We omit
the technical details here; the following lemma characterizes
the accuracy of v’s estimates.

Lemma 7. For all t ≥ 0 and nodes u < v, we have

0 ≤ κuv (t)− κvu(t) ≤
µε{u,v}

6Ḡ
· κ{u,v}(t).

In particular, we always have κ{u,v}(t) = κvu(t), that is, the
master node’s estimate is the true weight.

Max estimates. As in [8, 12, 13, 14], each node main-
tains a local estimate Mu of the maximum logical clock value
in the network, and makes sure never to exceed it. As this
is a standard technique we omit the implementation details,
and note only that max estimates satisfy the following con-
straint: if the dynamic graph has a diameter of D, then for

1We assume unique node identifiers, but other symmetry-
breaking mechanisms may be substituted.

all t ≥ 0 and for all nodes u we have

Mu(t) ≤ max
v∈V
{Lv(t)} , (6)

∀t ≥ 2D : Mu(t) > max
v∈V
{Lv(t− 2D)} , (7)

Mu(t) ≥ Lu(t), (8)

Mu(t) ≥ max
v∈Nu(t)

n
L̃vu(t)− ε{u,v}

o
, (9)

That is, the max estimate of any node is never more than
the true maximum, and it represents the true maximum
from 2D time units ago, where D is the time required to
complete a flood in the dynamic graph. (The factor 2 arises
from the fact that nodes do not constantly flood the network
with max estimates. It can be reduced to (1 + ι), where ι is
an arbitrarily small constant, by starting floods sufficiently
often.) In addition, (8) asserts that nodes cannot set their
logical clock ahead of their max estimate, and (9) asserts
that the max estimate always reflects the logical clock values
of immediate neighbors.

The fast and slow conditions. If node u finds that
it is too far behind, it goes into fast mode and uses a fast
rate of (1 + µ) d

dt
Hu(t) to increase its logical clock. The

following rule is used to determine when to go into fast mode.
Informally, it states that some neighbor is far ahead, and no
neighbor is too far behind.

Definition 8 (Fast condition FC). At time t, node
u ∈ V satisfies the fast condition, denoted FC, if there is
some integer s ≥ 1 for which the following conditions are
satisfied:

∃w ∈ Nu(t) : L̃wu (t)− Lu(t) ≥ (s− λ)κwu (t)

∀v ∈ Nu(t) : Lu(t)− L̃vu(t) ≤ (s+ λ)κvu(t).

Conversely, if a node is far behind some neighbor, and no
other neighbor is too far ahead of it, it enters slow mode
and uses the slow rate. The rule for entering slow mode is
as follows.

Definition 9 (Slow condition SC). At time t, node
u ∈ V satisfies the slow condition, denoted SC, if there is
some integer s ≥ 0 for which the following conditions are
satisfied:

∃w ∈ Nu(t) : Lu(t)− L̃wu (t) ≥
„
s+

1

2
− λ

«
κwu (t)

∀v ∈ Nu(t) : L̃vu(t)− Lu(t) ≤
„
s+

1

2
+ λ

«
κvu(t).

Since a node cannot be in fast mode and in slow mode
at the same time, SC and FC are required to be mutually
exclusive, otherwise the algorithm would be impossible to
implement.

Lemma 10. No node can satisfy FC and SC at the same
time.

This essentially follows from the fact that λ < 1/4, implying
that s+ 1/2− λ > s+ λ and s+ 1/2 + λ < (s+ 1)− λ for
all s. A formal proof of this statement is given in [9] and
an analogous result for our second algorithm is shown in the
technical report.

With the above definitions in place, ADW is given by the
following rules, executed at each node u at all times t:

− If FC holds, or if SC does not hold and Lu(t) < Mu(t),
then node u must be in fast mode, setting d

dt
Lu = (1 +

µ) d
dt
Hu.

− If SC holds, or if FC does not hold and Lu(t) = Mu(t),
then node u must be in slow mode, setting d

dt
Lu = d

dt
Hu.

If neither of the conditions above holds, the node is free to
choose its mode nondeterministically.

5.2 Overview of Algorithm AOPT

The second variant of the algorithm uses exactly the same
definition of fast mode and slow mode. In particular, it also
guarantees that all logical clock rates are always in the range
[1− ρ, (1 + µ)(1 + ρ)]. The main difference is that the algo-
rithm uses a different mechanism to ensure that new edges
cannot immediately determine the current mode. Instead
of a dynamic weight κe, each node u uses several neigh-
borhood sets N1

u, N
2
u, . . . (in addition to Nu), for which it

holds at all times that Nu ⊇ N1
u ⊇ N2

u etc. Both FC and
SC are changed in that they now apply when there is some
integer s for which the FC/SC preconditions restricted to
Ns
u(t) are satisfied. For example, the first condition of FC

changes to “when there is a neighbor w ∈ Ns
u(t) such that

L̃wu (t)−Lu(t) ≥ (s− λ)κwu (t).” If the neighborhood sets are
chosen and updated appropriately, these modified conditions
also guarantee that new edges cannot cause a violation of the
desired skew bounds.

The crucial question is when and how the neighborhood
sets are updated. We will now briefly outline this procedure.
The algorithm operates in loosely synchronized rounds, i.e.,
a round always begins when the logical clock reaches a cer-
tain value (which may occur at different times at different
nodes). The edges that are incorporated in any round are
all the new edges that are present at the beginning of the
round, i.e., if new neighbors appear during the course of a
round, they are ignored until the next round starts. In each
round, the sets N1

u, N
2
u, . . . , are updated exactly once and

in this order at times T1 < T2 < . . . etc. Updating a set
Ns
u simply means setting it to Ns−1

u . The set N1
u is updated

using the neighborhood Nu of u at time T1. The update
times occur in intervals that ensure that the targeted skew
bounds are never violated. In the technical report, we prove
that these times can be defined in such a way that the dura-
tion of a round is O(D/µ) and that all new edges introduced
at the beginning of a round have stabilized by its end.

6. ANALYSIS
In this section, we sketch the analysis of ADW and bound

its worst-case global and dynamic gradient skew. To sim-
plify the presentation, we assume here that when an edge
appears or disappears, both endpoints find out about this
event immediately. Hence, in this section, the following four
statements are equivalent: I. (u, v) ∈ E(t), II. (v, u) ∈ E(t),
III. u ∈ Nv(t), and IV. v ∈ Nu(t). Consequently, we re-
fer only to undirected edges {u, v} throughout the section.
In the accompanying technical report, algorithm AOPT is
analyzed without this assumption.

6.1 The Global Skew
Like its predecessors in [9, 12], Algorithm ADW achieves

an asymptotically optimal global skew of O(D), where D
is now defined as the dynamic diameter of the graph (see
Section 3).

Theorem 11. Algorithm ADW achieves a global skew of
2(1 + ρ)D ∈ O(D) in networks of diameter D.

Proof. The proof is similar to the ones in [8, 12]. First,
consider the node u with the largest clock in the network,
i.e., Lu(t) = maxv∈V {Lv(t)}. From (6) and (8) we have
Mu(t) = Lu(t), that is, node u knows that it has the largest
clock value. In addition, by (3) and (9) we have Mu(t) ≥
maxv∈Nu(t){Lv(t) − ε{u,v}} and for any neighbor v, (1 −
λ)κvu(t) ≥ (1 − λ)κ∞{u,v} > ε{u,v}. Hence, u’s estimates of
its neighbors’ clock values cannot be large enough for FC to
hold. Together with the fact that Lu(t) = Mu(t), this forces
u to be in slow mode.

For this reason, the maximum clock value in the network
increases at most at rate 1 + ρ, the maximum hardware
clock rate. From (7) it follows that for any node v we have
Mv(t) > maxw∈V {Lw(t)} − 2(1 + ρ)D; that is, the max
estimates of all nodes are“not too far off”the true maximum.

Now consider a node u with the smallest clock in the net-
work, Lu(t) = minv∈V {Lv(t)}, and suppose that Lu(t) =
maxv∈V {Lv(t)} − 2D(1 + ρ), in other words, that there is
a large gap between the smallest and largest clocks. Be-
cause Mv(t) > maxw∈V {Lw(t)} − 2(1 + ρ)D, we imme-
diately obtain Lu(t) < Mu(t), so node u knows it is be-
hind. In addition, since node u has the smallest clock,
for each v ∈ Nu(t) we have Lv(t) ≥ Lu(t), and hence

L̃vu(t) ≥ Lu(t) − ε{u,v} > Lu(t) − (1/2 − λ)κvu(t), which
means that SC does not hold (all of u’s neighbors are too
far ahead). Together with the fact that Lu(t) < Mu(t), this
forces node u to be in fast mode.

We have shown that whenever there is a large enough skew
such that minv∈V {Lv(t)} = maxv∈V {Lv(t)}−2(1+ρ)D, all
nodes with the smallest logical clock value, minv∈V {Lv(t)},
will be in fast mode, and all nodes with the largest logical
clock value will be in slow mode. A node in fast mode in-
creases its logical clock at a rate of at least (1 + µ)(1 − ρ),
and a node in slow mode increases its logical clock at a rate
of at most (1 + ρ). By (2), (1 + µ)(1 − ρ) > 1 + ρ, so the
nodes that are the most behind cannot fall behind any fur-
ther. The continuity of logical clocks thus ensures that the
global skew never exceeds 2(1 + ρ)D.

As explained in Section 5.1, we assume that each node
maintains an upper bound Ḡ on the global skew of the net-
work. This can be done dynamically, by running an estima-
tion protocol alongside the clock synchronization algorithm,
or the bound Ḡ can be computed statically based on known
properties of the network. For simplicity, we use a single
global skew estimate Ḡ throughout the paper. All algorithms
and proofs can however be adapted to a scenario where each
node maintains an individual and possibly dynamic upper
bound on the global skew.

6.2 Analysis of the Gradient Skew
In this section, we prove the gradient property of Algo-

rithm ADW. The algorithm has an asympotically optimal
stable gradient skew of O(d logµ/ρ(D/d)). For the sake of
simplicity, we show the following slightly weaker statement:

Theorem 12. Algorithm ADW has a stable gradient skew
of O(d log(D/d)) with stabilization time O((D/µ) logD)).

We start by analyzing some properties of the dynamic
weights κ{u,v}(t). For a path p = (u0, . . . , uk) that exists at

time t, we define κp(t) :=
Pk
i=1 κ{ui−1,ui}(t) to be the total

weight of the path at time t. In addition, for any path p
that exists throughout an interval [t0, t1], let ∆κp(t0, t1) :=
κp(t1)−κp(t0) be the change in the path’s weight from time
t0 to time t1. The following technical lemma asserts that
over sufficiently short intervals [t0, t1], the change in a path’s
weight is bounded as a function of its weight at time t1.

Lemma 13. For any path p, integer s ≥ 1, and times

t1 ≥ t0 such that t1 − t0 ≤ Ḡ/2
s−1

(1−ρ)µ , we have

0 ≥ ∆κp(t0, t1) ≥ −κp(t1) · λ/3

s+ 1/2
.

Proof. First, observe that κp(t) is positive and non-
increasing (along paths that do not disappear). From (5),
we have

∆κp(t0, t1) ≥ −κp(t0) · η
Ḡ

(t1 − t0) = −κp(t0) · λ

3 · 2s

≥ −κp(t0) · λ/3
s+ 1

.

This implies that κp(t1)/κp(t0) ≥ 1− λ/3
s+1
≥ s−1/2

s+1
, and thus

the claim follows.

The following definition captures the formal requirement
on the skew along paths of different weight.

Definition 14 (Legal State). We say that the net-
work is in a legal state at time t if and only if for all inte-
gers s ≥ 1 and all paths p = (v0, . . . , vk) with κp(t) ≥ Cs :=
Ḡ/2s−1 that exist at time t it holds that

Lvk (t)− Lv0(t) ≤ s · κp(t).

We will show that the legal state condition is an invari-
ant maintained throughout any execution of the algorithm,
which implies Theorem 12.

In the analysis we work with two notions of “weighted
skew”, capturing how much a node v0 is ahead or behind
any other node, respectively. Both notions of weighted skew
are essentially the difference between the clocks of the nodes
at the endpoints of a path, normalized by the total weight
of the path. However, we use different constants for each,
corresponding to the constants used in FC and SC.

Definition 15. Given an integer s ≥ 1, a time t, and a
path p = (v0, . . . , vk), we define

Ξsp(t) := Lv0(t)− Lvk (t)− s · κp(t), and

Ξsv0(t) := max
p=(v0,...)

Ξsp(t).

Definition 16. Given an integer s ≥ 1, a time t, and a
path p = (v0, . . . , vk), we define

Ψs
p(t) := Lvk (t)− Lv0(t)−

„
s+

1

2

«
· κp(t), and

Ψs
v0(t) := max

p=(v0,...)
Ψs
p(t).

Given a path p = (v0, . . . , vk), we use p−1 = (vk, . . . , v0) to
denote the inverted path. Note that

Ψs
p(t) = Ξsp−1(t)− κp(t)

2
. (10)

In particular, if node v0 is “far behind” node vk, as reflected
by a large value of Ψs

p(t), then node vk is “far ahead” of node
v0, which is reflected by a large value of Ξsp−1(t).

We use the following abbreviation for the increment of a
logical clock value:

Iv(t, t′) := Lv(t′)− Lv(t). (11)

The fast and slow conditions are “subjective” conditions
that tell a node when to enter fast or slow mode. The fol-
lowing two lemmas are an “objective” statement which char-
acterizes, from the point of view of an external observer who
can see the entire state of the system, when a specific node
must be in fast or slow mode.

Lemma 17. If there is an integer s ≥ 1 such that the
following two conditions are satisfied, node u is in fast mode:

∃w ∈ Nu(t) : Lw(t)− Lu(t) ≥
„
s− λ

2

«
κ{u,w}(t)

∀v ∈ Nu(t) : Lu(t)− Lv(t) ≤
„
s+

λ

2

«
κ{u,v}(t).

Lemma 18. If there is an integer s ≥ 0 such that the fol-
lowing two conditions are satisfied, node u is in slow mode:

∃w ∈ Nu(t) : Lu(t)− Lw(t) ≥
„
s+

1− λ
2

«
κ{u,w}(t)

∀v ∈ Nu(t) : Lv(t)− Lu(t) ≤
„
s+

1 + λ

2

«
κ{u,v}(t).

The proofs are technical and they are omitted here.
The next two lemmas prove important properties regard-

ing the functions Ξsv(t) and Ψs
v(t).

Lemma 19. If for a node u ∈ V , an integer s ∈ N, and a
time t, Ξsu(t) > 0, then d

dt
Ξsu(t) ≤ d

dt
Lu(t)−(1−ρ)(1+µ)+η.

Proof. Set u0 := u and let p = (u0, . . . , uk) be a path
maximizing Ξsu(t). Since Ξsu(t) is positive, we know that
u0 6= uk, i.e., the path is non-empty. We have that

Luk−1(t)− Luk (t) ≥ sκ{uk−1,uk}(t),

since otherwise Ξs(u0,...,uk−1)(t) would be larger than Ξsp(t);

also, for all v ∈ Nuk (t)

Luk (t)− Lv(t) ≤ sκ{uk,v}(t),

since otherwise Ξs(u0,...,uk,v)(t) would be larger than Ξsp(t).
Hence, Lemma 17 states that node uk is in fast mode, which
yields that d

dt
Luk (t) = d

dt
Huk (t)(1 + µ) ≥ (1 − ρ)(1 + µ).

Further, by the definition of κ{u,v}(t) in (5), we have that
s · dκp(t)/dt ≥ −s · ηκp(t)/Ḡ ≥ −η. We conclude that

d

dt
Ξsp(t) =

d

dt
Lu(t)− d

dt
Luk (t)− s · d

dt
κp(t)

≤ d

dt
Lu(t)− (1− ρ)(1 + µ) + η.

Since this holds for all paths p that maximize Ξsu(t), the
statement follows.

Lemma 20. For all nodes v ∈ V , integers s ∈ N, and
times t, it holds that Ξsv(t) < Cs.

Proof. Analogous to [9, 12].

Definition 21. Given a node u and times t > t0 ≥ 0, we
define the swing time of u relative to t0 and t by

swu(t0, t) := min

(
t′ ∈ [t0, t]

˛̨̨̨
˛ Lu(t)− Lu(t′)

≤ (1 + ρ) · (t− t′)

)
. (12)

By definition, swu(t0, t) is the earliest time relative to t such
that between swu(t0, t) and t node u’s clock increased by no
more than its maximal natural rate. Hence, the rate at time
swu(t0, t) is greater than 1 + ρ and thus u is in fast mode
at time swu(t0, t) provided that swu(t0, t) > t0.2 We show
that in this case, one of the following two conditions must
hold at time swu(t0, t).

(SW-∃) There exist a neighbor w ∈ Nu(swu(t0, t)) and an
integer s ≥ 0 such that

Lw(swu(t0, t))− Lu(swu(t0, t))

>

„
s+

1 + λ

2

«
κ{u,v}(swu(t0, t)).

(SW-∀) For all neighbors w ∈ Nu(swu(t0, t)) and integers
s ≥ 0 we have

Lu(swu(t0, t))− Lw(swu(t0, t))

<

„
s+

1− λ
2

«
κ{u,v}(swu(t0, t)).

Lemma 22. For all nodes u and times t, if swu(t0, t) > t0,
then either (SW-∃) or (SW-∀) holds.

Proof. Omitted. An analogous statement for AOPT is
proved in the technical report.

The following theorem proves the gradient skew property
of ADW. Due to lack of space, we include only an overview
of the proof. For the full proof, we refer to the technical
report.

Theorem 23. The system is always in a legal state.

Proof. Assume by way of contradiction that the legal
state condition is violated, and let t be the infimum of times
for which it is violated. In this case there exists an integer
s ≥ 1 and a path q = (w, . . . , w′) such that κq(t) ≥ Cs+1

and

Lw(t)− Lw′(t) = (s+ 1) · κq(t). (13)

Note that by the global skew constraint, the legal state is
always satisfied for paths q with κq(t) ≥ C1. We can there-
fore assume that s ≥ 1. Let p = (u0, . . . , uk) be a path for
which Ψs

p−1(t) = Ψs(t). We have

Ψs
p−1(t) = Ψs(t) ≥ Ψs

(w′,...,w)(t) = Ξs(w,...,w′)(t)−
κq(t)

2

(13)
=

κq(t)

2
≥ Cs+1

2
. (14)

From legality (which still holds at time t) and (13), we obtain
κp(t) < Cs. Define

t := t− Cs
(1− ρ)µ

.

2More precisely, there is a time t0 < t′ < swu(t0, t) for which
it holds that the amortized rate of u is larger than 1+ρ over
any time interval [t′′, swu(t0, t)] where t′′ ∈ (t′, swu(t0, t)).

Roughly speaking, our goal is to show that there is always
some node that pulls node uk ahead, acting to reduce Ξ. For
this to happen we need Ξ to remain large as we go back in
time, allowing us to use Lemma 19. Furthermore, in order
to show an actual decrease of Ξ, we need the node that is
ahead to remain in slow mode while uk (or whichever node
is behind the most) catches up. We cannot guarantee that
the foremost nodes will indeed remain in slow mode, but we
know that if node v enters fast mode, there is a reason: node
v believes itself free to move at the fast rate, therefore either
some neighbor w is far ahead (SW-∃), or no neighbor is very
far behind (SW-∀).

In the first case (SW-∃), we can switch to reasoning about
the path that extends to w, and doing so only increases the
weighted skew of the path (because w has a large weighted
skew relative to v). We refer to such a switch as a forward
switch. However, the second case (SW-∀) is problematic: in
this case we actually lose weighted skew, because we have to
switch to a node that is behind v, and the weighted skew of
the path decreases. We call this a backwards switch. In order
to retain positive weighted skew we must bound the number
of backwards switches. This is accomplished by only making
backwards switches along the path from u0 to uk, so that
eventually we “run out of nodes”. We show that eventually
we can stop making backwards switches.

I. Backwards switches, tracing p inwards towards uk.
We define a sequence of non-increasing times t0 = t ≥ t1 ≥
. . . ≥ t`, where ` < k. The construction is inductive, with
t0 = t and for all 1 ≤ i ≤ `, ti+1 := swui(t, ti). The construc-
tion stops at the minimal index ` such that either t`+1 = t
or (SW-∃) is satisfied for u` at time t`+1.

First, observe that since ti+1 = swui(t, ti), for all 0 ≤ i ≤
k − 1 and times t ∈ [ti+1, ti] we have

Ξsui,...,uk
(t) = Ξsui,...,uk

(ti)− Iui(t, ti) + Iuk (t, ti)

+ s∆κ(u0,...,ui)(t, ti)
(12)

≥ Ξsui,...,uk
(ti)− (1 + ρ)(ti − t) + Iuk (t, ti)

+ s∆κ(u0,...,ui)(t, ti). (15)

Next, it follows by induction on i that for all i ∈ {0, . . . , `},

Ξsui,...,uk
(ti) ≥ Ξsp(t0)− κu0,...,ui(t0)

2
− (1 + ρ)(t0 − ti)

+ Iuk (ti, t0) + s∆κ(u0,...,ui)(ti, t0). (16)

The induction is omitted here for lack of space. Informally,
this bounds the weighted skew from below as we trace p
inwards towards node uk, showing that plenty of weighted
skew remains. This will be used to derive a contradiction to
the fact that the system is legal at time t.

II. Forward switches until time t. Having reached a
node where we can make a forward switch for the first time,
we show that we can continue to make forward switches
as we go back in time until we reach t. We construct a
chain v`, . . . , v`+m, where v` = u`, and a sequence of times
t`, . . . , t`+m = t (where t` is the time we reached in the
previous part). The times ti are defined as before, for all
` ≤ i ≤ `+m− 1, we define

ti+1 := swvi(t, ti). (17)

The construction is inductive.
Assume that we have reached node vi at time ti+1 =

swvi(t, ti). To obtain vi+1, we show that we can make a

forward switch from vi, that is, that (SW-∃) is satisfied at
vi at time ti+1. For i = ` the claim follows from the halting
condition of Part I; thus, suppose that i > ` and that (SW-
∃) is not satisfied. Then from Lemma 22, (SW-∀) is satisfied
at time ti+1 for vi. In particular, for vi−1 ∈ Nvi(ti+1) we
then have

Lvi(ti+1)− Lvi−1(ti+1) <

„
s+

1− λ
2

«
κ{vi,vi−1}(ti+1).

(18)
Since vi was reached by a forward switch from vi−1 at time
ti, we also have

Lvi(ti)− Lvi−1(ti) >

„
s+

1 + λ

2

«
κ{vi,vi−1}(ti). (19)

Combining (18) and (19) yields

Ivi−1(ti+1, ti) < Ivi(ti+1, ti)− λκ{vi,vi+1}(ti)

−
„
s+

1− λ
2

«
∆κ{vi,vi+1}(ti+1, ti)

(Lem. 13)

≤ Ivi(ti+1, ti). (20)

We thus obtain

Ivi−1(ti+1, ti−1) = Ivi−1(ti+1, ti) + Ivi−1(ti, ti−1)

(20)
< Ivi(ti+1, ti) + Ivi−1(ti, ti−1)

(12)

≤ (1 + ρ)(ti−1 − ti+1).

This is a contradiction to the choice of ti = sw(ti−1). Thus,
(SW-∃) must be satisfied at node vi at time ti+1. Therefore,
we can choose a node vi+1 ∈ Nvi for which

Lvi+1(ti+1)− Lvi(ti+1) >

„
s+

1 + λ

2

«
κ{vi,vi+1}(ti+1).

(21)
In the following, we show by induction on i that for all i ∈
{`, . . . , `+m− 1},

Ξsvi
(ti+1) ≥ Ξsv`

(t`+1) + ((1− ρ)µ− 2ρ− η)(t`+1 − ti+1)

> 0. (22)

Induction base. The base case follows from applying
the bound obtained in (14) to (16), with i = ` and t = t`+1.
We omit the details.

Induction step. We first extend the path by adding node
vi+1. Let p = (vi, . . . , v) be a path maximizing Ξsvi

(ti+1).
Note that since p exists at time ti+1 and vi+1 ∈ Nvi(ti+1),
the path (vi+1, vi, . . . , v) exists at time ti+1 as well. We have

Ξsvi+1(ti+1) ≥ Ξs(vi+1,vi,...,v)(ti+1)

= Ξs(vi,...,v)(ti+1) + Lvi+1(ti+1)− Lvi(ti+1)

− sκ{vi+1,vi}(ti+1) (23)

(21)
> Ξs(vi,...,v)(ti+1) = Ξsvi

(ti+1)

(I.H.)

≥ Ξsv`
(t`+1) + ((1− ρ)µ− 2ρ− η)(t`+1 − ti+1)

> 0. (24)

We now show that Ξsvi+1(t) > 0 for all times t ∈ [ti+2, ti+1].
For the sake of contradiction, assume that there is a t ∈
[ti+2, ti+1] for which Ξsvi+1(t) ≤ 0 and assume that t is the

largest such time. We then have Ξsvi+1(τ) > 0 for all τ ∈
(t, ti+1] and therefore

0
(24)
< Ξsvi+1(ti+1) = Ξsvi+1(t) +

Z ti+1

t

d

dt
Ξsvi+1(τ)dτ

(Lem. 19)

≤ Lvi+1(ti+1)− ((1− ρ)(1 + µ)− η)(ti+1 − t)
− Lvi+1(t)

(17)

≤ −((1− ρ)µ− 2ρ− η)(ti+1 − t) < 0.

We conclude that Ξsvi+1(t) > 0 for all t ∈ [ti+2, ti+1], which

allows us to apply Lemma 19 to lower bound Ξsvi+1(ti+2):

Ξsvi+1(ti+2) ≥ Ξsvi+1(tt+1) + ((1− ρ)µ− 2ρ− η)(ti+1 − ti+2)

(24)

≥ Ξsv`
(t`+1) + ((1− ρ)µ− 2ρ− η)(t`+1 − ti+2).

III. Putting everything together. Using Inequality (16)
for i = ` and t = t`+1, we obtain

Ξsu`
(t) ≥ Ξs(u`,...,vk)(t)

= Ξsu`
(t`+1) + Iu`(t`+1, t)− Iuk (t`+1, t)

− s∆κ(u`,...,uk)(t`+1, t) (25)

(16),(10)

≥ Ψs
p−1(t)− (1 + ρ)(t− t`+1) + Iu`(t`+1, t)

+ s∆κ(u0,...,u`)(t, t). (26)

Applying (22) for i = `+m (note that u` = v`) yields

Ξsv`+m
(t)

(22)

≥ Ξsu`
(t`+1) + ((1− ρ)µ− 2ρ− η)(t`+1 − t)

(Lem. 19)

≥ Ξsu`
(t)− Iu`(t`+1, t) + ((1− ρ)(1 + µ)− η)

· (t− t`+1) + ((1− ρ)µ− 2ρ− η)(t`+1 − t)
(26)

≥ Ψs
p−1(t) + ((1− ρ)µ− 2ρ− η)(t− t) + s∆κp(t, t)

(2),(Lem. 13)

≥ Cs+1

2
+ Cs −

Cs+1

4
− Cs+1

12
− Cs+1

6
≥ Cs,

which contradicts Lemma 20.

Theorem 12 follows from Theorem 23: the legal state con-
dition implies that the stable local skew is O(d log(D/d)).
Since we assumed that µ is constant, the stabilization time
of O(D logD) follows from the dynamics of κ{u,v}, which
stabilizes to its final value of κ∞{u,v} after O((D logD)/µ)
time. (The weights are defined in terms of the global skew
Ḡ, which Theorem 11 shows to be in O(D).)

7. LOWER BOUND
The lower bound of [8] stated, roughly speaking, that the

stabilization time of any S-dynamic gradient CSA with a
stable gradient skew of S∞ must be at least Ω(D/S∞(1))
in graphs of diameter D. For CSA with O(logD)-local
skew, this bound implies that the stabilization time must
be Ω(D/ logD). Algorithm AOPT has a stabilization time
of O(D), which does not match the bound in [8]; however,
by refining the analysis in the lower bound we can show that
the algorithm is in fact asymptotically optimal in its stabi-
lization time. The key to the stronger bound is reasoning
about the full gradient property, which bounds the skew on
paths of all distances, rather than just the local skew prop-
erty, which only bounds the skew on single edges.

Let us call a dynamic gradient CSA non-trivial if it has
a stable gradient skew satisfying S∞(1) ∈ o(D). This es-
sentially means that the algorithm guarantees a local skew
(e.g., along single edges) that is better than the global skew.
The stronger lower bound states the following.

Theorem 24. Let F =
˘
fD : R+

0 → R+
0 |D ∈ R

¯
be a

family of functions, and let c1, c2 ∈ (0, 1/16) be constants
such that for all fD ∈ F we have fD(c1D) ≤ c2D. Let A be
a non-trivial stabilizing CSA guaranteeing a dynamic gradi-
ent skew of fD in graphs of weighted diameter D. Then the
stabilization time of A is at least Ω(D).

The proof is similar to the one in [8]; it appears in the tech-
nical report. Algorithms AOPT and ADW, which guarantee
a stable gradient skew of S∞(d) ∈ O(d log(D/d)), satisfy the
conditions of the theorem; hence, AOPT has optimal stabi-
lization time, while ADW is within a logD factor of optimal.

8. CONCLUSIONS
We have presented two gradient clock synchronization al-

gorithms for dynamic networks. If logical clocks are allowed
to increase at a rate of at most (1 + µ)(1 + ρ) for a param-
eter µ ∈ O(1), both algorithms achieve a stable local skew
of O(d logµ/ρ(D/d)) between nodes at distance d, where D
is the dynamic diameter of the network. Choosing µ large
allows us to achieve asymptotically optimal local skew of
O(d log1/ρ(D/d)), whereas choosing µ ∈ O(ρ) gives almost
optimal local skew and logical clocks that behave like hard-
ware clocks with slightly worse clock drift. Note, however,
that choosing µ small also entails that a larger stabilization
time must be accepted.

The algorithms we give can be extended in various ways.
The current analysis assumes that the node set is fixed, and
that only the edge set of the network graph can be dynamic.
However, we only use this assumption to establish a bound
on the global skew of the algorithms. As long as node inser-
tions and removals occur in a way that allows the nodes to
maintain an upper bound on the global skew, the analysis
can be extended to the completely dynamic setting. Another
interesting direction would be to change ADW in the follow-
ing way: instead of immediately forgetting about edges that
disappear (which can be thought of as assigning them infi-
nite weight), nodes could gradually increase the weight on
an edge that has disappeared. The weights would have to
be increased at a rate that ensures that the system remains
legal at all times. This should allow us to reduce the skew
faster on edges that re-appear after disappearing for a short
time. One could envision combining this version of ADW

with AOPT to obtain an algorithm that can optimally insert
new edges and quickly recover from transient edge failures.

9. REFERENCES
[1] S. Biaz and J. Lundelius Welch. Closed Form Bounds

for Clock Synchronization Under Simple Uncertainty
Assumptions. Information Processing Letters,
80(3):151–157, 2001.

[2] D. Dolev, J. Halpern, B. Simons, and R. Strong.
Dynamic Fault-tolerant Clock Synchronization.
Journal of the ACM (JACM), 42(1):143–185, 1995.

[3] D. Dolev, J. Halpern, and R. Strong. On the
Possibility and Impossibility of Achieving Clock
Synchronization. In Proc. 16th ACM Symposium on
Theory of Computing (STOC), pages 504–511, 1984.

[4] J. Elson, L. Girod, and D. Estrin. Fine-grained
Network Time Synchronization Using Reference
Broadcasts. ACM SIGOPS Operating Systems Review,
36:147–163, 2002.

[5] R. Fan and N. Lynch. Gradient Clock Synchronization.
In Proc. 23rd ACM Symposium on Principles of
Distributed Computing (PODC), pages 320–327, 2004.

[6] J. Halpern, B. Simons, R. Strong, and D. Dolev.
Fault-tolerant Clock Synchronization. In Proc. 3rd
ACM Symposium on Principles of Distributed
Computing (PODC), pages 89–102, 1984.

[7] F. Kuhn, C. Lenzen, T. Locher, and R. Oshman.
Optimal Gradient Clock Synchronization in Dynamic
Networks. CoRR, abs/1005.2894, 2010.
http://arxiv.org/abs/1005.2894.

[8] F. Kuhn, T. Locher, and R. Oshman. Gradient Clock
Synchronization in Dynamic Networks. In Proc. 21st
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 270–279, 2009.

[9] F. Kuhn and R. Oshman. Gradient Clock
Synchronization Using Reference Broadcasts. In Proc.
13th International Conference on Principles of
Distributed Systems (OPODIS), pages 204–218, 2009.

[10] L. Lamport and P. Melliar-Smith. Synchronizing
Clocks in the Presence of Faults. Journal of the ACM
(JACM), 32(1):52–78, 1985.

[11] C. Lenzen, T. Locher, and R. Wattenhofer. Clock
Synchronization with Bounded Global and Local
Skew. In Proc. 49th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 500–510, 2008.

[12] C. Lenzen, T. Locher, and R. Wattenhofer. Tight
Bounds for Clock Synchronization. Journal of the
ACM (JACM), 57(2):1–42, 2010.

[13] T. Locher. Foundations of Aggregation and
Synchronization in Distributed Systems. PhD thesis,
ETH Zurich, 2009.

[14] T. Locher and R. Wattenhofer. Oblivious Gradient
Clock Synchronization. In Proc. 20th International
Symposium on Distributed Computing (DISC), pages
520–533, 2006.

[15] J. Lundelius and N. Lynch. A New Fault-tolerant
Algorithm for Clock Synchronization. In Proc. 3rd
ACM Symposium on Principles of Distributed
Computing, pages 75–88. ACM, 1984.

[16] J. Lundelius and N. Lynch. An Upper and Lower
Bound for Clock Synchronization. Information and
Control, 62(2/3):190–204, 1984.

[17] K. Marzullo and S. Owicki. Maintaining the Time in a
Distributed System. In Proc. 2nd ACM Symposium on
Principles of Distributed Computing (PODC), pages
44–54, 1983.

[18] R. Ostrovsky and B. Patt-Shamir. Optimal and
Efficient Clock Synchronization under Drifting Clocks.
In Proc. 18th ACM Symposium on Principles of
Distributed Computing (PODC), pages 400–414, 1999.

[19] B. Patt-Shamir and S. Rajsbaum. A Theory of Clock
Synchronization. In Proc. 26th ACM Symposium on
Theory of Computing (STOC), pages 810–819, 1994.

[20] T. K. Srikanth and S. Toueg. Optimal Clock
Synchronization. Journal of the ACM, 34(3):626–645,
1987.

