
Clock Synchronization with Bounded Global and Local Skew
(Extended Abstract) ∗

Christoph Lenzen
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

lenzen@tik.ee.ethz.ch

Thomas Locher
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

lochert@tik.ee.ethz.ch

Roger Wattenhofer
Computer Engineering and

Networks Laboratory
ETH Zurich, Switzerland

wattenhofer@tik.ee.ethz.ch

Abstract

We present a distributed clock synchronization algo-
rithm that guarantees an exponentially improved bound of
O(logD) on the clock skew between neighboring nodes in
any graph G of diameter D. In light of the lower bound of
Ω(logD/ log logD), this result is almost tight. Moreover,
the global clock skew between any two nodes, particularly
nodes that are not directly connected, is bounded by O(D),
which is optimal up to a constant factor. Our algorithm fur-
ther ensures that the clock values are always within a linear
envelope of real time. A better bound on the accuracy with
respect to real time cannot be achieved in the absence of
an external timer. These results all hold in a general model
where both the clock drifts and the message delays may vary
arbitrarily within pre-specified bounds.

1 Introduction

There is a wide range of tasks in distributed systems
requiring its participants to maintain a common notion of
time, which necessitates the use of a synchronization al-
gorithm. In distributed systems, the participants synchro-
nize by perpetually sending messages containing informa-
tion about their current state and by applying a clock syn-
chronization algorithm to update their clocks.

We model a distributed system as a graph G = (V,E),
where the nodes in V denote the participants in the system
and each edge {u, v} ∈ E represents a bidirectional com-
munication link between u and v. Each node is equipped
with a hardware clock with a bounded but variable drift.
A logical clock value is computed according to the local
hardware clock value and the messages received from its
neighbors. Since it is reasonable to expect that events oc-
curing at different real times also happen at different logical
∗The full paper is available at http://dcg.ethz.ch/publications.html.

times, we demand that nodes increase the value of their log-
ical clocks at least at a certain minimum rate. The goal is
to minimize the skew between the logical clocks. The main
difficulty lies in the fact that the nodes know neither the
potentially variable hardware clock rates nor the message
delays, which can also vary arbitrarily. Moreover, there is
no external clock that could inform the nodes about the real
time once in a while.

Naturally, one objective is to minimize the skew between
any two nodes in the graph, regardless of the distance in G
between them. We call the maximum worst-case skew be-
tween any two nodes in the graph the global skew. Apart
from minimizing the global skew, it is essential for several
distributed applications that the clock skew between neigh-
boring nodes is as small as possible. One could even think
of applications where the global skew is not of great con-
cern, but any node only needs to be well synchronized with
nodes in its vicinity. This is the case if occurrences of events
are only of local importance and do not bear any (immedi-
ate) significance for nodes that are not close-by. The so-
called gradient property, which has been introduced in [3],
captures this optimization criterion. The gradient property
requires that the clock skew between any two nodes v, w
for which {v, w} ∈ E is as small as possible whereas the
logical clock values of distant nodes are allowed to deviate
more. We will refer to the maximum worst-case clock skew
between neighboring nodes as the local skew.

Ideally, an algorithm guarantees good bounds on both
the global and the local skew. It has been shown that the
lowest possible global skew that any algorithm can achieve
is bounded by Ω(D) [1], where D denotes the diameter of
the graph. As far as the local skew is concerned, it has been
proven in the surprising work by Fan and Lynch [3] that
a skew of Ω(logD/ log logD) between neighboring nodes
cannot be prevented. While it is fairly easy to come up
with an algorithm guaranteeing a bound of Θ(D) on the
global skew, finding an algorithm with a strong gradient

1

property is more challenging. So far the best known gra-
dient clock synchronization algorithm achieves a bound of
O(
√
D) [4]. Apparently, there is still a substantial gap be-

tween this bound on the local skew and the lower bound.
We give an algorithm that guarantees a global skew that

is at most roughly a factor 2 larger than the best possible
bound. More importantly, the worst-case skew between
neighboring nodes is bounded by O(logD) in any graph
of diameter D at all times, almost closing the gap between
upper and lower bound. Another aspect of our model that
merits attention is the accuracy of the clocks in the absence
of an external source of real time.1 Even without such a
global synchronizer, it might be desirable to keep the logi-
cal clock values as close to real time as possible. Naturally,
the constant bound on the deviation of the hardware clock
rates from real time directly gives an upper bound on the
best possible real-time approximation. We require our al-
gorithm to respect this bound and thus to guarantee the best
feasible approximation of real time, while still bounding the
global and local skew.

2 Related Work

There is a large body of work on the fundamental prob-
lem of clock synchronization, studying bounds on the skew
and on communication costs [5, 7, 8]. The clock synchro-
nization algorithm by Srikanth and Toueg [11] minimizes
the global skew given a certain hardware clock drift, achiev-
ing a bound of O(D). In light of the lower bound of D

2 on
the clock skew in graphs of diameter D [1], this result is
optimal up to a constant factor. The authors further show
that the accuracy of their algorithm with respect to real time
is also optimal as all clocks are always within a linear en-
velope of real time. However, their algorithm also incurs
a skew of Θ(D) between neighboring nodes in the worst
case.

The gradient property has not been studied until the
lower bound of Ω(logD/ log logD) has been proven in
the remarkable work by Fan and Lynch [3]. Meier and
Thiele [6] proved that this lower bound also holds for a dif-
ferent model in which all messages arrive instantaneously,
but the communication frequency is bounded. The best
known algorithm achieves a bound of O(

√
D) on the local

skew [4]. The basic idea is that any node always sets its log-
ical clock to the maximum clock value ever received as long
as the clock of no neighboring node is more than O(

√
D)

behind. If the node is “blocked” because of such a neigh-
bor, it refuses to further raise its clock value (beyond the
increase dictated by its hardware clock) until this neighbor
has caught up. This neighbor might also be blocked by one
of its neighbors etc., incurring long waiting times. However,

1For example, nodes in an indoor sensor network cannot receive GPS
signals.

as the algorithm ensures that the global skew is bounded
by O(D), the length of such a chain of blocked nodes is
bounded by O(

√
D), implying that after O(

√
D) time the

node at the top of the chain can raise its clock value by an
amount that is large enough to ensure that the local skew
never exceeds O(

√
D). In the same work, other strategies

to bound the local skew are discussed, showing that plau-
sible strategies, such as permanently minimizing the skew
to all neighbors by setting the clocks to the average clock
value, fail to achieve a local skew of o(D).

In other studies, it is often assumed that the clock drift is
constant or that the message delays can be approximated
efficiently as they are within given bounds, allowing for
straightforward distributed least-squares optimization tech-
niques to approximate the clock values [9, 10]. Given an
external signal that occasionally informs the nodes about
the real time, e.g., through a GPS service, the local skew
can be bounded by a small constant ε > 0 “some of the
time” [2].

We do not require any of these restrictions on the clock
drifts or the message delays, nor do we depend on an exter-
nal timer, yet our algorithm achieves a global skew ofO(D)
and a local skew of O(logD) at all times on any graph G.

3 Model and Definitions

We consider an arbitrary connected graphG = (V,E) of
diameter D. Let Nv := {w ∈ V | {v, w} ∈ E} denote the
set of neighbors of v. Any node v can directly communicate
with all nodes w ∈ Nv . We further assume that, for any two
nodes u,w ∈ Nv , node v can distinguish u from w, e.g., by
means of a port numbering or node identifiers, and also that
all communication is reliable. However, each message can
be delayed by any value in the range [0, T], where the up-
per bound T is unknown to the algorithm. In the following,
we use the normalized upper bound T := 1. Moreover, we
assume that local computation requires no time and there-
fore does not induce an additional delay. For the sake of
simplicity, we further assume that all clocks start running
at real time t = 0. It is not hard to see that such a syn-
chronous start is not required and that the same bounds can
be shown if, e.g., a “wake-up call” activating the clocks is
sent through the network.

Each node v is equipped with a hardware clock Hv(·)
whose value at time t isHv(t) :=

∫ t
0
hv(τ) dτ , where hv(τ)

is the hardware clock rate of v at time τ . The clock rates
can vary over time, but there is a constant 0 < ε < 1 such
that the following condition holds.

Condition 3.1 ∀v ∈ V ∀t : 1− ε ≤ hv(t) ≤ 1 + ε.

While the exact value of ε is unknown, we assume that the
nodes know an upper bound on ε that is strictly smaller than
1.

2

Additionally, each node v has a logical clock Lv(·). The
algorithm can only manipulate the logical clock value by
increasing it, since clocks are not allowed to run backwards.
Moreover, we demand that the logical clocks be increased
at least at the minimum hardware clock rate, i.e., it is also
not allowed to increase them too slowly.2

Condition 3.2 ∀v ∈ V ∀t < t′ : Lv(t′) − Lv(t) ≥ (1 −
ε)(t′ − t).

As it is further desirable to keep all logical clock values
within a linear envelope of real time, the algorithm must
also respect the following condition.

Condition 3.3 ∀v ∈ V ∀t : |Lv(t)− t| ≤ ε t.

When describing the algorithm, clock values Lv(t) and
other variables are considered local variables, therefore we
will drop the parameter t in our notation and write Lv etc.
The specification of the real time will however be helpful in
the analysis.

A clock synchronization algorithm A specifies how the
logical clock Lv(t) of node v at time t is adapted according
to the current value of the logical clock and the information
received from its neighbors up to time t. An execution spec-
ifies the delays of all messages and also the hardware clock
rates of all nodes at each point in time. The global and the
local skew are defined as follows:

Definition 3.4 (Global Skew) Given a clock synchroniza-
tion algorithm A, the global skew is defined as the value
supG,E,v,w∈V, t {Lv(t)− Lw(t)}, where E is any execution
of A on any connected graph G = (V,E).

Definition 3.5 (Local Skew) Given a clock synchroniza-
tion algorithm A, the local skew is defined as the value
supG,E,v,w∈Nv, t

{Lv(t)− Lw(t)}, where E is any execu-
tion of A on any connected graph G = (V,E).

The goal is to derive an algorithm that guarantees low
bounds on both the global and the local skew. We will now
present an algorithm with a global and a local skew ofO(D)
andO(logD), respectively, on any graphG of diameterD.

4 Algorithm

We start by briefly sketching the basic techniques used
by our algorithm, which we will henceforth refer to asAlog.
Since the nodes must catch up with the node whose clock
runs at the highest rate, nodes have to increase their clock
values once they fall behind. We say that a node raises its
clock whenever the algorithm instantaneously increases the

2In fact, onlyLv(t′)−Lv(t) ≥ C(t′−t) (as in [3]) for some constant
C > 0 is required. However, this constant merely rescales the results,
which therefore remain asymptotically the same.

logical clock value.3 Similarly to the algorithm guarantee-
ing a bound of O(

√
D), Alog demands that all nodes raise

their clock values to the maximum value ever received, as
long as there is no neighbor whose clock is a specific value
κ behind. In order for our algorithm to work, κ needs to be
a certain multiple of the maximum message delay T . We
will give exact bounds for κ in the subsequent section. Note
that technically the nodes do not know T , but a closer study
reveals that it suffices to determine an upper bound on the
maximum delay that ever occured in the network. Such an
upper bound can be obtained easily and used to determine
κ.4 Thus, we assume for simplicity that the nodes know (an
upper bound on) T .

The rule that nodes do not raise their clocks once a neigh-
bor is at least κ behind is not sufficient to guarantee a bound
of o(D) on the local skew, because an execution could cause
Θ(D/κ) nodes in a row to block each other. If the clock of
a node at the end of such a chain runs at a higher rate than its
neighbor’s, a skew of Θ(D/κ) can be built up. The idea of
Alog is to circumvent this problem by allowing nodes to in-
crease their tolerance towards skew in their neighborhood:
Once a large skew of (roughly) sκ or more for s > 1 is
detected, v will demand a clock raise from its neighbors by
sending so-called orders, which contain the amount ∆ by
which the recipient of the message is supposed to raise its
clock, and additionally the value s. We refer to the amount
∆ as the demand of this order and s as its level. Since a
node might have outstanding orders on several levels, it is
possible that several orders are packed into a single mes-
sage. The main challenge is to ensure that these messages
are handled properly. If an adversary can trick nodes, by
manipulating the hardware clock rates and message delays,
into raising their clocks too quickly, other nodes might ex-
perience large skew levels and thus large local clock skews.
On the other hand, a large local skew can also be built up if
nodes do not raise their clocks sufficiently over time.

We will now describe the algorithm Alog, which is sum-
marized in Algorithm 1, in greater detail. Each node v starts
with Lv := 0 and no demand on any level s. In the absence
of events, i.e., in the time periods when no messages are
received, Lv is increased continuously at its own hardware
clock rate hv(·). Synchronization messages are sent perpet-
ually over each edge e ∈ E in a ping-pong fashion, i.e.,
after sending a message to w, node v does not send another
message over the edge e = {v, w} until v receives a mes-
sage from w, and vice versa. Since it is irrelevant which

3If the logical clock increases simply at the rate of the hardware clock,
this is not called a raise.

4The nodes might, e.g., keep track of the longest round-trip time ever
measured using their own hardware clocks, multiply it with an upper bound
for (1 − ε)−1, and round this value up to the next power of two. The
maximum result computed anywhere in the network can then be used as
the (one-way) message delay. Whenever the estimated maximum delay is
doubled, all local variables can be adapted accordingly.

3

Algorithm 1 Node v received the message (Ov
w, Lw, Lmax

w)
from node w

1: Λwv := Lv − Lw; Owv := ∅
2: Λmax

v := maxu∈Nv{Λuv}
3: Lmax

v := max{Lmax
v , Lmax

w }
4: for all order(s,∆s

w) ∈ Ovw do
5: ∆s

v := max{∆s
w − Γwv ,∆

s
v}

6: Γwv := 0
7: R := κ− Λmax

v

8: for s ∈ {s′ |∆s′

v > 0} do
9: R := max {R,min{∆s

v, sκ− Λmax
v }}

10: R := max{min{Lmax
v − Lv, R}, 0}

11: Lv := Lv +R
12: for u ∈ Nv do
13: Λuv := Λuv +R
14: for u ∈ Nv \ {w} do
15: Γuv := Γuv +R
16: for s ∈ {s′ |∆s′

v > 0} do
17: ∆s

v := max{∆s
v −R, 0}

18: for s ∈ {s′ > 1 |∆s′

v + Λwv − s′κ+ γκ > 0} do
19: Owv := Owv ∪ {order(s,∆s

v + Λwv − sκ+ γκ)}
20: Send (Owv , Lv, L

max
v) to node w

node initiates the communication over a specific edge at the
beginning, we assume that all nodes know at time t = 0
to which nodes they must send a message and from which
neighbors they can expect to receive a message. In prac-
tice, once a node has been activated, e.g., by means of a
wake-up message as described in Section 3, it initiates the
synchronization process by sending a first message to all
neighbors. Note that with this approach two such messages
might traverse an edge e = {v, w} (in opposite directions)
at the same time. This conflict can be resolved easily, e.g.,
by using node identifiers: The node with the larger identi-
fier, say node v, simply drops the message from w if it is
not a response to its own message, while w correctly replies
to v’s message. Thus, we can assume that there is always
at most one messages traversing each edge. The algorithm
itself describes the steps performed when a message from
a neighbor w is received. For notational convenience, we
assume in the following that no two messages arrive at any
given node at the same time.5 Moreover, we assume that
the total number of messages sent up to any given time t
remains finite for any execution.6

Apart from its own logical clock value, each node v also
stores the estimated clock skew Λwv to each neighbor w.
Note that a positive Λwv indicates that the clock of w is be-

5The algorithm still works without this constraint, as messages are pro-
cessed sequentially.

6This assumption excludes irrelevant special cases in our analysis. In
Section 5.3, where we examine the space and message complexity ofAlog,
we propose a simple modification of the algorithm ensuring that the num-
ber of messages is bounded.

hind and consequently a negative value indicates that w’s
clock is ahead. Moreover, each node v also stores an esti-
mate Lmax

v of the largest clock value overall, initialized to
Lv(0). A message received from w contains a set Ovw of
orders of the form order(s,∆s

w), its clock value Lw at the
time when it sent the message, and also its estimate Lmax

w

of the largest clock value in the network. Similarly to its
own logical clock Lv , v also increases Lmax

v at its hardware
clock rate. Thus, any node assumes that the fastest clock
increases at least at the same rate as its own clock.

In the first step, v updates Λwv by setting it to Lv − Lw
and initializes the set of orders Owv that v will send back
to w to ∅. Subsequently, the estimate Λmax

v of the largest
clock skew to the neighbors of v that are behind is deter-
mined, and the estimate Lmax

v is updated. Each node fur-
ther stores a local variable Γwv , initialized to zero, for each
of its neighbors w ∈ Nv . This variable indicates how much
v has raised its logical clock since it last sent a message to
w. Additionally, v stores the maximum outstanding (posi-
tive) demand ∆s

v for each level s. When updating ∆s
v , v has

to take into account that w does not know about the clock
raises performed by v since it last sent a message to w, thus
exactly Γwv has to be subtracted from the received demand.
Afterwards, since a message will be sent tow, Γwv can be re-
set to zero. The amount R by which node v raises its clock
is determined in Lines 7-10 of the algorithm: Line 7 is the
rule that v can set its clock to a value at most κ larger than
the lowest known clock value in its neighborhood. If there
is a positive demand on a level s > 1, this rule is relaxed in
that Lv is allowed to be sκ larger. However, there is no need
to raise the clock by more than the ordered demand, i.e., Lv
is also raised at most by ∆s

v . Line 10 simply states thatLv is
neither raised above the estimate of the largest clock value
Lmax
v nor set to any value lower than Lv . After raising Lv ,

the estimated clock skew Λuv must be updated accordingly
(Line 13) for all neighbors u. The variables Γuv must also be
increased byR (Line 15) for all neighbors exceptw, and the
remaining demand for each level must be corrected by sub-
tractingR (Line 17). Then, v has to determine how much w
is supposed to raise its clock. Node w must raise its clock
sufficiently such that after v is informed about this raise,
node v can fulfill the demand ∆s

v , i.e., v can raise its clock
by at least ∆s

v . Thus, the remaining ∆s
v must be increased

by the amount by which the (estimated) clock skew Λwv ex-
ceeds sκ. Moreover, an additional term γκ is required in
order to compensate for errors in the estimates of the neigh-
bors’ clock values. An order with this demand is then added
to Owv (Line 19). Note that if ∆s

v + Λwv − sκ + γκ is not
positive, then w does not prevent v from raising its clock by
at least ∆s

v and thus no order has to be sent. We will see
that γκ has to be only marginally larger than the maximum
message delay T in Section 5. Since in fact more demand
is sent than necessary, we must ensure that demand cannot

4

be accumulated indefinitely. For this purpose, nodes con-
stantly reduce the demand on all levels at a real-time rate of
at least 2ε. As the minimal clock rate is 1 − ε, we require
that nodes reduce their stored demands at the rate αh(t),
where α ≥ 2ε

1−ε . After the set Owv has been computed, v
sends the message (Owv , Lv, L

max
v) to w.

5 Analysis

We first point out that Alog respects Condition 3.2, as
each node increases its logical clock at least at the rate
hv(t) ≥ 1 − ε at all times t. In Line 10 of Algorithm 1,
we see that Lv(t) is raised at most to Lmax

v (t). Trivially, the
largest estimate Lmax

v for any node v cannot increase faster
than the maximum hardware clock rate 1 + ε, implying that
Lv(t) ≤ (1 + ε)t for all times t. Combining this observa-
tion with the fact that the algorithm respects Condition 3.2,
we get that |Lv(t) − t| ≤ εt for all v ∈ V and all times t.
Hence, the algorithm also respects Condition 3.3.

Since the logical clock and all local variables are updated
instantaneously when a message is processed, we need to
specify how these values are interpreted at any time t: If
node v raises its clock at time t, Lv(t) denotes the clock
value of node v after the raise. In general, if more than one
value is assigned to a variable at a given time t, we define
the value of this variable at time t to be the last assigned
value. For example, the estimated clock skew Λwv (t) incor-
porates any potential change due to a clock raise of node
v or a message received from node w at time t. However,
there is one exception to this rule. If v sends a message to w
at time t, the variable Γwv , indicating how much v has raised
its clock since it last sent a message to w, is reset to zero.
Since we frequently need the value by which the received
demand has been reduced at this time, we define that Γwv (t)
holds the value of Γwv before it is reduced to zero. We will
further need the following definition:

Definition 5.1 ∀t1 ≤ t2 : Iv(t1, t2) := Lv(t2)−Lv(t1)−
(1− ε)(t2 − t1).

Iv(t1, t2) is the amount by which v increased its clock be-
yond the absolute minimum of (1− ε)(t2 − t1) in the time
interval [t1, t2] excluding any potential clock raise at time
t1. Note that Iv is interval additive, positive, and mono-
tonic in both arguments. If node v raises its clock at time t,
letRv(t) denote the amount by which v raised its clock, i.e.,
Rv(t) holds the value of R in Line 11 of the algorithm. As
mentioned before, we assume that no two messages arrive
at any node at the same time, therefore it is not possible that
a node v raises its clock more than once at any time t.

In Section 5.1 and Section 5.2 the exact bounds on the
global and the local skew are presented, respectively, fol-
lowed by a discussion of the bit and space complexity of
Alog in Section 5.3.

5.1 Bound on the Global Skew

The proof of the bound on the global skew reveals that
we require κ to be at least 1 + 5ε. In the proof of the bound
on the local skew κ must be larger, which, not surprisingly,
indicates that the local skew imposes more restrictive con-
ditions on the generally tolerated skew.

Theorem 5.2 (Bound on the Global Skew) If κ ≥ 1 + 5ε,
Alog guarantees for any graph G of diameter D that the
global skew is bounded by (1 + 5ε)D. This is at most a
factor 2 + 10ε worse than the optimum. Moverover, a skew
of exactly (1 + 5ε)D can never be attained.

Proof. Observe that for any node v we have Lv(t) ≤
Lmax
v (t) at any time t. Thus, it suffices to show that at all

times the inequalityLmax
v (t)−Lw(t) < (1+5ε)D holds for

all v, w ∈ V . Denote by Lmax(t) := maxv∈V {Lmax
v (t)}

the maximum of the nodes’ estimates of the largest clock
value and by Imax(t, t′) := Lmax(t′) − Lmax(t) − (1 −
ε)(t′ − t) its increase.7 Since the estimate of the largest
clock value is increased at most at a rate of 1 + ε, appar-
ently it holds that Imax(t, t′) ≤ 2ε(t′ − t).

Assume for the sake of contradiction that at time tmax for
some node vmin ∈ V the skew Lmax(tmax) − Lvmin(tmax)
reaches (1 + 5ε)D. Let tmax further be the first such point
in time. Denote by t′ ∈ (tmax − 2, tmax] the time when
vmin receives the last message in the time interval (tmax −
2, tmax].

First we show that Λwvmin
(t′) for any given neighbor w ∈

Nvmin of vmin cannot be too large. Denote by tr ∈ (tmax −
2, t′] the time when vmin received the last message from w
and by ts ∈ [tr − 1, tr] the time when it was sent. We
estimate

κ− Λwvmin
(t′) ≥ 1 + 5ε− Λwvmin

(tr)− Ivmin(tr, t′) (1)
= 1 + 5ε+ Lw(ts)− Lvmin(tr)
−Ivmin(tr, t′)

≥ (1 + 5ε)(1−D) + Lmax(ts)
−Lvmin(tr)− Ivmin(tr, t′) (2)

≥ 4ε− (1 + 5ε)D + Lmax(tr)
−Lvmin(tr)− Ivmin(tr, t′) (3)

= 4ε− Imax(tr, tmax)
+Ivmin(tr, tmax)− Ivmin(tr, t′) (4)

≥ 4ε− Imax(tr, tmax) > 0.

Inequality (1) holds due to the assumption that κ ≥ 1 + 5ε
and the fact that Ivmin(tr, t′) upper bounds the clock raises

7This estimate may be greater than the maximum clock value, since a
blocked node may increase a received estimate faster than the hardware
clock rate increases the clock of the node with the currently largest clock
value.

5

of node vmin in the interval (tr, t′]. By definition of
tmax we have Lmax(ts) − Lw(ts) ≤ (1 + 5ε)D at time
ts ≤ t′ ≤ tmax, which gives Inequality (2). We imme-
diately get Inequality (3) because Lmax(tr) − Lmax(ts) ≤
(1 + ε)(tr − ts) ≤ 1 + ε. Finally, Equality (4) holds since
Lmax(tr)+Imax(tr, tmax)−Lvmin(tr)−Ivmin(tr, tmax) =
Lmax(tmax) − Lw(tmax) = (1 + 5ε)D. Thus, as κ −
Λwvmin

(t′) is strictly positive for anyw ∈ Nvmin , indeed vmin

cannot be blocked at time t′.
According to Line 10 of the algorithm, an unblocked

node will always raise its clock to its estimate of the largest
clock value, implying that Lvmin(t′) = Lmax

vmin
(t′).

Suppose a node v sends a message to a node w ∈ Nv
at time tv . This message will contain the current estimate
Lmax
v (tv). Node w will receive this message and set its esti-

mate Lmax
w to at least that value not later than at time tv +1.

If w has just before sent a message to one of its neighbors
u, it has to wait τ ≤ 2 time units, before it can forward
its potentially new estimate Lmax

w to u. During this time,
Lmax
w is increased at the hardware clock rate of w. Thus,

at the latest at time tv + τ + 2, u receives an estimate of
at least Lmax

v (tv) + τ(1 − ε). Apparently, u might also be
forced to wait up to 2 time units before forwarding the new
estimate. Whenever it takes τ < 2 time units for a node to
forward the estimate, it will arrive 2 − τ time units earlier
at any given destination, where it will also be increased at
least at the rate 1 − ε. Thus, repeating these arguments, at
time t ≥ tv + 3(D − 1) + 1 any node w, and especially
node vmin, will have an estimate Lmax

vw
for which it holds

that Lmax
vw

(t) ≥ Lmax
v (tv) + (t − tv − D)(1 − ε). Since

any node v sends a message to each of its neighbors at least
every 2 time units, it must have sent a value Lmax

v (t′v) at a
time t′v > tmax − 3D that has been propagated (and on the
way been increased by hardware clock rates) to vmin where
it arrived at the latest at time t′. Hence, we also have that
t0 := minv∈V t′v > tmax − 3D. We conclude that

Lmax
vmin

(t′) ≥ Lmax(t0) + (t′ − t0 −D)(1− ε)
= Lmax(tmax − 3D) + (t′ − tmax + 2D)

(1− ε) + Imax(tmax − 3D, t0)
≥ Lmax(tmax)− (1 + 5ε)D − (1− ε) (5)

(tmax − t′) + Imax(tmax − 3D, t0)
= Lvmin(tmax)− (1− ε)(tmax − t′)

+Imax(tmax − 3D, t0)
≥ Lvmin(t′) + Imax(tmax − 3D, t0).

If Inequality (5) holds with equality, this implies that Lmax

increased at the rate of 1 + ε in the whole time interval
[tmax−3D, tmax], thus in particular Imax(tmax−3D, t0) is
positive. In any case, we get the contradiction Lmax

vmin
(t′) >

Lvmin(t′) = Lmax
vmin

(t′). It follows that the assumption
Lmax(tmax) − Lvmin(tmax) = (1 + 5ε)D must be false,

proving both that the bound on the global skew holds and
that it can never be attained. The lower bound of D

2 on the
global skew proven in [1] immediately yields that the bound
on the global skew is optimal up to a factor of 2 + 10ε. �

5.2 Bound on the Local Skew

A path is defined as a sequence of nodes v0, . . . , vk for
which it holds that {vi, vi+1} ∈ E for all i ∈ {0, . . . , k−1}.
Note that nodes may occur more than once in such a se-
quence. We will use this concept frequently in this section.
The proof of the bound on the local skew relies on the fact
that the maximum length of a path with a given average
skew decreases exponentially. This implies that the aver-
age skew on paths of length one, i.e., between neighboring
nodes, is logarithmically bounded.

More specifically, we prove that at all times the length
Cs of any path with an average skew of (s+λ)κ is bounded
by β−1Cs−1 for some λ ∈ (0, 1) and β ≥ 2. Instead of
considering only adjacent levels s and s+ 1, for any s ∈ N,
we also study the relation between levels s and s + ` for
` ≥ 1. This generalization leads to a better understanding
of the algorithm and also yields improved constants in the
bound on the local skew.

Definition 5.3 Given β, λ ∈ R+ and ` ∈ N0, we say that
a network is in a legal state at time t, if and only if for all
s ∈ N0 and all paths v0, . . . , vk of length

k ≥ Cs := β`−s
1 + 5ε

(`+ λ)κ
D

we have that Lv0(t)− Lvk
(t) ≤ k(s+ λ)κ.

In the following analysis, the statements preceding the main
theorem, Theorem 5.10, assume that the network is always
in a legal state.

We need to bound the time until nodes can raise their
clocks in the presence of large clock skews in terms of the
parameter Cs.

Lemma 5.4 Assume that κ ≥ 2(1−ε), γκ ≥ 1−ε+2(1+
ε)α, and λ + 1−ε

κ ≤ 1. Given ψ > 0, any level s ≥ 1, and
any path v0, . . . , vk, suppose at time t0 the inequality

Lv0(t0)− Lvk
(t0) ≥ ksκ+ ψ

holds. Define t̄0 := t0 + 6Cs−1. Then we have that

Ivk
(t0, t̄0) ≥ ψ. (6)

Proof Sketch. The key observation is that the computed
demands and resulting clock raises distribute the large aver-
age skew of more than sκ on the path v0, ..., vk over longer
paths of length l ≤ Cs−1, which in turn will exhibit an av-
erage skew of roughly (s− 1)κ per node.

6

The proof consists of two main parts. First, we show
that within 3Cs−1 time units node vk and any nodes possi-
bly slowing down the process by preventing their neighbors
from raising their clocks will have (and maintain) the nec-
essary demand on level s such that fulfilling it ensures that
they increased their clocks sufficiently. For this purpose,
we analyze sequences of messages containing orders with
demand on level s, which must originate from some node
vi ∈ {v0, ..., vk−1} since the average skew on this path ex-
ceeds sκ.

Second, the legal state conditions bound the clock skew
between vk and nodes within distance of at most dCs−1e+1
from vk. Since nodes maintain demand on level s, they will
repeatedly raise their clocks until the demand is satisfied,
unless their neighbors’ clock values are too small. How-
ever, a clock difference of sκ will be tolerated, and after at
most 3 time units any neighbor will be informed about new
clock values. Thus, we can show that if nodes within dis-
tance d from vk have sufficient clock values, nodes within
distance d − 1 will raise their clocks enough at worst 3
time units later. Using this fact inductively, after at most
d3(Cs−1e − (k − i)) ≤ 3Cs−1 time units, the node within
distance 0 from vk, i.e., vk itself, will have increased its
clock sufficiently. �

This lemma basically shows that clocks are indeed in-
creased after a certain period of time, i.e., enough demand
is sent to allow nodes to raise their clock values. We now
have to show that the received and stored demands cannot
become too large, as otherwise nodes could be forced to
raise their clocks too quickly.

The following lemma states that if a node stores a de-
mand of ∆ due to a received message, there must have been
a certain clock skew in the network at some earlier time. If
the network was in a legal state at that time, this clock skew
is bounded due to the legal state conditions, which implies
that ∆ itself is bounded.

Lemma 5.5 Assume that (1− ε)α ≥ 2ε. Suppose node v0
receives an order(s,∆1) at time t0 that increases the stored
demand on level s to ∆. Then a path v0, . . . , vk exists such
that for a time t′ < t0 we have

∆ ≤ Lvk
(t′)−Lv0(t′)− ((s−γ)κ−1−3ε)k−Iv0(t′, t0).

(7)

Proof Sketch. We analyze a sequence of messages contain-
ing orders with demand on level s: Starting at node v0, we
determine the node v1 that sent the last message causing v0
to increase the demand it stores on level s, and at node v1
we repeat this procedure leading to a node v2 etc. This way,
we retrace the sequence of messages responsible for the de-

mand received by v0, leading to a node vk which does not
store any demand on level s. Similar computations as in
Lemma 5.4 then prove the bound on the received demand.
�

In the next lemma, we improve the previous result in the
sense that we control the demand ∆ stored at a node v0 after
receiving an order(s,∆1) solely in terms of the parameter
Cs−1 and Iv0 . Basically, we state that if v0 raised its clock
by a large amount in a preceding time period, it must sub-
sequently receive less demand.

Lemma 5.6 Assume that (1 − ε)α ≥ 2ε, λ + γ + 1+3ε
κ ≤

1, and also that β ≥ 2. Suppose a node v0 receives an
order(s,∆1) at time t0. For any 0 ≤ t ≤ t0, the demand ∆
that v0 will store on level s due to this order is bounded by

∆ ≤ κCs−1 − Iv0(t, t0) + 2ε(t0 − t).

Proof Sketch. The fact that an average clock skew of
(s − 1 + λ)κ cannot be exceeded by more than κCs−1

on any path is of central importance to the proof. We can
deduce this fact from the legal state conditions. Further-
more, we need the following observation: If v0 increased
its clock quickly in a certain time interval, which appar-
ently reduced the skew on the path, the skew could have
increased in the same interval at a maximum rate of only
2ε. This follows from the aforementioned fact that an aver-
age skew of (s− 1 + λ)κ cannot be exceeded by more than
κCs−1 and from Lemma 5.5, which basically states that v0
receives less demand if it increased its clock quickly in a
previous period of time. After establishing these intermedi-
ate results, we easily obtain the claimed inequality from a
second application of Lemma 5.5. �

As a direct consequence of Lemma 5.5 and Lemma 5.6,
we get that nodes will have no demand if they increased
their clocks by a specific amount in a preceding time period.

Corollary 5.7 Suppose we have Iv(t, t′) > κCs−1 +
2ε(t′ − t), where v ∈ V and t′ ≥ t, and the prerequisites
of Lemma 5.6 are met. In this case it holds that (1) v has
no demand stored on level s or higher at time t′, and (2) v
does not raise its clock at time t′ to a value that is more than
(s− 1)κ larger than the clock value of any of its neighbors.

Next we summarize the conditions that must be fulfilled for
us to be able to prove the claimed upper bound ofO(logD)
on the local skew of Alog. Note that Conditions (11)-(15)
are required in the main theorem itself.

Condition 5.8 We call the parameters α, γ, κ ∈ R+ of al-
gorithmAlog to be admissible for a given ε > 0, if constants
β ≥ 2, λ ∈ (0, 1), `,m ∈ N, and c > 0 exist such that the

7

inequalities

α ≥ 2ε
1− ε

(8)

γκ ≥ 1− ε+ 2(1 + ε)α (9)

λ+ γ +
1 + 3ε
κ

≤ 1 (10)(
β−1 + β2−m) (1 + λ) ≤ λ− 1

2c
(11)(

1− λ+
1
c

)
β ≤ ` (12)

βm ≤ κ

24ε
(13)

β`+1 ≤ κ

24εc
(14)

logβ

(
1 + 5ε

(`+ λ)κ
D

)
> m− l − 1 (15)

hold. We will say a set of constants solving this system is an
admissible choice of constants for the given parameters.

Remark 5.9 If ε ≤ 10−4 and D ≥ 103, setting α :=
3 ·10−4, γ := 3

14 and κ := 5 is an admissible choice of pa-
rameters.8 A corresponding admissable choice of constants
is given by λ := 4

7 , β := 4, ` := 2 m := 5, and c := 14.

Now we are in the position to state our main result.

Theorem 5.10 Given an admissible choice of parameters
and constants, the local skew of Alog is bounded by

κ

(⌈
logβ

(
1 + 5ε

(`+ λ)κ
D

)⌉
+ `−m+ 2

)
∈ O(logD).

Proof. Since we are given an admissible choice of param-
eters, all lemmas are applicable if the network is in a legal
state. First, we show that a clock skew of smaxκ or more,
where smax :=

⌈
logβ

1+5ε
(`+λ)κD

⌉
+ ` −m + 2, cannot oc-

cur between neighboring nodes as long as the network is in
a legal state. Note that smax is at least 3 due to Condition
(15).

Suppose that Alog is always in a legal state until time
tmax and suppose, for the sake of contradiction, that there
are two nodes v and w such that Lv(t)−Lw(t) ≥ smaxκ at
time t < tmax. Assume we have

Lv(t0)− Lw(t0) =
(
smax −

1
2

)
κ

at a time t0 < tmax. Since at t = 0 all clock values are
zero, the necessary skew must somehow be introduced into

8A hardware clock with a clock drift of ε = 10−4 loses roughly ten
seconds per day.

the system.9 Note that this cannot happen due to a clock
raise, since there is no demand on level s ≥ smax in the net-
work at time t0 and hence nodes do not raise their clocks to
a value greater than (smax− 1)κ. Thus, this clock skew can
only be built up by means of a larger hardware clock rate,
implying that there is a time t0 when the skew reaches ex-
actly

(
smax − 1

2

)
κ. The absence of demand on level smax

further entails that a clock skew of Lv(t)−Lw(t) ≥ smaxκ
can only be reached if the hardware clock rate of v’s clock
is larger than the rate of w’s clock for a sufficiently long
period of time. Since the difference between the hard-
ware clock rates is upper bounded by 2ε, it takes at least
1
2ε
κ
2 = κ

4ε time to reach a skew of smaxκ. However, as
Lv(t0)− Lw(t0) = (smax − 1)κ+ κ

2 , node w increases its
clock within 6Csmax−2 ≤ 6βm time by at least κ2 above the
minimum according to Lemma 5.4. Given that 6βm ≤ κ

4ε ,
due to Condition (13), the skew is reduced at least as fast
as it is built up, implying that a skew of smaxκ cannot be
reached. Thus, we conclude that the claimed bound on the
local skew cannot be violated as long as the network is in a
legal state.

It remains to show that the network always remains in a
legal state. Again, for the sake of contradiction, we assume
that this not the case. Let tmax be the infimum of all real
times where the network is not in a legal state. Since the
global skew is bounded by (1 + 5ε)D according to The-
orem 5.2, a skew of Lv0(t) − Lvk

(t) > k(s + λ)κ on
any path v0, . . . , vk implies that k < 1+5ε

(s+λ)κD. By Con-

dition (11), we can bound β`−s ≥
(

1+λ
λ

)`−s ≥ `+λ
s+λ for

s ∈ {0, . . . , `}. Thus, we have that k < 1+5ε
(s+λ)κD ≤

β`−s 1+5ε
(`+λ)κD = Cs, implying that the legal state condi-

tions will never be violated on any level s ∈ {0, . . . , `}.
Hence it follows that a path v0, . . . , vk must exist where
Lv0(tmax) − Lvk

(tmax) > k(s + λ)κ for some s > `. Ac-
cording to the preceding paragraph, a violation cannot occur
on a level s ≥ smax first, so we also have s < smax. Since
the path violates the legal state condition, we get the bound
k ≥ Cs ≥ Csmax−1 ≥ βm−2.

Let t0 denote the supremum of all times t < tmax where
we had

Lvi
(t)− Lvk

(t) ≤ (k − i)(s− `)κ+
κ

2c
k (16)

for all i ∈ {0, . . . , k − 1}. We claim that for t ≥ t0 and
i ∈ {0, . . . , k − dCs+1e} we have

Lvi
(t)−Lvk

(t) ≤ (k− i)sκ+
(
λ− 1

2c

)
κk+ 2ε(t− t0),

(17)

9If a wake-up message is used to initiate the synchronization algorithm,
a node might increase its clock by at most 1 + ε before its neighbors start
their clocks. Since this “initial clock skew” is smaller than

`
smax − 1

2

´
κ,

the same reasoning applies.

8

which we will prove by induction. We start the induction
at node vi, where i = k − dCs+1e. Due to the legal state
conditions for s+ 1 we can bound Lvi

(t)−Lvk
(t) ≤ (k−

i)(s + 1 + λ)κ. Condition (11) and the observation that
Cs ≥ βm−2 allow us to bound

(k − i)(1 + λ) <
(
β−1Cs + 1

)
(1 + λ)

≤
(
β−1 + β−m+2

)
(1 + λ)Cs

≤
(
λ− 1

2c

)
Cs.

≤
(
λ− 1

2c

)
k.

Thus, Lvi
(t)−Lvk

(t) ≤ (k− i)sκ+
(
λ− 1

2c

)
κk holds for

i = k − dCs+1e.
Now assume that Inequality (17) is true for some node

vi, where i ≤ k − dCs+1e. We will now show that in this
case the bound must also hold for node vi−1. Assume for
the sake of contradiction that there is a time t′ ≥ t0 when

Lvi−1(t′)− Lvk
(t′) > (k − (i− 1))sκ

+
(
λ− 1

2c

)
κk + 2ε(t′ − t0).

Note that Inequality (17) cannot be violated by means of a
fast hardware clock, as the r.h.s. of the inequality increases
at a rate of 2ε, thus compensating for any contribution of
hardware clock rates. Hence, vi−1 must have raised its
clock at a specific time leading to the first violation of the
bound, which w.l.o.g. we may assume to be t′.

Since Inequality (16) might be violated at time t0, we
have to consider a time t shortly before t0. If we choose t0−
t > 0 sufficiently small, by definition of t0 and Condition
(12) we get that

Ivi−1(t, t′) > (k − (i− 1))`κ+
(
λ− 1

c

)
κCs

+2ε(t′ − t) + Ivk
(t, t′) (18)

≥
(
β−1`+ λ− 1

c

)
κCs + 2ε(t′ − t)

≥ κCs + 2ε(t′ − t).

Since vi−1 raises its clock at time t′ and given the bound
on Ivi−1(t, t′), applying Corollary 5.7 for level s+ 1 yields
that vi−1 does not raise its clock to a value greater than
Lvi

(t′) + sκ, implying that

Lvi
(t′)− Lvk

(t′) ≥ Lvi−1(t′)− Lvk
(t′)− sκ

> (k − i)sκ+
(
λ− 1

2c

)
κk

+2ε(t′ − t0),

contradicting the assumption that Inequality (17) holds for
node vi at all times t ≥ t0. Hence, the claim is true for

node vi−1 if it is true for vi, which completes the proof of
the claim.

Inserting i = 0 and t = tmax into Inequality (17), we
conclude that

(s+ λ)κk ≤ Lv0(tmax)− Lvk
(tmax)

≤
(
s+ λ− 1

2c

)
κk + 2ε(tmax − t0), (19)

implying that tmax − t0 ≥ κ
4εck ≥

κ
4εcCs. As Inequality

(16) is violated at time t0, Lemma 5.4 and Condition (14)
yield that for time

t1 := t0 +6Cs−`−1 = t0 +6β`+1Cs ≤ t0 +
κ

4cε
Cs ≤ tmax

it holds that Ivk
(t0, t1) ≥ κ

2ck ≥
κ
2cCs ≥ 2ε(t1 − t0),

showing that tmax > t1. Furthermore, we can now improve
Inequality (17) for times t ≥ t1 to

Lvi
(t)−Lvk

(t) ≤ (k− i)sκ+
(
λ− 1

2c

)
κk+ 2ε(t− t1),

which is proved analogously. The only necessary adjust-
ment is that we have to substract the term 2ε(t1 − t0) from
the r.h.s. of Inequality (18), which is compensated for by the
lower bound on Ivk

(t0, t1). Thus Inequality (19) sharpens
to

(s+ λ)κk ≤ Lv0(tmax)− Lvk
(tmax)

≤
(
s+ λ− 1

2c

)
κk + 2ε(tmax − t1).

Hence it will take at least another κ
4cεCs time units to

reach a skew of (s + λ)κk, implying that tmax ≥ t2 :=
t1 + 6Cs−`−1. Since, by definition of t0, Inequality (16) is
also violated at time t1 > t0, Lemma 5.4 yields that again
Ivk

(t1, t2) ≥ κ
2cCs ≥ 2ε(t2 − t1). We may repeat this ar-

gument indefinitely, leading to the contradiction tmax =∞.
In other words, the network remains in a legal state at any
time, which completes the proof. �

Remark 5.11 We will now briefly discuss the special case
of a network with a bounded diameter D, where D < κ2

24ε .
Set ` = 1, λ = 5ε, m :=

⌈
logβ

D
κ

⌉
+ 1 and choose β > 1

small enough such that D ≤ κ2

24β2ε . Hence, Condition (13)
is fulfilled. Note that Lemma 5.4 holds for s = 1 even with-
out Conditions (9) and (10), since one might think of nodes
as always having infinite demand on level 1. In this case,
the proof of Theorem 5.2 reveals that a clock skew of 2κ
cannot be reached and thus no order ever needs to be sent,
implying that the remaining conditions can be dropped as
well. We conclude that for any κ ≥ 2 the local skew can be
bounded by 2κ provided that D ∈ O

(
κ2

ε

)
. Furthermore,

we directly get the simple algorithm guaranteeing a local
skew of O(

√
D) by choosing κ ∈ O(

√
D).

9

5.3 Bit and Space Complexity

We define the bit complexity of a clock synchronization
algorithm to be B if any node sends at most B bits in 1
time unit. Neighboring nodes might exchange any num-
ber of messages when executing Alog in no time if the
message delay is zero, implying that no bound on the bit
complexity can be shown. However, this situation can be
avoided by ensuring that any node v waits until at least,
say, 1/2 time units measured using its own hardware clock
have passed since it last sent a message to w, before v pro-
cesses the message received from w. Note that this modifi-
cation does not change any proven bounds, as the nodes are
never forced to wait if the message delays are larger than

1
2(1−ε) time units. Using this simple modification, we get
that only one message for each neighbor can be sent every

1
2(1+ε) time units. Each message contains the current de-
mand on all skew levels for which v has a positive demand.
Let δmax := maxw∈V {|Nw|} denote the maximum degree
of the graph G. Since the maximum skew level is bounded
by O(logD), as proven in Section 5.2, and given that any
single demand is clearly bounded by O(D) and can thus be
encoded usingO(logD) bits, we get that the bit complexity
of Alog is bounded by O(δmax log2D).

The space complexity is simply the maximum number of
bits each node v must store at any point in time. Since Lv
is necessarily unbounded in our model, we will disregard
it in this context. Apart from the local variables Γwv and
the estimated clock skews Λwv between the clocks of v and
w, each node only stores the demand ∆s

v , if it is positive,
for each skew level s. Given the bound on the local skew,
we get that the values of Γwv and Λwv are both bounded by
O(logD) for each neighbor, i.e., these values in total re-
quire O(δmax log logD) bits. As each ∆s

v is certainly up-
per bounded by the global skew and s is upper bounded by
O(logD), storing the demands costsO(log2D) bits. Over-
all, we get that the space complexity of Alog is bounded by
O(δmax log logD + log2D).

Remark 5.12 Note that nodes must both store and send
real-valued data. In order to achieve the claimed bounds
on the bit and space complexity, all data can only be stored
with finite precision. However, if the discretization error is
bounded by O(ε), rounding errors can also be bounded by
O(ε). Thus all bounds still apply when ε is replaced by
some appropriate ε̃ ∈ O(ε).

6 Conclusion

The presented clock synchronization algorithm is the
first algorithm to guarantee a worst-case local skew of
O(logD), breaking the O(

√
D) barrier. At the same time,

the worst-case global skew is at most roughly a factor 2

larger than the optimum. Moreover, the algorithm reveals
that a small (constant) clock skew can be guaranteed in
all practical scenarios, as the network, and particularly its
diameter, would have to be exceedingly large before any
node could ever reach a skew of 2κ. From a theoretical
point of view, the problem of minimizing the local skew
is not yet solved completely, since a small gap between
the new upper bound of O(logD) and the lower bound of
Ω(logD/ log logD) remains. In the paper presenting the
lower bound, Fan and Lynch conjecture that Ω(logD) is
the true lower bound. We believe and—given the consid-
erable amount of effort put into devising and analyzing the
algorithm—hope that this conjecture is true.

References

[1] S. Biaz and J. L. Welch. Closed Form Bounds for Clock Syn-
chronization Under Simple Uncertainty Assumptions. Inf.
Process. Lett., 80(3):151–157, 2001.

[2] R. Fan, I. Chakraborty, and N. Lynch. Clock Synchronization
for Wireless Networks. In Proc. 8th International Confer-
ence on Principles of Distributed Systems (OPODIS), pages
400–414, 2004.

[3] R. Fan and N. Lynch. Gradient Clock Synchronization. In
Proc. 23rd Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 320–327, 2004.

[4] T. Locher and R. Wattenhofer. Oblivious Gradient Clock
Synchronization. In Proc. 20th International Symposium on
Distributed Computing (DISC), pages 520–533, 2006.

[5] J. Lundelius and N. Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control,
62(2/3):190–204, 1984.

[6] L. Meier and L. Thiele. Brief Announcement: Gradient
Clock Synchronization in Sensor Networks. In Proc. 24th
Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), page 238, 2005.

[7] R. Ostrovsky and B. Patt-Shamir. Optimal and Efficient
Clock Synchronization under Drifting Clocks. In Proc. 18th
Annual ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 400–414, 1999.

[8] B. Patt-Shamir and S. Rajsbaum. A Theory of Clock Syn-
chronization. In Proc. 26th Annual ACM Symposium on The-
ory of Computing (STOC), pages 810–819, 1994.

[9] M. Sichitiu and C. Veerarittiphan. Simple, Accurate Time
Synchronization for Wireless Sensor Networks. In Proc.
IEEE Wireless Communications and Networking Conference
(WCNC), 2003.

[10] R. Solis, V. Borkar, and P. R. Kumar. A New Distributed
Time Synchronization Protocol for Multihop Wireless Net-
works. In Proc. 45th IEEE Conference on Decision and Con-
trol (CDC), pages 2734–2739, 2006.

[11] T. K. Srikanth and S. Toueg. Optimal Clock Synchroniza-
tion. J. ACM, 34(3):626–645, 1987.

10

