
Improved Distributed Steiner Forest Construction

Extended Abstract

Christoph Lenzen
∗

Massachusetts Institute of Technology
32 Vassar Street, 02139 Cambridge, USA

clenzen@csail.mit.edu

Boaz Patt-Shamir
†

Tel Aviv University
Tel Aviv 69978, Israel

boaz@eng.tau.ac.il

ABSTRACT
We present new distributed algorithms for constructing a
Steiner Forest in the congest model. Our deterministic
algorithm finds, for any given constant ε > 0, a (2 + ε)-

approximation in Õ(sk +
√

min {st, n}) rounds, where s is
the shortest path diameter, t is the number of terminals, k
is the number of terminal components in the input, and n
is the number of nodes. Our randomized algorithm finds,
with high probability, an O(logn)-approximation in time

Õ(k + min {s,
√
n} + D), where D is the unweighted di-

ameter of the network. We also prove a matching lower
bound of Ω̃(k+min {s,

√
n}+D) on the running time of any

distributed approximation algorithm for the Steiner Forest
problem. Previous algorithms were randomized, and ob-
tained either an O(logn)-approximation in Õ(sk) time, or

an O(1/ε)-approximation in Õ((
√
n+ t)1+ε +D) time.

1. INTRODUCTION
Ever since the celebrated paper of Gallager, Humblet, and

Spira [12], the task of constructing a minimum-weight span-
ning tree (MST) continues to be a rich source of difficulties
and ideas that drive network algorithmics (see, e.g., [10, 13,
21, 23]). The Steiner Forest (SF) problem is a strict gener-
alization of MST: We are given a network with edge weights
and some disjoint node subsets called input components; the
task is to find a minimum-weight edge set which makes each
component connected. MST is a special case of SF, and so
are the Steiner Tree and shortest s-t path problems. The
general SF problem is well motivated by many practical sit-
uations involving the design of networks, be it physical (it

∗Supported in part by the National Science Foundation un-
der Grant Nos. CCF-AF-0937274, 0939370-CCF, and CCF-
1217506, the AFOSR under Contract No. AFOSR Award
number FA9550-13-1-0042, the German Research Founda-
tion (DFG, reference number Le 3107/1-1).
†Supported in part by a grant from the Israel Ministry of
Science, Technology and Space and the French Ministry of
Higher Education and Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’14, July 15–18, 2014, Paris, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2944-6/14/07 ...$15.00.
http://dx.doi.org/10.1145/2611462.2611464.

was famously posed as a problem of railroad design), or vir-
tual (e.g., VPNs or streaming multicast). The problem has
attracted much attention in the classic algorithms commu-
nity, as detailed on the dedicated website [14].

The first network algorithm for SF in the congest model
(where a link can deliver O(logn) bits in a time unit—
precise definitions in Section 2) was presented by Khan et
al. [16]. It provides O(logn)-approximate solutions in time

Õ(sk), where n is the number of nodes, k is the number
of components, and s the shortest path diameter of the
network, which is (see Section 2) the maximal number of
edges in a weighted shortest path. Subsequently, in [19],
it was shown that for any given 0 < ε ≤ 1/2, an O(ε−1)-

approximate solution to SF can be found in time Õ((
√
n +

t)1+ε +D), where D is the diameter of the unweighted ver-
sion of the network, and t is the number of terminals, i.e.,
the total number of nodes in all input components. The
algorithms in [16, 19] are both randomized.

Our Results. In this paper we improve the results for
SF in the congest model in two ways. First, we show
that for any given constant ε > 0, a (2 + ε)-approximate
solution to SF can be computed by a deterministic net-
work algorithm in time Õ(sk +

√
min {st, n}). Second, we

show that an O(logn)-approximation can be attained by a

randomized algorithm in time Õ(k + min {s,
√
n} + D) ⊆

Õ(s + k). On the other hand, we show that any algo-
rithm in the congest model that computes a solution to
SF with non-trivial approximation ratio has running time in
Ω̃(k + min {s,

√
n} + D). If the input is not given by indi-

cating to each terminal its input component, but rather by
connection requests between terminal pairs, i.e., informing
each terminal which terminals it must be connected to, an
Ω̃(t + min {s,

√
n} + D) lower bound holds. (It is easy to

distributively transform connection requests into equivalent
input components in O(t+D) rounds.)

Related work. The Steiner Tree problem (the special
case of SF where there is one input component) has a re-
markable history, starting with Fermat, who posed the ge-
ometric 3-point on a plane problem circa 1643, including
Gauss (1836), and culminating with a popularization in 1941
by Courant and Robbins in their book “What is Mathemat-
ics” [8]. An interesting account of these early developments
is given in [3]. The contribution of Computer Science to the
history of the problem apparently started with the inclusion
of Steiner Tree as one of the original 21 problems proved
NP-complete by Karp [15]. There are quite a few vari-
ants of the SF problem which are algorithmically interesting,
such as Directed Steiner Tree, Prize-Collecting Steiner Tree,

Group Steiner Tree, and more. The site [14] gives a continu-
ously updated state of the art results for many variants. Let
us mention results for the most common variants: For the
Steiner Tree problem, the best (polynomial-time) approxi-
mation ratio known is ln 4 + ε ≈ 1.386 + ε for any constant
ε > 0 [4]. For Steiner Forest, the best approximation ratio
known is 2− 1/(t− k) [1]. It is also known that the approx-
imation ratio of the Steiner Tree (or Forest) problem is at
least 96/95, unless P=NP [6].

Regarding distributed algorithms, there are a few relevant
results. First, the special case of minimum-weight spanning
tree (MST) is known to have time complexity of Θ̃(D+

√
n)

in the congest model [9, 10, 13, 18, 23]. In [5], a 2-
approximation for the special case of Steiner Tree is pre-
sented, with time complexity Õ(n). The first distributed
solution to the Steiner Forest problem was presented by
Khan et al. [16], where a randomized algorithm is used to
embed the instance in a virtual tree with O(logn) distor-
tion, then finding the optimal solution on the tree (which
is just the minimal subforest connecting each input compo-
nent), and finally mapping the selected tree edges back to
corresponding paths in the original graph. The result is an
O(logn)-approximation in time Õ(sk). Intuitively, s is the
time required by the Bellman-Ford algorithm to compute
distributed single-source shortest paths, and the virtual tree
of [16] is computed in Õ(s) rounds. A second distributed al-
gorithm for Steiner Forest is presented in [19]. Here, a sparse
spanner for the metric induced on the set of terminals and
a random sample of Θ̃(

√
n) nodes is computed, on which

the instance then is solved centrally. To get an O(ε−1)-

approximation, the algorithm runs for Õ(D + (
√
n+ t)1+ε)

rounds. For approximation ratio O(logn), the running time

is Õ(D +
√
n+ t).

Main Techniques. Our lower bounds are derived by
the standard technique of reduction from results on 2-party
communication complexity. Our deterministic algorithm is
an adaptation of the “moat growing” algorithm of Agrawal,
Klein, and Ravi [1] to the congest model. It involves deter-
mining the times in which “significant events” occur (e.g., all
terminals in an input component becoming connected by the
currently selected edges) and extensive usage of pipelining.
The algorithm generalizes the MST algorithm from [18]: for
the special case of a Steiner Tree (i.e., k = 1), one can inter-
pret the output as the edge set induced by an MST of the
complete graph on the terminals with edge weights given by
the terminal-terminal distances, yielding a factor-2 approxi-
mation; specializing further to the MST problem, the result
is an exact MST and the running time becomes Õ(

√
n+D).

Our randomized algorithm is based on the embedding of
the graph into a tree metric from [16], but we improve the
complexity of finding a Steiner Forest. A key insight is
that while the least-weight paths in the original graph cor-
responding to virtual tree edges might intersect, no node
participates in more than O(logn) distinct paths. Since the
union of all least-weight paths ending at a specific node in-
duces a tree, letting each node serve routing requests corre-
sponding to different destinations in a round-robin fashion
achieves a pipelining effect reducing the complexity to Õ(s+
k). If s >

√
n, the virtual tree and the corresponding solu-

tion are constructed only partially, in time Õ(
√
n+ k+D),

and the partial result is used to create another instance with
O(
√
n) terminals that captures the remaining connectivity

demands; we solve it using the algorithm from [19], obtain-
ing an O(logn)-approximation.

Paper style. Due to the insufficient space allocated in
the proceedings, we defer most details to the full paper,
available online [20]. Here we give a high level description of
algorithms and arguments used, together with precise def-
initions and statements to make the paper mathematically
meaningful. In Section 2 we define the model, problem and
basic concepts. Section 3 contains our lower bounds. In
Section 4 and Section 5 we present our deterministic and
randomized algorithms, respectively.

2. MODEL AND NOTATION
System Model. We consider the congest(logn) or

simply the congest model as specified in [22], briefly de-
scribed as follows. The distributed system is represented by
a weighted graph G = (V,E,W) of n := |V | nodes. The
weights W : E → N are polynomially bounded in n (and
therefore polynomial sums of weights can be encoded with
O(logn) bits). Each node initially knows its unique iden-
tifier of O(logn) bits, the identifiers of its neighbors, the
weight of its incident edges, and the local problem-specific
input specified below. Algorithms proceed in synchronous
rounds, where in each round, (i) nodes perform arbitrary,
finite local computations,1 (ii) may send, to each neighbor,
a possibly distinct message of O(logn) bits, and (iii) receive
the messages sent by their neighbors. For randomized algo-
rithms, each node has access to an unlimited supply of un-
biased, independent random bits. Time complexity is mea-
sured by the number of rounds until all nodes (explicitly)
terminate.

Notation. We use the following conventions and graph-
theoretic notions.
• The number of hops of a path p = (v0, . . . , v`(p)) in G

is `(p).

• The weight of path p is W (p) :=
∑`(p)
i=1 W (vi, vi−1).

For notational convenience, we assume w.l.o.g. that different
paths have different weight (ties broken lexicographically).
• By P(v, w) we denote the set of all paths between v, w ∈

V in G, i.e., v0 = v and v`(p) = w.
• The (unweighted) diameter of G is defined as

D := maxv,w∈V {minp∈P(v,w){`(p)}}.
• The (weighted) distance of v and w in G is

wd(v, w) := minp∈P(v,w){W (p)}.
• WD := maxv,w∈V {wd(v, w)} is the weighted diameter

of G.
• The shortest-path-diameter of G is defined as

s := maxv,w∈V {min{`(p) |p ∈ P(v, w)∧W (p) = wd(v, w)}}.
• For v ∈ V and r ∈ R+

0 , we use BG(v, r) to denote the
ball of radius r around v in G, which includes all nodes and
edges at weighted distance at most r from v. The ball may
contain edge fractions: for an edge {w, u} for which only w
is in BG(v, r), the (r − wd(v, w))/wd(v, w) fraction of the
edge closer to w is considered to be within BG(v, r), and the
remainder is considered outside BG(v, r).

We use “soft” asymptotic notation. Formally, given func-
tions f and g, define (i) f ∈ Õ(g) iff there is some h ∈
polylogn so that f ∈ O(gh); (ii) f ∈ Ω̃(g) iff g ∈ Õ(f); and

(iii) f ∈ Θ̃(g) iff f ∈ Õ(g) ∩ Ω̃(g).

The abbreviation w.h.p. means with probability 1−n−Ω(1),
for a sufficiently large constant in the Ω(1) term.

1All our algorithms require polynomial computations only.

The Distributed Steiner Forest Problem (SF). In
the Steiner Forest problem, the output is a set of edges.
We require that the output edge set F is represented dis-
tributively, i.e., each node can locally answer which of its
adjacent edges are in the output. The input may be repre-
sented by two alternative methods, which are both justified
and common in the literature. We give the two definitions.

Definition 2.1 (SF Connection Req. (dsf-cr)).
Input: At each v ∈ V , a set of connection requests Rv ⊆

V .
Output: An edge set F ⊆ E such that for each connec-

tion request w ∈ Rv, v and w are connected by F .
Goal: Minimize W (F) =

∑
e∈F W (e).

The set of terminals is T = {w |w ∈ Rv for some v ∈ V }∪
{v | Rv 6= ∅}, i.e., the set of nodes v for which there is some
connection request {v, w}.

Definition 2.2 (SF Input Components (dsf-ic)).
Input: At each node v, λ(v) ∈ Λ ∪ {⊥}, where Λ is the

set of component identifiers. The set of terminals is T :=
{v ∈ V | λ(v) 6= ⊥}. An input component Cλ for λ 6= ⊥ is
the set of terminals with label λ.

Output: An edge set F ⊆ E such that all terminals in
each input component are connected by F .

Goal: Minimize W (F) =
∑
e∈F W (e).

An instance of dsf-ic is minimal, if |Cλ| 6= 1 for all λ ∈ Λ.
We assume that the labels λ ∈ Λ are encoded using O(logn)
bits. We define t := |T | and k := |Λ| ≤ t, i.e., the number
of terminals and input components, respectively.

We say that any two instances of the above problems on
the same weighted graph, regardless of the way the input is
given, are equivalent if the set of feasible outputs for the two
instances is identical.

Lemma 2.3. Any instance of dsf-cr can be transformed
into an equivalent instance of dsf-ic in O(D + t) rounds.

Lemma 2.4. Any instance of dsf-ic can be transformed
into an equivalent minimal instance of dsf-ic in O(D + k)
rounds.

3. LOWER BOUNDS
As our first result, we show that applying Lemma 2.3 to

instances of dsf-cr comes at no penalty in asymptotic run-
ning time (a lower bound of Ω(D) is trivial).

Lemma 3.1. Any distributed algorithm for dsf-cr with
finite approximation ratio has time complexity Ω(t/ logn).
This is true even in graphs with diameter at most 4 and no
more than 2 input components.

The main result of this section is the following theorem.

Theorem 3.2. Any algorithm for the Steiner Forest prob-
lem with non-trivial approximation ratio has worst-case ex-
pected time complexity in Ω̃(min{s,

√
n}+ k +D).

The proof of Theorem 3.2 in fact consists of proving the
following two separate lower bounds.

Lemma 3.3. Any distributed algorithm for dsf-ic with fi-
nite approximation ratio has time complexity Ω(k/ logn).
This is true even for unweighted graphs of diameter 3.

Lemma 3.4. For s ∈ O(
√
n), any distributed algorithm

for dsf-ic or dsf-cr with finite approximation ratio requires
Ω(s/ logn) rounds. This holds even for instances with t = 2,
k = 1, and D ∈ O(logn).

We remark that the proofs of Lemmas 3.1, 3.3, and 3.4
are by reductions from Set Disjointness (see, e.g., [17]). In
Lemmas 3.1 and 3.3, it is trivial to increase the other param-
eters, i.e., D, s, t, or n, so we may apply Lemmas 2.3 and 2.4
to obtain a minimal instance of dsf-ic without affecting the
asymptotic time complexity.

4. DETERMINISTIC ALGORITHM
We start the description of our algorithm with a quick

survey of known results that we shall use.
The “red” and “blue” rules. Tarjan [25] was the first

to formulate the dual rules for MST construction in the fol-
lowing way. Define a cut to be a partition of the node set.
• An edge which is the lightest edge across some cut of

the graph is called blue. An edge known to be blue is a part
of the MST.
• An edge which is the heaviest edge in some cycle of the

graph is called red. An edge proved to be red is not a part
of the MST.

Kruskal’s algorithm. Kruskal’s algorithm constructs an
MST by scanning the edge set in order of ascending weight
and selecting each edge that does not close a cycle. The
correctness of this procedure follows from the red rule.

A distributed version of this idea is presented in [13]. The
edges are convergecast over a BFS tree, where each tree node
sends them to its parent in ascending order and discards
heavy cycle-closing edges. They show that nice pipelining is
achieved: the root learns the first l MST edges in l +O(D)
rounds; by broadcasting them over the BFS tree, these edges
become common knowledge at the same asymptotic time
complexity (instead of the trivial O(|E|) complexity).

Prim’s/GHS algorithm. Prim’s algorithm constructs
an MST by, starting from an arbitrary node, adding in each
step the lightest edge leaving the so far connected node set
to the tree. The correctness of this algorithm follows from
the blue rule.

Prim’s algorithm can be parallelized as follows: starting
with no selected edges, in each step, each connected com-
ponent (initially just isolated nodes) selects its least-weight
outgoing edge, until there is a single connected component,
which is the MST. Using the selected edges for communi-
cation within the components, one obtains the Gallager-
Humblet-Spira algorithm [12]. Since in each step the min-
imum size of a connected component at least doubles, the
running time is O(µ logn), where µ < n is the hop diam-
eter of the MST. In [12], this bound is, in fact, derived in
the asynchronous setting using few messages. For the syn-
chronous case, one can reduce the time complexity to O(µ)
by allowing only components of strong diameter at most 2i

to select edges. Note, however, that possibly µ = n − 1,
irrespective of other parameters like D or s.

GKP algorithm. Garay, Kutten, and Peleg [13, 18]
show how to combine the distributed variants of Kruskal’s
and Prim’s algorithm to obtain an algorithm of running
time O(

√
n log∗ n + D), which is optimal up to a factor

of O(
√

logn log∗ n), even for approximate solutions [9, 23].
The key idea is to first apply the GHS approach until com-
ponents contain at least κ :=

√
n/ log∗ n nodes, and then

connect the remaining at most n/κ =
√
n log∗ n compo-

nents by the pipelined variant of Kruskal’s algorithm, taking
O(
√
n log∗ n+D) rounds.

A central challenge in realizing this approach is that, for
the second stage of the algorithm, two nodes must be able
to determine whether they belong to the same component.
In [18], this is solved efficiently by breaking down the com-
ponents from the first stage into O(n/κ) smaller pieces of
strong diameter O(κ) using a recursive procedure determin-
ing O(κ)-hop dominating sets of size O(n/κ).

Figure 1: Example for component growing. Left: each
component is a big circle, arrows represent proposed edges.
Right: Thick lines represent matching edges, dashed lines
represent edges from isolated components.

As a secondary contribution, in this work we propose a
simple solution to this problem, avoiding to grow compo-
nents too much in the first place. Instead of adding all
proposed edges (i.e., least-weight outgoing edges of small
components) in each step, we build a graph whose nodes are
components and whose edges are the proposed edges; we
then emulate a maximal matching algorithm on this graph,
and add only the matching edges and those proposed by
components which were not matched (see Figure 1). This
ensures that small components are still guaranteed to be
merged, but the longest “merging paths” in the component
graph have at most 3 hops. Since each component proposes
at most one edge, a maximal matching can be computed ef-
ficiently by simulating the Cole-Vishkin algorithm [7] on the
component graph. We note that this variant has the same
asymptotic time complexity as the original GKP algorithm.

SF Approximation via the Terminal Graph. The
terminal graph GT is the complete graph on the node set
T with edge weights of wd(v, w), i.e., the terminal-terminal
distances in G. Mapping an optimal solution to the Steiner
Forest problem on GT to G by mapping an edge in GT to a
shortest path in G yields a 2-approximation in G [19, 24].

The Bellman-Ford Algorithm (BF). “Finding” a ter-
minal graph edge amounts to determining the distance be-
tween its terminals in G. Having a canonical interpreta-
tion as distributed algorithm, the Bellman-Ford (henceforth,
“BF”) algorithm is an obvious choice for this task. The
single-source version of BF runs for at most s rounds and, by
maintaining a pointer to the node whose message gave rise
to the most recent distance update, constructs a distributed
representation of a shortest-path-tree rooted at the source.

Moat Growing Algorithm. For the Steiner Forest
problem, the best known polynomial-time approximation ra-
tio is, essentially, 2. It is achieved by the centralized moat
growing algorithm proposed by Agrawal, Ravi, and Klein [1].
The algorithm proceeds as follows.

1. Grow weighted balls around each terminal up to the
radius where a pair of balls centered at v and w touch.2

2Recall that we assume w.l.o.g. that different paths have
different weights.

2. Contract each ball to a node. This merges v and w into
a single terminal u.

3. Add the edges of a shortest path from v to w to the
solution (if v or w are contracted balls, connect the pair of
original terminals v′ ∈ v and w′ ∈ w closest to each other).

4. Merge the input components of v and w, if they are
different (they are now connected anyway).

5. If the input component of u contains a single termi-
nal (u), delete that component (i.e., its terminals become
regular nodes).

6. If terminals remain, go to Step 1.
Note that in the special case of a Steiner Tree, the only

deletion terminates the algorithm. The algorithm thus sim-
ulates Kruskal’s algorithm on the terminal graph and maps
the computed MST back to G as a 2-approximation. In gen-
eral, such an analogy does not hold in a straightforward way,
as the combination of deletion and contraction operation
changes distances in the terminal graph; refraining from con-
tractions and simply deleting connected components whose
terminals are unions of a subset of the input components
yields different results.

Figure 2: Example for moat growing. circles with horizon-
tal lines are terminals of Input Component (IC) 1, and ver-
tical lines indicate IC 2. The white circle is a non-terminal
node. Left: after growing moats, moats of IC 1 meet, path
corresponding to the think lines are chosen, and the new
moat is inactivated. Middle: the moats of terminals from
IC 2 grow and meet with the inactive moat, adding the new
thick lines. Right: The solution of the algorithm (thick lines)
and the optimal solution (dotted lines).

The proof that the algorithm yields a 2-approximation for
the general case, i.e., arbitrary number of input components
k, is an elegant primal-dual argument based on the obser-
vation that, in each step, the weight of the intersection of
an optimal solution with the balls is at least the number of
(current) balls times their radius (see Fig. 2): the center of
each ball must be connected to some other terminal outside
the ball. On the other hand, terminals are connected by
shortest paths, whose intersection with the two terminal’s
balls they connect weighs at most twice the balls’ radius.
The ingenuity of the argument lies in the fact that it allows
for using contracted balls whose centers have been deleted
to be used as shortcuts—the respective path weights inside
the contracted balls have been accounted for, as any forest
connecting the ball centers by shortest paths intersecting
only two balls each requires less than twice the budget of an
optimal solution.

4.1 Key Ideas and Main Results
Voronoi Decompositions and the Terminal Graph.

The key observation underlying our algorithm is that cer-
tain Voronoi (or closely related) decompositions of G yield

ݒ ܽݑݓ ܽ ܽ′ܽ′ ܾ′ܾ′ܾ ݔܾ
Figure 3: v, u, w are terminals and dashed lines are borders
between Voronoi regions. If a shortest path between v and w
crosses the region of u (shaded), then wd(v, w) = wd(v, x)+
wd(x,w) > 2b′ ≥ 2b. Similarly, wd(v, w) > 2a.

crucial information on the terminal graph. A Voronoi de-
composition of G w.r.t. the terminals T is a partition of the
graph into regions so that u ∈ Vorv (for some u ∈ V and
v ∈ T) iff v = argminw∈T {wd(w, u)}. Such a decomposition
and the corresponding distances wd(u, v) for u ∈ Vorv can
be computed in O(s) rounds using the Bellman-Ford algo-
rithm. To see this, connect all terminals to a virtual source
node by edges of weight 0 and piggy-back on all messages
(and store) the identifier of the terminal through which the
indicated path to the virtual node passes.

The utility of the resulting distributed data structure is
illustrated by the special case of a Steiner Tree. Recall that
an MST of the terminal graph induces a 2-approximate so-
lution. let {v, w} be an MST edge in the terminal graph,
and consider any shortest path p from v to w in G. The
salient point is that p must be contained in Vorv ∪Vorw.
Otherwise, p would pass through Voru for some u ∈ T , im-
plying that wd(v, u) < wd(v, w) and wd(w, u) < wd(v, w)
(see Fig. 3). In other words, the terminal graph edge {v, w}
is the heaviest edge of the cycle (v, w, u, v) in the terminal
graph, contradicting the red rule.

This basic insight already gives us the tools to derive an
efficient distributed algorithm for 2-approximating a Steiner
Tree based on the GKP algorithm:

1. Compute the Voronoi decomposition of G w.r.t. T .
2. Simulate GHS on the terminal graph up to components

of at least
√
n nodes and strong diameter at most O(

√
n +

s) in G (each step does not only merge components, but
also add a path of up to s hops). Note that nodes on the
selected paths learn that respective edges in G are selected,
as communication is routed via them.

3. Simulate Kruskal’s algorithm on the terminal graph,
starting from the already selected edge set.

4. For each terminal edge {v, w} selected in the previous
stage, notify the nodes on the corresponding path that the
path’s edges have been selected. This is done by sending to-
kens from the nodes of the path edge crossing the boundary
between Vorv and Vorw to v and w, respectively, using the
pointers inducing the shortest-path-trees constructed in the
first step.

Note that in the last step, it suffices that each node in
the shortest-path-tree of, e.g., node v ∈ T , sends only the
first received token to its parent—we do not care how many
paths use a specific edge in G. Hence, the overall running
time becomes Õ(s+

√
n).

One can refine the approach slightly by capping compo-
nent’s growth in the GHS phase of the algorithm at the
following strong diameter value.

Notation 4.1. We use σ
def
=
√

min{st, n}.

The point is that the constructed solution will consist of the
union of t−1 paths of at most s hops. Capping component’s
growth at σ improves the running time to Õ(s + σ). Our
algorithm generalizes this idea.

Corollary 4.2. For k = 1, a solution to dsf-ic that is
optimal up to factor 2 can be computed deterministically in
Õ(s+ σ) rounds.

Note that if s > t, the first term dominates the complexity.
Hence this bound is always better than plain application of
Kruskal’s selection scheme, which would yield running time
O(s+ t).

Moat Growing without Contraction. In light of the
above and the aformentioned fact that for k = 1 the moat
growing algorithm also constructs an MST of the terminal
graph, it is natural to seek to extend the existing distributed
techniques in order to implement the moat growing algo-
rithm. The main obstacle to an efficient implementation is
the contraction of moats. Simulating operations on a graph
in which we recursively contract long paths directly will be
very slow: a single round of the Bellmann-Ford algorithm
would require to route communication through a contracted
region whose strong diameter satisfies only trivial upper
bounds; on the other hand, trying to route communication
through a BFS tree will result in high congestion.

Instead, we take a different point of view, avoiding con-
tractions (this can be seen as a simulation argument). A
considerable part of our technical contribution consists of
rephrasing the centralized moat growing algorithm, adapt-
ing the proof of its approximation ratio to this formulation,
and finally deriving and proving equivalent the distributed
version of the algorithm. In a nutshell, we replace the con-
traction operation by electing a leader of each moat, a set
of terminals that are connected by the currently selected
edges. A moat can be active, corresponding to a non-deleted
merged terminal in the original algorithm, or inactive. The
latter state is attained when the moat is a union of whole
input components and therefore would be deleted; we sim-
ply “halt” the growth of its surrounding “ball”. Such a “ball”
now is the union of weighted balls around the terminals,
and when any two balls of terminals from different moats
touch, the respective moats are merged and a shortest path
connecting the centers of the touching balls is added.

Note that this differs from the original algorithm in that
we may merge an active moat M1 with inactive moat M2

into an active moat M12. In contrast, the original algorithm
would have deleted the terminal representing the contracted
region of M2. The crucial observations are that with this
modification,

(i) M2 interferes only twice with “distances”, when it is
formed (the balls of its terminals stop growing) and when it
gets merged (the balls start growing again); and

(ii) if later M12 gets merged with a moat M3 so that the
respective path connects a (formerly inactive) terminal of
M2 with one of M3, we constructed a path that the orig-
inal moat growing algorithm would have selected as well:
the original algorithm would have grown the ball of M1

“through” the contracted region associated with M2 (rep-
resented by the corresponding merge operation), and once
the balls of M1 and M3 touched, the selected shortest path
would pass via the contracted region of M2 that became part
of M1 ∪M2 in our approach.

Observation (i) shows why we can implement the algo-
rithm efficiently with this modification: for each input com-
ponent, at most once a moat becomes inactive (stopping to
grow its balls) and at most one inactive moat merges with
an active moat (causing an “instantaneous” extension of the
active moat); in both cases we recompute a suitable Voronoi
decomposition of the graph, requiring in total O(sk) rounds
throughout the entire algorithm.

Observation (ii) explains why forming connections to in-
active moats does not render the algorithm useless. While
the resulting forest may very well not be a 2-approximate
solution, (ii) says that it contains a subforest that solves the
problem and has cost at most twice the optimum. Therefore,
to“fix”this issue, it suffices to postprocess the computed for-
est, leaving only the edges required to satisfy the requested
connectivity.

The moat growing mechanism can be viewed as Kruskal’s
algorithm on the terminal graph, but with the terminal graph
changing up to 2k times during the execution of the al-
gorithm. On each such event, we recompute a suitably
adapted Voronoi decomposition and recommence executing
the pipelined version of Kruskal’s edge selection scheme until
the next such change is encountered. When this procedure
is done, the root of the BFS tree knows all selected terminal
graph edges. Hence the root can compute the minimal sub-
set satisfying all constraints (learning each terminal’s input
label takes O(t+D) rounds over the BFS tree), and broad-
cast the result to all nodes. Finally, the underlying edges in
G can be marked in O(s) rounds as before. The result is a

2-approximation of SF with running time Õ(sk + t), as at
most t− 1 terminal graph edges are to be selected.

Theorem 4.3. dsf-ic can be solved deterministically with
approximation factor 2 in O(sk + t) rounds.

Combining Moat Growing and Prim’s Approach.
Interpreting the moat growing algorithm as a generalization
of Kruskal’s algorithm raises the question of whether we can
also here combine it with the GHS approach to achieve a
time complexity that is sublinear in the number of termi-
nals. This is possible, but it is more involved than the special
cases of MST and Steiner Tree. Intuitively, this is because
edge weights in the terminal graph are dynamic. More con-
cretely, while scanning edges in ascending order of weight
(as in Kruskal’s and the moat growing algorithm), we also
need to recompute distance information on every merge in
which a participating or the resulting moat is inactive. In
contrast, naive application of Prim’s selection scheme may
merge two moats under the assumption that they remain ac-
tive up to the ball radii corresponding to the respective path
weight, but this assumption may turn out to be wrong due
to merges for smaller radii the algorithm has not determined
yet (see Fig. 4).

The distance information available from the Voronoi de-
composition can be invalidated due to an inactive moat
either forming, or being merged. We handle these cases
differently. First, we defer moats inactivation to ball radii
that are integral powers of 1 + ε, for a given constant ε >
0. Since the maximal ball radius required to merge all
moats is polynomial in n, it follows that there at most

imax
def
= blog1+ε WDc + 1 ∈ O(logn/ε) different radii at

which we need to recompute the Voronoi decomposition due
to inactivation of moats: for each power i ∈ {1, . . . , imax},
we determine all merges that correspond to moat radius in

ଵݑ ଶݑ
ݒ 33ݓ

2

5 ݒ 11ݓ
3

ଵଶݑ
Figure 4: Example for moat order-changing contrac-
tion. Left: numbers indicate terminal-terminal distance and
dashed lines represent region borders. Right: after growing
the radius to 1, u1 and u2 merge into a single inactive moat
which is a shortcut between v and w.

[
(1 + ε)i−1/2, (1 + ε)i/2

)
. It is not hard to show that the

approximation ratio remains bounded by 2(1 + ε).
The second issue is when an inactive moat is merged with

an active one, resulting in resumed moat growing. This
is solved within a growth phase (i.e., a range of radii as
above) as follows. Since all balls around active terminals
grow at the same rate, we determine the minimal increase
in radius to see when an active terminal’s moat touches a
an inactive moat v. We then repeat distance calculations
from the corresponding radius on, where all terminals in the
moat of v are now active, find the next inactive moat that is
merged, and so on, until the maximal radius of balls reaches
the next power of 1 + ε. This allows us to collect all the
information on terminal graph edges that we need for the
current growth phase.

Using this process, we can iteratively compute all the de-
compositions needed to provide correct distance informa-
tion between moats throughout the growth phase. Based
on this knowledge, we first grow moats locally and concur-
rently as in the GHS algorithm, until components either
contain σ nodes, or have no further outgoing edges that
may be selected during the current growth phase (this hap-
pens in phase i if all outgoing edges have weight at least
(1 + ε)i/2). Subsequently, we apply the pipelined variant of
Kruskal’s algorithm to the edges connecting different com-
ponents that have weight at most (1 + ε)i/2. Note that, as
before, it is essential that all terminals in a component refer
to it by the same identifier in order to avoid closing cycles
by choosing edges that connect terminals of the same com-
ponent. Due to the iterative approach switching back and
forth between Prim and Kruskal type edge selection, there
can be no guarantee that components are small. However,
there are at most min{st, n}/σ = σ components of strong
diameter larger than σ; for the purpose of selecting an iden-
tifier (e.g., the largest node identifier in the component),
we simply pipeline their communication over a single BFS
tree, taking O(σ+D) rounds in each of the O(logn) growth
phases.

Corollary 4.4. For any instance of dsf-ic, a solving
forest F with the property that its minimal subforest solving
the instance is optimal up to factor 2 + ε can be computed
in Õ(sk + σ) rounds.

Fast Pruning of Unneeded Edges. By Corollary 4.4,
we now face the following setting. We have a forest of edges
that connect any two terminals in the same component by a
unique path, but some edges are superfluous. We are guar-
anteed that the minimal subforest that is a solution is a
(2 + ε)-approximation. Discarding the unnecessary edges is
trivial centrally, but may be costly distributively: e.g., col-

lecting the information at a single node may result in Ω(t)
time; also, the tree depths could be as large as Ω(n).

Our approach is to decompose the problem into a few
subproblems; we first solve the high-level problem and then,
in parallel, all subproblems. Specifically, we first decompose
the forest into clusters of strong diameter Õ(σ) that contain
at least σ nodes each (see Fig. 5). This can be done, say,
by running the first stage of the GKP algorithm up to size
σ, in Õ(σ) rounds. Note that there are at most σ clusters.
We then focus on the cluster forest graph, denoted FC, in
which each cluster is a node, and two nodes are connected
iff the corresponding clusters are connected by an edge (at
most σ − 1 edges). FC is broadcast to all nodes at the cost
of O(σ +D) rounds.

Figure 5: First steps of pruning. left: the initial for-
est. The pattern in the circles indicate the input compo-
nent (empty circles are non-terminals). Middle: clustering.
Right: The cluster forest FC before the label merging.

Next, we collect the label information of FC over the
global BFS tree. A näıve implementation may cost Ω(kσ)
time, because each of the clusters may be labeled by Ω(k)
labels. Instead, we use the following rule for disseminating
the necessary information to all nodes. Nodes send up the
BFS tree messages of the form (C, λ), meaning “Cluster C
contains a terminal with label λ.” Terminals have the base
information. When a node v receives a message (C, λ), it
applies the following changes to its local copy of FC:

(a) Label C by λ.
(b) If there is another cluster C′ labeled λ, label by λ all

clusters and edges along the unique path connecting C to
C′ in FC.

(c) If there is now some edge of FC labeled both λ and
λ′, then these labels are merged in the sense that any cluster
or edge labeled either λ or λ′ is relabeled by both λ and λ′.

(d) If the local copy of FC has changed, enqueue the
(C, λ) message for forwarding it to the parent.

Step c is justified by the observation that in the solution
we seek, the input component set is divided into equivalence
classes defined by the connected components of the solution:
if two input components λ and λ′ are connected in the solu-
tion, they are in the same equivalence class, and it is these
classes that we need.

The important advantage of this approach is that for any
given node, there can be at most O(σ + k) messages that
pass the filter of Step d. To see this, observe that whenever
the local copy of FC changes, it holds that either (i) a new
label λ ∈ Λ is added that was not present before, or (ii)

an edge receives its first label, or (iii) at least two (current)
equivalence classes of labels are merged. Clearly, (i) and (ii)
can apply at most k times each, while (ii) may happen no
more than σ−1 times. It follows that every node sendsO(σ+
k) messages, and thus, after O(σ + k +D) rounds, the root
knows the full (new) labeling of FC; this information then
is disseminated to all nodes in the same asymptotic running
time, by the root broadcasting the non-filtered labels over
the BFS tree.

This information allows the nodes to identify the inter-
cluster edges that are required in the output. Inside each
cluster, we can solve the problem directly: Each node needs
to know what labels are at the other end of each of its inci-
dent edges (a terminal has its original label, and the labels
of inter-cluster edges are known by the previous stage). Se-
lecting intra-cluster edges takes O(σ + k) rounds, because
the cluster diameter is O(σ) and there are at most k labels
to propagate. Thus, the pruning procedure yields the main
result of this section.

Theorem 4.5. For any constant ε > 0, a determinis-
tic distributed algorithm can compute a solution for prob-
lem dsf-ic that is optimal up to factor (2 + ε) in Õ(sk +√

min{st, n}) rounds.

Finally, we preprocess the input to make the instance
minimal using Lemma 2.4 and note that, because weights
are integer, there can be at most 2 WD different moat radii
at which moats are merged and thus recomputation of the
Voronoi decomposition may be required.

Corollary 4.6. For any constant ε > 0, a deterministic
distributed algorithm can compute a (2 + ε)-optimal solution

for problem dsf-ic in Õ(smin{k0,WD} +
√

min{st, n} +
k+D) rounds, where k0 is the number of input components
with at least two terminals.

5. RANDOMIZED ALGORITHM
Again, we start by describing the known results and tech-

niques our randomized algorithm makes use of.
Probabilistic Tree Embedding. A metric embedding

of a metric space (X, dX) is an injective mapping ι : X → Y ,
where (Y, dY) is a metric space and for all x, x′ ∈ X it holds
that dX(x, x′) ≤ dY (ι(x), ι(y)). A tree embedding is a metric
embedding for which dY is the distance metric of a weighted
tree on Y . A probabilistic tree embedding of expected stretch
ρ is a distribution of metric tree embeddings satisfying that
E[dY (ι(x), ι(y))] ≤ ρ · dX(x, x′) for all x, x′ ∈ X.

Probabilistic tree embeddings have proven to be an excel-
lent tool for deriving probabilistic approximation algorithms
to hard problems, granted that the cost function is the sum
of edge weights of the solution. Instead of solving the prob-
lem on (X, dX), one solves the problem on the instance on
(Y, dY) sampled from the distribution, translating the in-
stance by means of ι. Since (Y, dY) is a tree, the problem
is much simpler to solve, yet in expectation the cost of an
optimal solution increases by at most ρ. This strategy lies
at the heart of our randomized algorithm.

FRT Embedding. The FRT algorithm [11] produces a
probabilistic tree embedding of G (i.e., (X, dx) = (V,wd))
with expected stretch O(logn). It works as follows.

1. Select uniformly at random: a permutation r : V →
[n], and a real β ∈ [1, 2).

(ସݒ)
,ସݒ) ,ଷݒ)(ସݒ (ସݒ

,ଶݒ) ,ଷݒ ,ଵݒ)(ସݒ ,ଷݒ (ସݒ ,ସݒ) ,ସݒ ,ଷݒ)(ସݒ ,ଷݒ 		ଵݒ		ଶݒ(ସݒ 		ଷݒ			ସݒ
ߚ4
ߚ2
ߚ 		ସݒ

		ଷݒ
2		ଵݒ			ଶݒ 22

3
1

2

43

Figure 6: FRT embedding example, with n = 4 and L =
2. Right: original graph, permutation values inside circles.
Left: tree, edge weights indicated at the left hand side.

2. Set L := dlogW e ∈ O(logn). For each v ∈ V and
i ∈ {0, . . . , L}, define vi := argminv∈BG(v,β2i){r(v)}.

3. Set Y := V ∪{(vi, . . . , vL) | v ∈ V ∧ i ∈ {0, . . . , L}} and
ι(v) := v for all v ∈ V .

4. For each v ∈ V , there is an edge {v, (v0, . . . , vL)} of
weight β and, for each v ∈ V and i ∈ {1, . . . , L}, there are
edges {(vi−1, . . . , vL), (vi, . . . , vL)} of weight β2i (see Fig. 6).
The metric dY is the distance metric of the weighted tree on
Y defined by these edges and weights.

SF Approximation Based on FRT Embedding. We
can solve dsf-ic as follows. (1) Map an instance of dsf-ic
to the virtual tree (Y, dY), (2) solve the instance optimally
on (Y, dY) by selecting, for each label λ, the minimal subtree
containing all v ∈ T with λ(v) = λ (rooted at their least
common ancestor), and (3) map the solution back to G by
selecting, for each solution edge between child c and parent
p = (vi, . . . , vL), an arbitrary terminal t in c’s subtree, and
outputting the edges of a shortest path from t to vi in G.

Now, the solution is optimal in (Y, dY), and hence its im-
age in G has weight O(logn) times the optimum in G.

Khan et al. [16] give a distributed implementation of this

scheme running in time Õ(sk) w.h.p., based on LE lists.
LE Lists: definition and computation. Given a uni-

formly random permutation of the nodes, the Least Elements
(LE) list Lv of node v ∈ V is the list of pairs (w,wd(v, w))
for all w ∈ V , ordered in increasing distance wd(v, w), af-
ter deleting all nodes whose rank is larger than the rank of
some prior (closer) node. Given β and its LE list, v can
easily find v0, . . . , vL and a neighbor w which is the next
hop on a shortest path from v to vi (for a given i) such
that (vi,wd(w, vi)) ∈ Lw. LE lists therefore provide a dis-
tributed data structure representing the virtual tree, and
the aforementioned distributed O(logn)-approximation in

Õ(sk) time is straightforward to find, given these lists.
We now sketch the algorithm computing LE lists from [16].

First, each node v selects a uniformly random number r(v)
of c logn bits (c is large enough to ensure that all r(v) are
distinct w.h.p.). Then, after initializing Lv := {(v, 0, r(v))},
the following is repeated until no Lv variable is modified:

1. Each node v sends Lv to all neighbors.
2. For each (u, d, r(u)) received from neighbor w, each

node v sets Lv ∪ {(u, d+W (v, w), r(u))}.
3. Each node scans Lv in increasing weight order (sec-

ond entries), deleting tuples whose rank (third entry) is not
larger than all previous ones.

This algorithm terminates after at most s iterations. One
can show that w.h.p., the LE lists at each node, at any
time, have O(logn) entries, and therefore the algorithm ter-

minates in Õ(s) rounds w.h.p.

Spanner Construction. A ρ-spanner of a graph is a
graph obtained by deleting edges so that distance increase
at most by factor ρ. Typically one is interested in sparse
spanners, i.e., those that have few edges. A distributed ran-
domized spanner construction that can be directly run in
the congest model was given by Baswana and Sen [2]. It

computes a (2κ−1)-spanner with O(n1+1/κ) expected edges
in O(κ) rounds, for κ ∈ N.

Skeleton Graph and Skeleton Spanner. We use a
technique introduced in [19], the construction of a spanner
of a skeleton graph. A skeleton graph is defined similarly to
the terminal graph, with some important variations. Given
a subset S ⊆ V and a parameter h ∈ N, the skeleton graph
has nodes S and edges {{v, w} | ∃p ∈ P(v, w) : `(p) ≤ h},
where an edge {v, w} has weight minp∈P(v,w):`(p)≤h{W (p)}.

Now, let S be a random set, where each node is included
independently with probability 1/

√
n. Then any node set

(including paths) with Ω(
√
n logn) nodes contains a node

from S w.h.p. Hence, taking such a random S and setting
h =
√
n logn , we obtain a skeleton graph in which the dis-

tances are, w.h.p., identical to the corresponding distances
(between nodes of S) in G.

The number of edges in the skeleton graph may be as
large as Θ(|S|2) = Θ(n). In [19], we show how to simulate
the Baswana-Sen algorithm on the skeleton graph to obtain
a (2κ−1)-spanner of the skeleton graph with Õ(n1/2+1/(2κ))

edges w.h.p., within Õ(n1/2+1/(2κ) + D) rounds. This edge
set can be made known to all nodes in the same asymptotic
time, and nodes on the corresponding paths in G will know
the respective next hops on the paths.

SF Approximation Using Skeleton Spanner. For a
given instance of dsf-ic, if we add the set of terminals T to
S (in addition to the random sample), the above algorithm
determines and makes known to all nodes a (2κ−1)-spanner

of the skeleton graph with Õ((n1/2 + t)1+1/κ) edges in time

Õ((n1/2 + t)1+1/κ +D) w.h.p. In other words, all nodes ob-
tain knowledge of a metric embedding of the terminal graph
of (worst-case) stretch 2κ− 1.

After broadcasting the labels λ(v), v ∈ T , over a BFS tree
to all nodes in O(t+D) rounds, each node deterministically
solves the instance of dsf-ic on the skeleton spanner locally
by a centralized α-approximation algorithm.3 The result is
interpreted as an α(2κ−1)-approximate solution on the ter-
minal graph. As discussed in Section 4, this in turn induces
a 2α(2κ − 1)-approximate solution of the original instance
on G. Mapping the locally computed solution back to G
is trivial, as the nodes on the corresponding paths know
their incident edges on such paths. Overall, for α ∈ O(1),
we obtain a randomized O(κ)-approximation to dsf-ic in

Õ((n1/2 + t)1+1/κ +D) rounds w.h.p.

5.1 Key Ideas and Main Results
Pipelining of FRT Edge Selection. Our first obser-

vation is that it is possible to exploit the fact that LE lists
have O(logn) entries w.h.p. to improve on the construction
from [16]. From a high-level perspective, our algorithm pro-
ceeds as follows. Initially, each terminal v has label {λ(v)}.
Then, for i = 0, . . . , L, all nodes execute:

1. Each active terminal v moves (i.e., sends and subse-
quently deletes) its label to vi. These messages are routed
in G according to the LE lists, and all traversed edges are

3Finding an exact solution is NP-hard.

added to the solution in G (this corresponds to selecting and
mapping back to G the virtual tree edge between (vi, . . . , vL)
and (vi−1, . . . , vL) or, if i = 0, v).

2. Delete any label which is received by a single node vi
(because (vi, . . . , vL) is the least common ancestor of all ter-
minals with that label).

3. For each label that vi received and did not delete, it
picks a terminal v that sent the label to vi and moves the
label back to v; here all labels sent by terminals in the same
subtree of the virtual tree are sent to the same terminal.
This is done by backtracking sending routes.

(ݒݒݒହݒ)(ݒݒݒ)(ݒݒݒݒ
(ݒଷݒ) (ݒଷݒଶݒଵݒ)(ݒଷݒଶݒଶݒ)(ݒଷݒଶݒ)(ݒଷݒଷݒ) 		ଵݒ		ଶݒ(ݒଷݒଷݒଷݒ)(ݒݒଷݒସݒ) 		ଷݒ			ସݒ

5 4 2 		ଶݒ6 		ଷݒ 		ସݒ

		ହݒ			ݒ
(ݒݒ)(ݒݒଷݒ)

3(ݒ) 		ହݒ1 		ଵݒ		ݒ

Figure 7: Another FRT embedding example. Top Left:
original graph, permutation values inside circles. In the tree,
v3 appears in both (v3v3v6) and (v3v6v6).

Given as local inputs the LE lists and β (i.e., the dis-
tributed representation of the FRT embedding), this almost
implements the strategy for deriving an expected O(logn)-
approximation outlined earlier (see Fig. 7). The difference is
that on the virtual tree, vi may correspond to multiple nodes
(vi, . . . , vL), (wi = vi, . . . , wL), etc. However, vi picks only
a single terminal u so that ui = vi to send a given received
(non-deleted) label to. Hence, the algorithm will only select
paths corresponding to a subset of the edges of the virtual
tree solution. Nonetheless, we obtain a valid solution: Since
all terminals that sent a label to vi are already connected by
the selected edge set, for the purpose of the Steiner Forest
problem, there is no need to uphold the distinction that they
are in different subtrees of the virtual tree.

This procedure enables pipelining, thus avoiding the mul-
tiplicative complexity of Õ(sk) of [16]. Since the messages
are routed on least-weight paths, all messages destined at a
node vi are sent over a shortest-paths tree rooted at vi. This
tree has depth at most s by definition. Because it does not
matter from which particular terminal vi receives a given la-
bel λ, it suffices if each node forwards only the first message
λ destined to vi to its parent in the tree. Hence, if there was
a single tree only and each node transmitted a single label in
each round (guaranteeing message size O(logn)), all labels
would be delivered to vi within at most s+ k rounds.

In general, however, each node participates in multiple
trees, and if the same neighbor serves as its parent in a few
of them, congestion occurs. Fortunately (w.h.p.) the LE
lists contain only O(logn) entries, and therefore, each node
participates in at most O(logn) shortest-paths trees used
for routing. It follows that by using time-multiplexing, we
can guarantee that for each of the trees it participates in,
each node sends at least one message every O(logn) rounds.
Since we can determine in O(k+D) rounds whether a label
is held by a single node only, we conclude that each loop
iteration can be completed within O((s + k) logn + D) ⊆
Õ(s + k) rounds w.h.p., and since L ∈ O(logn), the entire

procedure completes within Õ(s+ k) rounds.

Theorem 5.1. An O(logn)-optimal solution to problem

dsf-ic can be computed in Õ(s+ k) rounds w.h.p.

Partial FRT Construction plus Skeleton Spanner.
If s >

√
n, the above bound does not match the lower bound

of Theorem 3.2. The problem is that in the FRT construc-
tion information travels long routes. We can avoid this issue
by performing the construction only partially and leverag-
ing the spanner construction for the top levels. The key is
that the

√
n nodes of largest rank are a random subset of

V . Therefore we do the following.
1. Let S be the set consisting of the

√
n nodes of highest

rank. Delete S from the FRT tree.
2. For each node v, let iv be such that (viv , . . . , vL) is

the first deleted ancestor. Replace (viv , . . . , vL) by ṽiv :=
argminw∈S{wd(v, w)}, the node from S closest to v.

3. Run the FRT-based algorithm from above on the re-
sulting (virtual) forest.

As on each path a sampled node is encountered within
O(
√
n logn) hops w.h.p., this routine can be executed within

Õ(
√
n + k + D) rounds w.h.p.—the maximal depth of the

shortest-path-trees used for routing becomes Õ(
√
n) w.h.p.,

replacing the additive s in the complexity. We note the
following crucial properties of the selected edge set:
• The total cost of all selected edges is bounded from

above by the cost of the optimal solution on the virtual tree:
abstractly speaking, we deleted all edges between nodes in
S, and replaced edges between nodes in S and V \ S by
“lighter” ones (terminals connect to the closer ṽiv instead
of (viv , . . . , vL)). Thus we selected edges of weight O(logn)
times the optimum in expectation.
• Recall that the optimal solution on the virtual tree is the

union, over all λ, of the minimal trees spanning all terminals
v with λ(v) = λ. If such a tree is still present in the forest
resulting from deleting S, the selected edge set connects all
terminals v with λ(v) = λ.
• Conversely, if terminal v is not connected to all termi-

nals w with λ(v) = λ(w), it must be connected to some node
from S that received its label, by a path of O(L

√
n logn) ⊂

Õ(
√
n) hops.

Hence, if we decide that nodes in S simply hold on to
received labels instead of pushing them back to some termi-
nal, when the above routine terminates, all that is left is to
connect nodes from S that share a label.

To this end, we use the spanner-based algorithm of [19].
Since |S| =

√
n, setting κ = logn results in time complexity

Õ(n1/2 +D), which is our target. However, this may cause
the approximation ratio to deteriorate to O(log2 n): Since
S is not the original set of terminals, but only connected
to it by edges of total (expected) weight O(logn) times the
optimum, the weight of an optimal solution on the derived
instance on terminal set S may grow by this factor.

Component Contraction. We resolve this issue as fol-
lows. We associate each unsatisfied terminal with a node
from S to which it is already connected. Since unsatisfied
terminals are within Õ(

√
n) hops from S using only selected

edges, this can be done in Õ(
√
n) rounds.

Next, we contract the constructed clusters, associating
with each resulting cluster the labels of all terminals it con-
tains. Leveraging pipelining techniques similar to those used
earlier, in O(|S|+k+D) rounds we can assign to each clus-
ter a single label so that the connectivity requirements are
identical to those given by the terminal labels. The key

observation here is that whenever two terminals in different
clusters are to be connected, it suffices to connect any pair of
nodes from the clusters, because all nodes within each clus-
ter are already connected. Finally, we run the spanner-based
algorithm from [19] on this instance; conveniently, the tech-
nique trivially extends to the modified setting with nodes
that are, in fact, contracted sets of nodes in G.

Because we constructed the new instance by means of con-
traction, an optimal solution of the original instance induces
a solution of at most the same weight for the new instance.
Therefore, the computed solution has weight within factor
O(logn) of the optimum, but this weight contributes addi-
tively to the weight of the complete solution. And as the
new instance has at most |S| =

√
n terminals, the algorithm

completes within Õ(
√
n+D) rounds.

Theorem 5.2. There is an algorithm that solves dsf-ic
in Õ(

√
n + k + D) rounds w.h.p. within factor O(logn) of

the optimum in expectation.

By combining this algorithm and the one from the previ-
ous section of running time Õ(s+k), we obtain an O(logn)-
approximation whose running time is optimal up to a poly-
logarithmic factor. Applying the algorithm O(logn) times
and choosing the solution of minimum weight ensures that
the approximation guarantee holds w.h.p.

Corollary 5.3. There is an algorithm that solves dsf-
ic in Õ(min{s,

√
n}+ k+D) rounds within factor O(logn)

of the optimum w.h.p.

Acknowledgements
We thank Fabian Kuhn for valuable discussions.

6. REFERENCES
[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide:

An approximation algorithm for the generalized
Steiner tree problem on networks. SIAM Journal of
Computing, 24:440–456, 1995.

[2] S. Baswana and S. Sen. A simple and linear time
randomized algorithm for computing sparse spanners
in weighted graphs. Random Structures and
Algorithms, 30(4):532–563, 2007.

[3] M. Brazil, R. Graham, D. Thomas, and
M. Zachariasen. On the history of the Euclidean
Steiner tree problem. Archive for History of Exact
Sciences, pages 1–28, 2013.

[4] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An
improved LP-based Approximation for Steiner Tree.
In Proc. 42nd ACM Symp. on Theory of Computing,
pages 583–592, 2010.

[5] P. Chalermsook and J. Fakcharoenphol. Simple
Distributed Algorithms for Approximating Minimum
Steiner Trees. In Proc. 11th Conf. on Computing and
Combinatorics, volume 3595 of LNCS, pages 380–389,
2005.

[6] M. Chleb́ık and J. Chleb́ıková. The Steiner tree
problem on graphs: Inapproximability results.
Theoretical Computer Science, 406(3):207–214, 2008.

[7] R. Cole and U. Vishkin. Deterministic Coin Tossing
and Accelerating Cascades: Micro and Macro
Techniques for Designing Parallel Algorithms. In Proc.
18th ACM Symp. on Theory of Computing, pages
206–219, 1986.

[8] R. Courant and H. Robbins. What is Mathematics?
An Elementary Approach to Ideas and Methods.
London. Oxford University Press, 1941.

[9] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed Verification and Hardness
of Distributed Approximation. In Proc. 43th ACM
Symp. on Theory of Computing, pages 363–372, 2011.

[10] M. Elkin. An Unconditional Lower Bound on the
Time-Approximation Tradeoff for the Minimum
Spanning Tree Problem. SIAM Journal of Computing,
36(2):463–501, 2006.

[11] J. Fakcharoenphol, S. Rao, and K. Talwar. A Tight
Bound on Approximating Arbitrary Metrics by Tree
Metrics. J. Comput. System Sci., 69(3):485–497, 2004.

[12] R. G. Gallager, P. A. Humblet, and P. M. Spira. A
Distributed Algorithm for Minimum-Weight Spanning
Trees. ACM Trans. on Comp. Syst., 5(1):66–77, Jan.
1983.

[13] J. Garay, S. Kutten, and D. Peleg. A sub-linear time
distributed algorithm for minimum-weight spanning
trees. SIAM Journal of Computing, 27:302–316, 1998.

[14] M. Hauptmann and M. Karpinski. A Compendium on
Steiner Tree Problems. http://theory.cs.uni-bonn.
de/info5/steinerkompendium/netcompendium.html.
Retreived January 2014.

[15] R. M. Karp. Reducibility among combinatorial
problems. In R. E. Miller and J. W. Thatcher, editors,
Complexity of Computer Computations, pages 85–103.
Plenum, New York, 1972.

[16] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and
K. Talwar. Efficient Distributed Approximation
Algorithms via Probabilistic Tree Embeddings.
Distributed Computing, 25:189–205, 2012.

[17] E. Kushilevitz and N. Nisan. Communication
Complexity. Cambridge University Press, 1997.

[18] S. Kutten and D. Peleg. Fast Distributed Construction
of Small k-Dominating Sets and Applications. J.
Algorithms, 28(1):40–66, 1998.

[19] C. Lenzen and B. Patt-Shamir. Fast Routing Table
Construction Using Small Messages: Extended
Abstract. In Proc. 45th Ann. ACM Symp. on Theory
of Computing, pages 381–390, 2013.

[20] C. Lenzen and B. Patt-Shamir. Improved Distributed
Steiner Forest Construction. CoRR, abs/1405.2011,
2014.

[21] Z. Lotker, B. Patt-Shamir, and D. Peleg. Distributed
MST for constant diameter graphs. Distributed
Computing, 18(6):453–460, 2006.

[22] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM, Philadelphia, PA, 2000.

[23] D. Peleg and V. Rubinovich. Near-tight Lower Bound
on the Time Complexity of Distributed MST
Construction. SIAM J. Computing, 30:1427–1442,
2000.

[24] H. Takahashi and A. Matsuyama. An Approximate
Solution for the Steiner Problem in Graphs.
Mathematica Japonica, 6:573–577, 1980.

[25] R. E. Tarjan. Data Structures and network
Algorithms, chapter 6. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

http://theory.cs.uni-bonn.de/info5/steinerkompendium/netcompendium.html
http://theory.cs.uni-bonn.de/info5/steinerkompendium/netcompendium.html

	Introduction
	Model and Notation
	Lower Bounds
	Deterministic Algorithm
	Key Ideas and Main Results

	Randomized Algorithm
	Key Ideas and Main Results

	References

