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Abstract—We present a prototype implementation and simu-
lation-based evaluation of a recently proposed novel approach
for Byzantine fault-tolerant and self-stabilizing clock distribution
in multi-synchronous GALS architectures. Fault-tolerant clock
generation and clock distribution is a mandatory prerequisite
for highly dependable multicore processors and Systems-on-Chip,
as it removes the single point of failure typically created by
central oscillators and conventional clock distribution trees. Our
scheme, termed HEX, is based on a hexagonal grid topology,
which connects simple intermediate nodes implemented using
the UMC 90 nm standard cell library. Their purpose is to (i)
forward synchronized clock signals throughout the grid and (ii)
to supply the clock to nearby application modules. To achieve (ii),
we show how to construct a fast clock on top of the clock signal
provided by HEX and analyze its properties. In sharp contrast to
existing solutions, HEX is not only Byzantine fault-tolerant, but
also self-stabilizing, i.e., it can recover from arbitrarily corrupted
system states. ModelSim-based simulation experiments confirm
the excellent performance and fault-tolerance properties of our
approach achieved in practice, which were already suggested by
an earlier theoretical worst-case analysis.

Keywords—fault-tolerance; self-stabilization; clock distribution;
fault-injection; simulation analysis

I. INTRODUCTION

Thanks to the advances in very large scale integration
(VLSI) technology, which nowadays allows clock speeds in
the GHz range, complex hardware architectures such as multi-
core processors and Systems-on-Chip (SoC) typically comprise
multiple clock domains: Individual system components (e.g., a
single core) execute synchronously, driven by a common clock
signal. Different components may reside in different clock
domains which, however, are driven by clock signals generated
by multiple unsynchronized clock sources. Communication
between components in different domains must hence be syn-
chronized or performed asynchronously, as in classic globally
asynchronous locally synchronous architectures (GALS) [1].

This material is based upon work supported by the National Science
Foundation under Grant Nos. CCF-AF-0937274, CNS-1035199, 0939370-
CCF and CCF-1217506, the AFOSR under Contract No. AFOSR Award
number FA9550-13-1-0042, the Swiss Society of Friends of the Weizmann
Institute of Science, the German Research Foundation (DFG, reference number
Le 3107/1-1), and the Austrian Science Foundation (FWF) project FATAL
(P21694).

Multisynchronous GALS [2][3] architectures assume boun-
ded synchrony (a maximum skew of a few clock cycles) also
between different clock domains. This mesochronous clocking
[4] not only allows to build a global notion of time throughout
the chip, which, e.g., facilitates time-triggered transmission
scheduling/routing in Networks-on-Chip (NoC) like Aelite [5],
but also enables metastability-free high-speed cross-domain
communication via FIFO buffers [6][7].

As mesochronous clocking inherently facilitates distributed
clock generation, it also allows to address the lacking robust-
ness of conventional centralized clocking approaches: If the
central oscillator or some wire in the clock tree (used for
distributing the clock signal to the functional units on the chip)
breaks in such an architecture, even replicated functional units
are of no use. This is also true for the few non-fault toler-
ant approaches for distributed mesochronous clock generation
[8][9][10][11][12][13] described in literature, which either use
distributed ring oscillators or distributed phase-locked loops
(PLL). The only fault-tolerant clock generation approaches we
are aware of are our Byzantine fault-tolerant DARTS [14][15]
and our self-stabilizing Byzantine fault-tolerant FATAL ap-
proach [16]. However, both approaches focus on the distributed
generation of a small number of synchronized clock signals
and do not address the question of how to distribute these to
a large number of functional units.

In [17], we proposed a novel approach, termed HEX,
for reliably distributing a synchronized clock signal in multi-
synchronous GALS systems. It works with arbitrary clock
sources, ranging from a central oscillator to a fully distributed
synchronized clock generation scheme like DARTS or FATAL.
HEX is based on a sufficiently connected wiring topology,
namely, a hexagonal grid. Intermediate nodes placed at each
grid point control when the clock signal transitions are for-
warded to adjacent nodes, and supply the clock signal to the
functional units in their vicinity via small local clock trees.
This way, HEX ensures that the clock signals at physically
close nodes are well-synchronized throughout the chip.

The analytical worst-case analysis presented in [17] re-
vealed excellent synchronization and fault-tolerance properties.
In particular, in sharp contrast to the alternative approaches
[8][9][10][11][12][13], HEX supports multiple synchronized
clock sources, tolerates Byzantine failures of both clock



sources and nodes as well as link failures, and self-stabilizes
[18] quickly from arbitrary states, as, e.g., caused by an
overwhelming number of transient failures. Its resilience to
failures scales with the size of the grid, in the sense that it
tolerates a constant density of isolated Byzantine nodes; it can
handle an even larger number of more benign failures like
broken wires and mute clock sources and nodes. Moreover,
HEX obeys a fault locality property: The adverse effect of
failures in the grid on the clock skew between non-faulty
neighbors decreases with the distance.

Contributions: The present paper provides the first step to-
wards a physical implementation of HEX and complements
the theoretical analysis provided in [17]:

(i) We show how the HEX nodes can be implemented and
synthesized using the UMC (United Microelectronics
Corporation) 90 nm standard cell library.

(ii) We study the average-case performance of our HEX
implementation, in particular, in the presence of faults,
using ModelSim-based simulation and fault-injection in a
custom testbed. Our results confirm that the quite “exotic”
worst-case scenarios identified in [17] are extremely un-
likely to occur in practice even in the presence of failures;
note that the MATLAB-simulations described in [17] have
only been devoted to the fault-free case.

Moreover, we address the question of how to utilize the
synchronized clock generated by HEX in applications. We
consider a high-speed point-to-point communication subsys-
tem for this purpose, which is, e.g., instrumental for multi-
hop communication between HEX nodes and thus for any
higher-level communication service. It primarily requires a
synchronized clock with high frequency (to facilitate high-
speed communication) and small clock skew (to avoid large
data buffers). The last major contribution of our paper is hence
the following:

(iii) We show how to augment HEX nodes to generate a
synchronized fast clock, and analyze its skew.

Our paper is organized as follows: Section II provides
an overview of HEX and some results from our previous
work [17]. All subsequent sections present novel results:
In Section III, we briefly describe how to add a particular
communication subsystem to the HEX nodes, and provide the
resulting requirements for the fast clock. Section IV gives an
overview of our HEX implementation and the features of our
custom testbed, which has been used to obtain the results
described in Section V. Finally, Section VI is devoted to the
implementation and analysis of a fast clock suitable for our
communication subsystem. Some conclusions and directions
of further research in Section VII round off our paper.

II. OVERVIEW OF HEX

HEX [17] assumes a system consisting of (simple) com-
puting nodes that exchange zero-bit messages (i.e., the only
information they contain is their occurrence time) over a
directed cylindrical hexagonal grid G = (V,E) defined as
follows (see Figure 1): With L ∈ N denoting its length and
W ∈ N its width, the set of nodes V is the set of tuples
(`, i) ∈ [L+1]×[W ]. Herein, [L+1] := {0, . . . , L} denotes the
row index set, referred to as layers, and [W ] = {0, . . . ,W−1}

column
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i− 1 i i+ 1

`− 1

`
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Fig. 1. Node (`, i) and its incident links in the cylindrical hexagonal grid
topology. Columns are modulo W and layers (rows) are between 0 and L.

1: once received trigger messages from (left and lower left) or
(lower left and lower right) or (lower right and right) neighbors
do

2: broadcast trigger message; . local clock pulse
3: sleep for some time within [T−, T+];
4: forget previously received trigger messages;

Fig. 2. Pulse forwarding algorithm for nodes in layer ` > 0.

the column index set, referred to as columns, of the nodes in
the grid. For each node (`, i) ∈ V , ` ∈ [L + 1], i ∈ [W ],
the following links are in E: (i) Incoming and outgoing links
to neighboring nodes of the same layer, namely from (`, i)
to (`, i − 1 modW ), called the left neighbor of (`, i), and to
(`, i + 1 modW ), called the right neighbor, and vice versa
from the left and the right neighbor to (`, i); (ii) if (`, i) is in
a layer greater than 0, incoming links from (` − 1, i), called
its lower left neighbor, and (` − 1, i + 1 modW ), called its
lower right neighbor; (iii) if (`, i) is in a layer smaller than L,
outgoing links to (`+1, i−1 modW ), its upper left neighbor,
and (`+ 1, i), its upper right neighbor.

The failure model of HEX assumes that every node has
at most one Byzantine faulty neighbor on an incoming edge,
which can exhibit arbitrary behavior. However, a faulty node
must not be able to prevent a correct neighbor from trig-
gering correctly on behalf of its other neighbors. Hence, it
is not allowed to output excessive voltages that destroy the
receiver, or cause metastability that also upsets the receiver,
for example. Note that tolerating two or more faulty neighbors
would require an in-degree of at least 5, resulting in a non-
planar communication graph due to the directed propagation
of pulses utilized in HEX. All fault-free links in the graph
respect FIFO order, with end-to-end delays that may vary non-
deterministically within [d−, d+] ⊆ (0,∞).

Nodes at layer 0 execute a clock pulse generation algo-
rithm like the ones of [15][16], whose purpose is to generate
synchronized and well-separated initial messages (i.e., pulses).
Nodes at layers larger than 0 run the simple pulse forwarding
algorithm specified in Figure 2. Basically, nodes forward pulse
k once they received trigger messages for pulse k from two
adjacent neighbors. Therefore, synchronized pulses generated
by the layer 0 nodes propagate as “waves” through the HEX
grid up to the very last layer (cf. Figure 5).

We denote the distance of column i and j in the grid by
|i− j|W := min{(i− j) modW, (j − i) modW} and the kth



triggering time of node (`, i), i.e., the time when it forwards the
kth pulse, by t(k)`,i . In [17], quite “exotic” (but possible) worst-
case propagation paths have been used to develop the worst-
case skew bounds. These bounds are very robust against initial
skews, which are captured by the skew potential on layer 0
denoted by ∆0 := maxi,j∈[W ]{t0,i − t0,j − |i− j|Wd−}. The
latter is always non-negative, and is 0 when nodes in layer 0
that are separated by h hops trigger their pulse at times that are
at most hd− apart. Dropping the superscript (k) for readability,
we restate the main result from [17] in Theorem 1. From here
on we require that ε = d+ − d− ≤ d+/7 holds.

Theorem 1 (Skew Bounds—Fault-free Case [17, Thm. 3.8]):
Suppose that ε ≤ d+/7. Then the following upper bounds
hold on the intra-layer skew σ` := maxi∈[W ]{|t`,i − t`,i+1|}
in layer `: If ∆0 = 0, then σ` is uniformly bounded by
d+ + dWε/d+eε for any ` ∈ [L+ 1]. In the general case,

∀` ∈ {1, . . . , 2W − 3} : σ` ≤ d+ + 2Wε2/d+ + ∆0. (1)
∀` ∈ {2W − 2, . . . , L} : σ` ≤ d+ + dWε/d+eε. (2)

Moreover, regarding the inter-layer skew of layer ` ∈ [L] to
its neighboring layer(s), it holds for all i ∈ [W ] that

t`,i − σ` + d− ≤ t`+1,i ≤ t`,i + σ` + d+ and (3)
t`,i+1 − σ` + d− ≤ t`+1,i ≤ t`,i+1 + σ` + d+. (4)

In the presence of failures, the above worst-case skew is
only moderately increased (depending on the number of faulty
nodes encountered along the worst-case propagation path). In
addition, Theorem 2 shows that HEX self-stabilizes quickly
from an arbitrary system state, e.g., caused by excessive
transient failures.

Theorem 2 (Stabilization [17, Thm. 3.11]): Suppose
maxk∈N{∆(k)

0 } ≤ ∆ and denote σ0 := ∆ + d−. Assume that

min
i∈[W ]

{t(k+1)
0,i } ≥ max

i∈[W ]
{t(k)0,i }+Wd+ + Lε+ T+, (5)

that T− > σ` + d+ + ε for all ` ∈ [L + 1], where σ` is as
in Theorem 1 with ∆0 = ∆, and that the pulse generation
algorithm employed at layer 0 is self-stabilizing. Then, HEX
self-stabilizes within L pulses once layer 0 stabilized, in the
sense that each node triggers exactly once per pulse, and for
each pulse the bounds from Theorem 1 apply.

III. AN APPLICATION: HEX-BASED COMMUNICATION

In order to add a point-to-point communication subsystem
to HEX, the canonical choice is to augment every (unidirec-
tional) link in the HEX grid by additional signal wires for data
communication, in both directions. The result is a (cylindrical)
hexagonal grid with bidirectional communication between
adjacent nodes. Every node in the grid now consists of two
distinct parts, an extended HEX node and a communication
node that uses the HEX clock.

In order to demonstrate the benefits of a synchronized clock
for communication, and to reason about desired properties,
we briefly describe a communication solution based on bi-
synchronous first in first out (FIFO) buffers (shortly denoted
FIFO) that has been adopted from [19]. More specifically,
every communication node has a FIFO for each incoming
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Detector
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Detector

Write
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Pointerwrite
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write clk
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read data
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Fig. 3. Bi-Synchronous FIFO. Every Node has one FIFO for each incoming
communication link. The sender is connected to the write interface, the
receiver to the read interface.

communication link. Each FIFO has a write interface for
writing data into and a read interface for reading data from
the FIFO. The write interface is accessed and clocked by the
sender, the read interface by the receiver.

The bi-synchronous FIFO is composed of five modules:
data buffer, read pointer, write pointer, full detector and empty
detector (see Figure 3). For the data buffer, we use a dual-
ported random access memory (RAM). The sender- and the
receiver-data lines are directly connected to the data buffer.
The read pointer, as well as the write pointer, consist of a shift-
register. The read pointer resp. write pointer determines the
current read resp. write address. Furthermore, the two pointers
are used by the full detector and the empty detector. Write data
is queued into the FIFO if write is high and full is low at
the rising edge of write clk. Data is dequeued to read data
if empty is low at the rising edge of read clk. With every
write access, the write address is incremented by one unless
the FIFO is full. The read address is incremented by one with
every read access, unless the FIFO is empty.

We have chosen this implementation because of its simple
and metastability-aware design and its good fault-tolerance
and containment properties. Notice that the obvious way,
for a faulty sender to corrupt the corresponding receiver, is
by writing to the address that is currently read and thus
inducing metastability. Even if a faulty sender permanently
sends messages, the full flag is set before the sender can write
into the current read address. Thus the sender is prevented from
corrupting the receiver. Another advantage arises from the fact
that HEX provides bounded synchrony: A FIFO with a depth
twice the synchronization precision plus one (plus a constant
value to compensate the difference in end-to-end delays) is
sufficient to ensure no message loss. Note carefully that this
holds independently of the clock frequency (which determines
the communication speed) and for any clock duty-cycle. In
fact, the implementation also works with a quite irregular clock
- as long as it remains synchronized. In Section VI, we will
show how to build a fast clock atop of the synchronized HEX
clocks, which allows high-speed communication.

IV. HEX IMPLEMENTATION AND TESTBED

Every HEX Node consists of a couple of very simple
design entities. Its core is the asynchronous state machine
shown in Figure 4, which implements the algorithm shown
in Figure 2. It consists of three states only: fire, sleep and
ready. The initial state is ready, where the state machine waits
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fire

timeout Tsleep (started
when switching to fire)

Ml ∧Mll

or Mll ∧Mlr

or Mlr ∧Mr

timeout Tfire

Ml,Mll,Mlr,Mr

Fig. 4. Main state machine of a HEX node. Circular nodes represent states
connected by transitions, labeled with their transition guards. A boxed node
lists the memory flags to be cleared when taking the transition.

for the trigger condition in Figure 2 to become true. Resettable
memory flags are used to memorize the occurrence of a pulse
(indicated by active high (1)) from the neighbors. For example,
the left neighbor is represented by the memory flag Ml. It is
reset to low (0) when the state machine takes the transition
from sleep to ready, as indicated by the boxed node. Ml is set
to 1 when the input from the left neighbor becomes 1 after the
most recent reset of Ml.

When the state fire is entered, both the sleep timer Tsleep
and the minimal pulse duration timer Tfire are started and 1
is outputted on all outgoing links, to signal the pulse. After
the timeout Tfire has occured, the output is reverted to 0 and
the state sleep is entered. The state sleep is a dormant state
that is only left when the timeout of Tsleep (within [T−, T+], as
specified in Figure 2) occurs. Note that the reset of all memory
flags occurring upon the transition to ready causes the node to
forget all pulses sensed before.

The implementation of the above state machine is com-
pletely asynchronous and has been generated using the Petrify
tool [20]. Both timers Tsleep and Tfire are driven by the same
start/stoppable ring oscillator, which (like the memory flags)
has already been used in our implementation of the FATAL+

clock generation approach [16]. The resulting design of the
HEX node was finally synthesized with Synopsis R© Design
Compiler version C-2009.06-SP4, using the UMC 90 nm
standard cell library [21]. Note that we had to augment this
library by a custom Muller C-Gate [22] developed in the
context of the DARTS project [15][23]. Since an accurate
timing characterization of this C-Gate is not available, its
timing information was just copied from an AND-Gate of the
standard library. The resulting inaccuracy is negligible w.r.t.
our purposes, though.

The HEX grid itself was implemented by means of a
custom testbench, which has the following purposes:

(1) Set the grid size and instantiate the corresponding number
of nodes and interconnecting wires.

(2) Provide the layer 0 clock sources, i.e., generate the clock
pulse of node (0, i), i ∈ [W ], at time t0,i, with some pre-
selected skews. Clock sources for a single pulse and for
multiple pulses are supported.

(3) Control the individual link delays during the simulation.
Both random delays (uniform within lower and upper

bound) and deterministic delays are supported.
(4) Control fault injection during the simulation: Both nodes

and links can be declared correct, Byzantine (for each
pulse and link, randomly choose output constant 0 or 1,
which corresponds to no/fast pulse), or fail-silent (output
constant 0). The selection of faulty nodes and/or links
can be done deterministically or randomly (but static for
multi-pulse simulations).

In order to support a reasonably systematic evaluation, we
developed a software infrastructure in Haskell that allowed
us to generate testbenches for different parameter settings
(1)-(4). Every such testbench was then evaluated by means
of pre-layout timing simulations, using Mentor Graphics R©

ModelSim 10.1d. The simulation results were recorded via
event lists, which facilitated post-processing by our software
infrastructure.

V. SIMULATION RESULTS

The primary purpose of our simulation experiments is
to complement the analytic worst-case bounds by statistics
and average-case results, which are difficult to determine
analytically. In view of the quite exotic worst-case scenarios
obtained in [17], we (correctly) conjectured that the latter
should be much better in reality. In the fault-free case, this
has already been confirmed by means of high-level MATLAB-
simulations of the algorithm in Figure 2 in [17]. The primary
focus of the simulations presented in this paper, which employ
the digital HEX implementation described in Section IV, lies
(A) on scenarios including faulty nodes and (B) on stabilization
time.

More specifically, using the testbed described in Sec-
tion IV, we conducted the following simulation experiments:

(A) Statistical evaluation of the neighbor skews. These
experiments require simulations involving a single pulse only.
The primary quantities of interest here are:

• the (absolute) layer ` intra-layer neighbor skews |t`,i −
t`,i−1| of every node (`, i) in layer `,

• the (signed) inter-layer neighbor skews t`,i − t`−1,i and
t`,i − t`−1,i+1 of every node (`, i) relative to its direct
layer ` − 1 neighbors (` − 1, i) and (` − 1, i + 1),
respectively.

We remark that the former is defined in terms of the absolute
values due to the symmetry of the topology (and thus skews)
within a layer, whereas the latter respects the sign and thus
correctly captures the non-zero bias (of at least d−) in the inter-
layer neighbor skew. Note that such a known bias can be com-
pensated at the application layer if desired, see Section VI. Let
σop
` := opi∈[W ]{|t`,i − t`,i+1|} with op ∈ {avg,max} denote

the average and maximum (absolute) layer ` intra-layer skew,
respectively. Similarly, let σ̂op

` := opi∈[W ]{t`,i − t`−1,i, t`,i −
t`−1,i+1}, where op ∈ {min, avg,max}, be the (signed) inter-
layer skew between layer ` and ` − 1. The global intra-layer
resp. inter-layer skews in the entire system are defined as
σop = op`∈[L+1]{σop

` } resp. σ̂op = op`∈[L+1]\{0}{σ̂op
` }.

(B) Statistical evaluation of the stabilization time. These
experiments require multiple pulses. Essentially, the system is
started, with every node in an arbitrary state, and then used
to forward a sequence of correct pulses generated at layer 0.
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Fig. 5. Pulse wave propagation for uniformly chosen link delays in [7, 8]
and layer 0 neighbor skews ramping up/down by d+.

TABLE I. INTRA- AND INTER-LAYER SKEW σop AND σ̂op OF ALL
NODES IN A 100× 25 GRID FOR UNIFORM RANDOM END-TO-END DELAYS

IN [7.125, 8.165] NS. VALUES ARE DETERMINED OVER 300 TEST RUNS.

intra-layer σop inter-layer σ̂op

init. layer 0 avg max min avg max
0 0.40 3.63 7.13 7.91 11.58
rand. [0,d−] 0.46 6.97 7.13 7.94 15.07
rand. [0,d+] 0.46 7.86 7.13 7.94 15.88
ramp d+ 1.41 8.16 0.96 8.36 16.28

Using post-processing of the recorded triggering times, we
compute the stabilization time as the number of pulses needed
for all intra- and inter layer skews to persistently go below
their respective thresholds (determined according to σmax

` and
σ̂max
` determined in (A)). Unfortunately, lack of space does

not allow us to adequately present these results in this paper.

Both types of experiments were performed with and with-
out faulty nodes of different types. Note that the triggering
times of faulty nodes are of course not considered when
computing the inter- and intra-layer skews.

A. Neighbor skew evaluation

As an appetizer, Figure 5 shows a 3D plot of a typical pulse
propagation wave in a fault-free grid with W = 10 and L =
20, with uniformly distributed link delays in [7.125, 8.165] ns
and layer 0 skews ramping up/down by d+. The grid (sliced
between width W − 1 and 0 ≡ W ) lies in the (` ∈ [L +
1], i ∈ [W ]) plane, the z-axis gives the triggering time t`,i
of the corresponding node (`, i). To improve the readability
of intra-layer skews, we connected all points (`, i, t`,i) and
(`, i + 1, t`,i+1), i ∈ {0, . . . ,W − 2}. It is apparent that the
wave propagates evenly throughout the grid, nicely smoothing
out differences in link delays and the large skews on layer 0.

To allow some qualitative comparison with the MATLAB-
simulation results provided in [17], Table I shows the average
(σavg) and maximal (σmax) intra-layer skew and the minimal
(σ̂min), average (σ̂avg), and maximal (σ̂max) inter-layer skew,
respectively, in the absence of faulty nodes. These values
were computed over all nodes and 300 simulation runs, in
the following setting (used throughout the remainder of this
section): L = 100, W = 25 and link delays uniformly chosen
within [d−, d+] for d− = 7.125 ns and d+ = 8.165 ns
(ε = 1.04 ns); these values result from combining assumed
wire and routing delays within [7, 8] ns with the switching

delay bounds [0.125, 0.165] ns determined during the HEX
node synthesis. For the timeout Tsleep, a nominal value has
been chosen that ensures a timeout within [T−, T+] ns with
T− = 20.393 ns and T+ = 23 ns, given the ring oscillator
drift bounds determined during synthesis.

Table I shows the results of our experiments, using four
different choices for the layer 0 skews between neighbors: The
triggering times of the layer 0 nodes t0,i are (i) all 0 (resulting
in σ0 = 0 and skew potential ∆0 = 0), (ii) uniformly in
[0, d−] (i.e., σ0 ≈ d− and ∆0 = 0), (iii) uniformly in [0, d+]
(i.e., σ0 ≈ d+ and ∆0 ≈ ε), and (iv) ramping-up/down by d+,
i.e., t0,i+1 = t0,i+d

+ for 0 ≤ i < W/2 and t0,i+1 = t0,i−d+
for W/2 ≤ i < W − 1 (i.e., σ0 = d+ and ∆0 ≈Wε/2 ≈ 13).
Note that (iii) resp. (iv) reasonably model the average case and
worst-case input provided by a layer 0 clock generation scheme
with neighbor skew bound d+, respectively. It is noteworthy
that not a single instance in the collected data showed a skew
of σ̂max

` > 2d+, and in scenarios (i) to (iii) we always had
σ̂min
` < d−, i.e., all nodes were always triggered by their lower

neighbors (obviously, this latter property is violated in scenario
(iv) due to the excessive initial skews). The histogram of the
skew distributions in case (i) are shown in Figure 6; the other
cases look similar.
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Fig. 6. Cumulated histograms for global intra-layer (top) and inter-layer
(bottom) skew (in ns), from 300 simulation runs in scenario (i).

A comparison with the results of Theorem 1, which pre-
dicts σmax ≤ 14 ns and [σ̂min, σ̂max] ⊆ [−5, 22] ns for
scenarios (i) to (iii), reveals a much better behavior in the
average case. Moreover, Figure 6 shows a sharp concentration
with an exponential tail, i.e., most skews are very small in
comparison to the worst-case bounds. For scenario (iv), the
large initial skew (cf. Figure 5) leads to larger observed skews,
which are also in accordance with our theorem, however.

Given the considerable differences between the minimum
(σ̂min) and maximum (σ̂max) inter-layer skew in Table I,
in conjunction with its non-zero bias, the question of layer-
dependence arises. Table II provides σ̂min

` , σ̂avg
` and σ̂max

` for
selected layers ` in case of scenario (iii). It reveals that there
is no significant layer-dependent bias. Last but not least, the
strong concentration of skews on each layer around the average



TABLE II. AVERAGE AND STANDARD DEVIATION OF σ̂min
` , σ̂avg

` , AND
σ̂max
` , TAKEN OVER 250 SIMULATION RUNS OF SCENARIO (III).

layer ` σ̂min
` σ̂avg

` σ̂max
`

1 7.19±0.04 9.01±0.22 14.22±0.78
2 7.20±0.05 8.41±0.15 12.88±1.03
3 7.21±0.05 8.18±0.12 11.73±1.20
5 7.21±0.06 8.02±0.08 10.33±0.97
9 7.23±0.07 7.94±0.06 9.36±0.52

10 7.22±0.06 7.94±0.06 9.29±0.47
11 7.22±0.06 7.92±0.06 9.23±0.45
12 7.22±0.06 7.93±0.06 9.17±0.45
15 7.23±0.07 7.92±0.06 9.11±0.35
19 7.21±0.06 7.92±0.06 9.09±0.36
20 7.23±0.06 7.92±0.06 9.11±0.36

(i.e., the very small standard deviation of σ̂avg
` ), in particular

in layers ` > 5, shows that the smoothing out of local skews
observed in Figure 5 is very typical.

Next, we consider the case where a certain number f of
randomly chosen isolated nodes may be Byzantine faulty. All
our simulations use the “average-case” scenario (iii) and the
“worst-case” scenario (iv) described above. First, we choose
f locations in the grid where faulty nodes are to be placed,
subject to the constraint that no node has more than one
faulty neighbor on an incoming edge. For a small number
and a uniform distribution of faults, it is very likely that
this constraint is satisfied. For an excessive number of faults,
the birthday paradox kicks in: for f = 5, 10, 20, 30, the
respective probabilities are roughly 0.95, 0.79, 0.36, and 0.09,
respectively.

The behavior of the Byzantine faulty nodes is choosen
randomly in every run on a per-link basis. Due to the usage of
memory flags on the link port at the receiver side, a Byzantine
faulty node has only two options: slowing down the firing of
a node, or speeding it up. These two options are implemented
as constantly sending pulses (i.e., constant high) and sending
no pulse at all.

Then, 300 simulation runs of single pulse propagation are
executed, each of which takes less than 2 minutes to simulate.
We then later compute average and maximum of the intra-layer
skew and minimum, average and maximum of the inter-layer
skew. These computations where made several times on the
generated data set, each time considering only pairs of correct
nodes that are not reachable from any faulty node within at
most h = 0, 1, 2, 3 directed hops in the grid. From these runs,
we finally compute the average and standard deviation of σavg,
σmax and σ̂min, σ̂avg, σ̂max.

The results are shown in Table III. It is apparent that
HEX copes very well with a considerable number of faults;
minimal, average, and maximal skews are almost insensitive
to the number of faults. For scenario (iv), we observe that
standard deviations are generally larger, and that, in particular,
nodes in directed distance 1 or 2 from faulty nodes experience
larger skews. This is quite natural, given the large skews of
the input; if the system suffers from a considerable number of
faults, this limits its ability to reduce the initial skews.

Table IV shows the analogous results for fail-silent nodes;
for brevity, we leave out f = 2, 3, for which we observed a

TABLE III. AVERAGE ± STANDARD DEVIATION OF σavg , σmax , σ̂min ,
σ̂avg , AND σ̂max , EXCLUDING ALL NODES WITH DIRECTED DISTANCE ≤ h

FROM f ISOLATED BYZANTINE FAULTY NODES, OVER 300 SIMULATION
RUNS OF SCENARIO (III) [TOP] AND (IV) [BOTTOM].

Scenario (iii) Byzantine
f h σavg σmax σ̂min σ̂avg σ̂max

1 0 0.54±0.05 7.76±0.92 6.95±0.36 7.98±0.03 15.56±1.02
1 1 0.54±0.05 7.35±0.58 7.12±0.06 7.98±0.03 15.13±0.63
1 2 0.53±0.05 7.21±0.58 7.13±0.03 7.97±0.02 14.99±0.62
1 3 0.53±0.05 7.11±0.57 7.13±0.02 7.97±0.02 14.89±0.62
2 0 0.60±0.07 8.15±0.87 6.75±0.79 8.00±0.03 16.09±1.11
2 1 0.59±0.07 7.56±0.48 7.12±0.07 8.00±0.03 15.39±0.52
2 2 0.58±0.06 7.36±0.51 7.12±0.06 8.00±0.03 15.17±0.56
2 3 0.57±0.06 7.23±0.52 7.13±0.04 7.99±0.03 15.01±0.59
3 0 0.65±0.07 8.48±0.87 6.33±1.36 8.03±0.04 16.47±1.27
3 1 0.64±0.07 7.73±0.35 7.10±0.12 8.03±0.03 15.56±0.32
3 2 0.63±0.07 7.53±0.39 7.12±0.07 8.02±0.03 15.35±0.36
3 3 0.62±0.07 7.38±0.44 7.12±0.07 8.02±0.03 15.21±0.41
5 0 0.76±0.10 8.91±1.01 5.54±1.99 8.09±0.05 17.13±1.72
5 1 0.74±0.09 7.86±0.29 7.05±0.21 8.08±0.05 15.70±0.28
5 2 0.72±0.09 7.70±0.30 7.10±0.09 8.07±0.05 15.53±0.30
5 3 0.70±0.09 7.59±0.33 7.11±0.07 8.06±0.04 15.40±0.33
10 0 0.95±0.12 9.55±1.18 3.62±2.59 8.18±0.06 18.85±2.52
10 1 0.91±0.11 8.01±0.38 6.89±0.54 8.16±0.06 15.84±0.17
10 2 0.87±0.11 7.84±0.17 7.05±0.15 8.14±0.05 15.63±0.19
10 3 0.84±0.11 7.75±0.22 7.07±0.14 8.13±0.05 15.53±0.22
20 0 1.27±0.13 10.61±1.46 0.65±2.54 8.34±0.07 21.29±2.17
20 1 1.18±0.13 8.45±1.15 6.20±1.51 8.31±0.07 15.92±0.15
20 2 1.11±0.13 7.96±0.12 6.96±0.23 8.28±0.06 15.75±0.18
20 3 1.05±0.13 7.88±0.16 7.01±0.17 8.25±0.06 15.64±0.19

Scenario (iv) Byzantine
f h σavg σmax σ̂min σ̂avg σ̂max

1 0 1.50±0.24 8.51±1.44 2.42±1.73 8.40±0.10 16.44±1.65
1 1 1.50±0.24 8.27±0.88 2.65±1.05 8.40±0.10 15.89±0.13
1 2 1.49±0.24 8.15±0.10 2.72±0.96 8.40±0.10 15.89±0.13
1 3 1.49±0.24 8.14±0.02 2.75±0.93 8.40±0.10 15.89±0.13
2 0 1.58±0.31 9.30±2.78 1.89±2.64 8.44±0.14 17.11±2.28
2 1 1.57±0.31 8.53±1.61 2.49±1.33 8.43±0.14 15.91±0.12
2 2 1.56±0.31 8.17±0.34 2.69±1.08 8.43±0.14 15.89±0.12
2 3 1.56±0.31 8.14±0.04 2.75±1.02 8.43±0.14 15.89±0.12
3 0 1.62±0.28 10.03±3.52 1.13±3.32 8.45±0.13 17.86±2.74
3 1 1.61±0.28 8.90±2.19 2.19±1.50 8.45±0.12 15.90±0.13
3 2 1.60±0.28 8.21±0.40 2.51±1.15 8.44±0.12 15.89±0.13
3 3 1.59±0.28 8.14±0.05 2.59±1.09 8.44±0.13 15.89±0.13
5 0 1.78±0.52 10.82±3.92 0.24±3.75 8.53±0.22 18.75±2.93
5 1 1.76±0.52 9.25±2.63 1.87±1.72 8.52±0.22 15.92±0.13
5 2 1.75±0.53 8.25±0.54 2.37±1.24 8.51±0.22 15.89±0.12
5 3 1.74±0.54 8.14±0.03 2.52±1.18 8.51±0.23 15.88±0.12
10 0 2.12±0.71 12.21±4.67 -1.36±4.18 8.67±0.29 21.09±2.61
10 1 2.09±0.72 10.06±3.31 1.09±2.11 8.66±0.29 15.93±0.13
10 2 2.06±0.73 8.39±0.90 1.89±1.55 8.65±0.30 15.89±0.13
10 3 2.04±0.76 8.14±0.11 2.12±1.53 8.64±0.31 15.88±0.15
20 0 2.59±0.98 16.20±7.91 -4.17±4.33 8.87±0.41 22.73±2.56
20 1 2.52±1.00 12.53±5.91 -0.14±2.25 8.85±0.41 16.16±1.93
20 2 2.48±1.04 9.20±4.99 1.20±1.66 8.83±0.43 16.01±1.74
20 3 2.44±1.07 8.68±4.84 1.63±1.71 8.82±0.46 15.92±1.20

behavior that interpolates between f = 1 and f = 5. The main
difference to Byzantine faults are much more stable, but worse
skews, the latter in particular demonstrated by σ̂min. This can
be easily understood, since the random behavior of Byzantine
nodes increases the volatility of the setup, but decreases the
number of “dead” links that inhibit the propagation of the pulse
wave. With many faults, the wave needs to navigate a “maze”
of dead nodes.

VI. FAST CLOCKS

HEX provides each node with a local clock signal that
is well-synchronized even in a system with multiple persistent



TABLE IV. AVERAGE ± STANDARD DEVIATION OF σavg , σmax , σ̂min ,
σ̂avg , AND σ̂max , EXCLUDING ALL NODES WITH DIRECTED DISTANCE ≤ h

FROM f ISOLATED FAIL-SILENT NODES, OVER 300 SIMULATION RUNS OF
SCENARIO (III) [TOP] AND (IV) [BOTTOM].

Scenario (iii) fail silent
f h σavg σmax σ̂min σ̂avg σ̂max

1 0 0.57±0.04 7.83±0.26 7.09±0.11 7.99±0.02 15.90±0.65
1 1 0.56±0.04 7.58±0.32 7.13±0.04 7.99±0.02 15.44±0.32
1 2 0.56±0.04 7.40±0.39 7.13±0.03 7.99±0.02 15.24±0.38
1 3 0.55±0.04 7.26±0.44 7.13±0.02 7.98±0.02 15.11±0.43
5 0 0.85±0.09 8.13±0.43 6.87±0.46 8.14±0.04 17.42±1.95
5 1 0.82±0.09 7.92±0.14 7.04±0.15 8.12±0.04 15.79±0.19
5 2 0.80±0.09 7.81±0.19 7.08±0.13 8.11±0.04 15.61±0.21
5 3 0.77±0.08 7.71±0.24 7.09±0.12 8.10±0.04 15.51±0.23
10 0 1.12±0.12 9.09±1.96 5.95±1.86 8.28±0.06 19.62±2.44
10 1 1.07±0.12 8.04±0.30 6.91±0.33 8.26±0.06 15.91±0.16
10 2 1.01±0.11 7.93±0.13 6.99±0.17 8.23±0.06 15.74±0.17
10 3 0.97±0.11 7.87±0.16 7.03±0.16 8.21±0.06 15.64±0.20
20 0 1.54±0.14 11.60±3.50 3.49±3.43 8.51±0.07 22.22±1.38
20 1 1.42±0.14 8.42±1.11 6.48±1.07 8.46±0.07 15.99±0.12
20 2 1.33±0.14 8.03±0.10 6.87±0.21 8.41±0.07 15.82±0.15
20 3 1.24±0.14 7.97±0.12 6.93±0.20 8.37±0.07 15.73±0.15

Scenario (iv) fail-silent
f h σavg σmax σ̂min σ̂avg σ̂max

1 0 1.50±0.05 9.49±3.96 1.95±2.91 8.40±0.02 16.71±1.98
1 1 1.50±0.05 8.69±1.87 2.62±1.18 8.40±0.02 15.90±0.13
1 2 1.49±0.05 8.17±0.26 2.86±0.83 8.40±0.03 15.89±0.13
1 3 1.49±0.05 8.14±0.02 2.87±0.83 8.40±0.03 15.89±0.13
5 0 1.77±0.09 14.46±6.75 -1.25±5.08 8.54±0.05 19.98±2.95
5 1 1.74±0.09 10.74±3.56 1.66±2.14 8.53±0.05 15.94±0.12
5 2 1.71±0.10 8.42±0.92 2.88±0.85 8.51±0.05 15.90±0.12
5 3 1.69±0.10 8.14±0.02 2.92±0.85 8.50±0.05 15.89±0.12
10 0 2.02±0.13 18.38±6.47 -4.03±5.21 8.67±0.06 22.04±2.09
10 1 1.96±0.13 12.68±3.92 0.59±2.61 8.64±0.07 15.97±0.12
10 2 1.91±0.14 8.74±1.33 2.92±1.00 8.62±0.07 15.91±0.11
10 3 1.87±0.15 8.15±0.22 3.03±0.94 8.60±0.08 15.89±0.11
20 0 2.40±0.16 22.58±4.20 -7.39±3.60 8.87±0.08 23.19±1.16
20 1 2.29±0.16 15.26±3.03 -1.08±2.66 8.83±0.08 16.03±0.11
20 2 2.20±0.17 9.49±1.85 2.81±0.97 8.78±0.09 15.92±0.11
20 3 2.12±0.19 8.15±0.15 3.11±0.91 8.74±0.10 15.89±0.12

faults. Furthermore, HEX is able to recover from an unbounded
number of concurrent transient faults. It should not come as a
surprise that these impressive fault-tolerance properties come
at a cost: The HEX clock signal has a fairly low and unstable
frequency and a large jitter. This makes HEX unsuitable for
applications that need to determine real-time durations very
accurately. One such negative example is clock multiplication
based on PLLs, which sustain only moderate input jitter.
Fortunately, as exemplified by our communication subsystem
in Section III, many applications do not have such stringent
requirements.

A. Trade-offs between Quality and Dependability

To understand that the undesirable properties of HEX are
inherent to our approach, if not even inevitable under the given
design goals, recall that Byzantine or fail-silent nodes locally
affect the triggering times by (i) cutting off or delaying the
clock distribution signal on a (shortest) path to some node
or (ii) triggering a pulse early. Because of (ii), a node cannot
locally trigger a pulse just based on one of its lower neighbors;
because of (i), a faulty lower-left or lower-right neighbor
entails that the node must be triggered with the help of a
node in the same layer, thereby increasing the length of a
causal chain [24] involved in triggering the node compared
to the fault-free case. Consequently, the time when the node

is triggered may be affected notably, and this effect may
accumulate over several layers (in contrast to the skew, which
is the local difference of triggering times).

From these observations, we can conclude that simultane-
ously guaranteeing tolerance of Byzantine faults and a stable
clock frequency would entail a stronger connectivity of the
grid and thus larger node degrees. In particular, nodes would
need to receive clock signals from at least 3 nodes from
the previous layer, as well as forwarding them to at least
3 nodes in the subsequent layer. Higher degrees, however,
increase the complexity of nodes—and thus the likelihood that
an individual node fails—as well as the probability that two
neighbors are faulty (even for a fixed probability of failure).
We hence conclude that there is a trade-off between frequency
stability and resilience to failures.

Besides the inevitable switching delays of the components
making up the HEX nodes, the low frequency of the generated
HEX clock is also caused by our self-stabilization requirement:
Ensuring that the nodes become ready for the next, well-
synchronized pulse, a conservative pulse separation time must
be granted to “flush out” spurious pulses from the system; oth-
erwise, we might observe a phenomenon similar to “ventricular
fibrillation”.

B. Local Clocks

While increasing the frequency stability of the HEX clock
signal would require a more dense topology, there is an
obvious solution to the low clock frequency issue: frequency
multiplication. By equipping each node with a high-frequency
oscillator that is synchronized to the HEX clock, one can
generate well-synchronized high-frequency clocks (termed fast
clocks in the sequel).

However, synchronizing a fast clock to an unstable HEX
clock involves a trade-off:

(a) If a stable fast clock frequency is desired, the HEX clock’s
jitter must be amortized over m > 1 pulses. For example,
this could be implemented by first dividing the HEX clock
by m and then using a PLL clock multiplier to generate
the desired fast clock; m must be chosen appropriately
to guarantee an acceptable PLL input clock jitter. Un-
fortunately, this approach may increase the skew of the
fast clock considerably if the high-frequency oscillators
driving the fast clocks have a large drift.

(b) If a fast clock with minimal skew is desired, which is our
major objective, the HEX clock jitter must be amortized
within a single pulse. Unfortunately, using solutions like
[25] are complex and inherently lead to considerable
frequency fluctuations of the fast clock.

With this in mind, we propose a simple, robust approach
for (b) that achieves a high and reasonably stable fast clock
frequency with good skews, at the expense of burstiness. For
each HEX pulse, the fast clock generates a fixed number
B of fast clock pulses [26] as shown in Figure 7. This is
accomplished by means of a free-running start/stoppable ring
oscillator, which is started by a HEX pulse and stops when
it has generated B pulses; in fact, we may make use of the
same oscillator design already used for the timeouts Tfire and
Tsleep of the HEX state machine (Figure 4). Note that this can
be implemented in a way that entirely avoids metastability.
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Fig. 7. A pulse generated by HEX will result in a fixed number of clock
cycles being generated. The number of clock cycles and their frequency has
to be chosen so that the required time span for them is less than the minimal
time between pulses at correct nodes.

C. Analysis

First, we determine conservative timing constraints under
the assumption that the system is fault-free. In this setting, the
feasible number of clock cycles in each burst can be precisely
expressed in terms of the minimal pulse separation time

Γmin := inf
i∈[W ],`∈[L+1],k∈N

(`,i) correct

{t(k)`,i − t
(k−1)
`,i }. (6)

Assuming that the fast clock sources are guaranteed to run at
least with frequency fmin, the number B of generated ticks
per pulse must satisfy

B ≤ fminΓmin. (7)

Note that it is sufficient here if the frequency bound holds
amortized over Γmin time. To understand the resulting perfor-
mance, assume for simplicity that this bound is an integer (i.e.,
we neglect that we may lose a “fractional tick”) and choose
B = fminΓmin. First, let us check the amortized frequency of
the system. Clearly, we cannot guarantee a larger amortized
frequency than fmin. Of course, in addition Γmin could be
smaller than the long-term average time between pulses

Γavg := lim
k→∞

t
(k)
0,0 − t

(0)
0,0

k
. (8)

Note that choosing the reference node to be (0, 0) in this
definition is arbitrary, as using every other node must lead
to the same result: Since the skew in the fault-free case is
bounded, the influence of the difference of the triggering times
vanishes in the limit (of course we assume here that the clock
generation algorithm employed on layer 0 has bounded skew
in the absence of faults). With this definition, the amortized
frequency of the generated high-frequency clock of node (`, i)
can be expressed as

lim
k→∞

Bk

t
(k)
`,i − t

(0)
`,i

= B lim
k→∞

k

t
(k)
0,0 − t

(0)
0,0

= fmin
Γmin

Γavg
, (9)

which equals fmin exactly if t(k+2)
`,i − t(k+1)

`,i = t
(k+1)
`,i − t(k)`,i

for all i, `, and k, i.e., the HEX clock is perfectly stable. The
“frequency loss” is determined by three factors:

1) The frequency fluctuation of the clock generation algo-
rithm at layer 0.

2) The skew between the layer 0 nodes.
3) The variance in the speed at which pulses propagate

through the grid.

The first two factors are determined by the clock generation
algorithm and thus not to attribute to HEX. We remark that
since we need to keep pulses well-separated, the first factor is

likely to dominate the second. Similarly, large pulse separation
times mitigate the influence of the third factor. If we increase
the pulse separation time and take the limit, the resulting
frequency of HEX will reflect the frequency provided by the
clock generation algorithm at layer 0 (since the influence of
skews vanishes in the limit). Hence, the frequency of the
fast clocks will be fmin multiplied by the ratio between the
frequency lower bound of the pulse generation algorithm—
neglecting any additive variations that do not depend on the
pulse separation time, in particular the skew between layer 0
nodes—and its average frequency.

These are good news, showing that a large pulse separation
time does not hurt in terms of the overall frequency at which
the system will be clocked. On the contrary, large pulse
separation times essentially ensure the maximum frequency we
can hope for! Even with fairly small pulse separation times, the
system will run at a constant fraction of the frequency fmin.
However, there is no free lunch, as we will establish now by
analyzing the fast clock skew of adjacent nodes.

Since pulses are anonymous, we interpret the generated
local fast clock L`,i of node (`, i) as a clock modulo B with the
initial value being 0. For simplicity, we assume that the clock
is continuous, i.e., it is real-valued from [0, B), increasing
modulo B at (possibly varying) rates from [fmin, fmax], where
fmax is its maximal frequency. The actual discrete clock read-
ing at time t then is simply bL`,i(t)c. With these definitions,
the clock value at time t ∈ [t

(k)
`,i , t

(k+1)
`,i ] satisfies

min{fmin(t− t(k)`,i ), B} ≤ L`,i(t) ≤ min{fmax(t− t(k)`,i ), B},
(10)

since the clock is halted until the next pulse once it reaches
value B ≡ 0.

Observe that at times where two adjacent nodes both
locally triggered pulse k, but not pulse k+1, the worst possible
clock skew is attained if (i) the difference in the triggering
times is maximal, (ii) the clock of the node that triggered
first runs at frequency fmax until its clock halts, and (iii)
the other node’s clock runs at frequency fmin. For the skew
between two adjacent nodes in layer `, we thus get at times
t ∈ [t

(k)
`,i , t

(k+1)
`,i ] ∩ [t

(k)
`,i+1, t

(k+1)
`,i+1 ] that

|L`,i(t)− L`,i+1(t)|

≤ B − fmin

(
B

fmax
− |t(k)`,i − t

(k)
`,i+1|

)
≤ fmax − fmin

fmax
·B + fminσ

max
` = %B + fminσ

max
` , (11)

where % := (fmax − fmin)/fmax is the relative drift of the
high-speed clocks.

Now consider a time t ∈ [t
(k+1)
`,i , t

(k+2)
`,i ] ∩ [t

(k)
`,i+1, t

(k+1)
`,i+1 ],

i.e., node (`, i) already triggered pulse k+1, but node (`, i+1)
has not done so yet. Since node i starts its clock—which in
the worst case runs fast while the clock of node i + 1 runs
slow—at time t(k+1)

`,i again, a worst-case bound on the clock
skew (modulo B) is obtained by comparing the clocks just
before time t(k+1)

`,i+1 . However, this bound is subsumed by the
previous one, as it covers the case t = t

(k+1)
`,i+1 . Finally, the case

t ∈ [t
(k)
`,i , t

(k+1)
`,i ] ∩ [t

(k+1)
`,i+1 , t

(k+2)
`,i+1 ] is symmetrical. This covers



all cases and therefore provides a worst-case bound for the
intra-layer skew of the constructed fast clocks; replacing σmax

`
by σavg

` in this result yields an average-case bound.

To also derive good bounds for the inter-layer skew, more
care is necessary. Of course, we could simply replace σmax

`
by σ̂max

` and repeat the same analysis, but this would provide
overly conservative results as it fails to leverage the known bias
of the inter-layer skew. We will hence use a refined analysis
for slightly modified clocks to improve the results.

On average, nodes at layer ` trigger roughly σ̂avg
` after

those at layer ` − 1 (recall that σ̂avg
` respects the sign).

Therefore, we can compensate the resulting bias in the inter-
layer skew of the fast clocks by shifting the fast clocks
of the nodes at layer ` > 1 accordingly with respect to
layer ` − 1. Similarly, to obtain a worst-case bound, we can
consider σ̂min

` and σ̂max
` and apply a shift corresponding to

σ̄` := (σ̂max
` + σ̂min

` )/2.

Let us examine the latter case here; the former can be
treated similarly. In σ̄` time, a running fast clock makes
progress of at least fminσ̄`. Therefore, we map the clock values
L`,i(t) for all i and t to L′`,i(t) := (L`,i(t) + fminσ̄`) modB.
Analogous to the intra-layer skew, we now can bound

L`−1,i(t)− L′`,i(t)

≤ B − fmin

(
B

fmax
− (t

(k)
`,i − t

(k)
`−1,i) + σ̄`

)
≤ fmax − fmin

fmax
·B + fmin (σ̂max

` − σ̄`)

= %B + fmin ·
σ̂max
` − σ̂min

`

2
= %B + fminτ`, (12)

where τ` := (σ̂max
` − σ̂min

` )/2 corresponds to σmax
` . The

latter can be seen by noting that the the signed variant of
the (symmetrical, i.e., absolute value) inter-layer skew is just
−σ`. Likewise,

L′`,i(t)− L`−1,i(t)

≤ B − fmin

(
B

fmax
+ (t

(k)
`,i − t

(k)
`−1,i)− σ̄`

)
≤ fmax − fmin

fmax
B + fmin

(
σ̄` − σ̂min

`

)
= %B + fminτ`, (13)

which together with the bound on L`−1,i(t)− L′`,i(t) implies
that |L′`,i(t) − L`−1,i(t)| ≤ %B + fminτ`. An analogous rea-
soning shows that also |L′`,i(t)−L`−1,i+1(t)| ≤ %B+ fminτ`.

Obviously, shifting all clocks in a layer by the same value
will not affect the intra-layer clock skews. Applying the clock
shifts inductively, i.e., shifting the clocks in each layer ` ≥ 1
by
∑`−1

`′=0 σ̄`′ , we can bound the inter-layer skews on each pair
of consecutive layers as above. We thus can conclude with the
worst-case bounds

%B + fminσ
max
` ≤ fmin(%Γmin + σmax

` ) and (14)
%B + fminτ` ≤ fmin(%Γmin + τ`). (15)

on the intra- and inter-layer skews of the (shifted) fast clocks.
Note that they are tight for B = fminΓmin, which maximizes
the amortized frequency of the fast clocks.

It can be seen that even if % is fairly large (say, 10%) and
Γmin is significantly larger than σmax

` , say, up to factor 10, the

maximal clock skew is still dominated by the term fminσ
max
` .

If one is willing to invest in more stable fast clock sources (e.g.,
% ≈ 1%), large pulse separation times are feasible without
incurring a significant impact on the skew. We stress that fmin

and fmax in our bounds are—unless the clocks are extremely
unstable—the amortized frequency upper and lower bounds
over B fast clock pulses; large skews require a consistent
difference in frequency for roughly B/fmin time. Moreover, %
captures the relative drift of the clocks. Any frequency change
that applies to adjacent nodes in roughly the same way (i.e.,
a system-wide change in temperature or supply voltage) will
not have noticeable effects on the skews.

D. Faults, Self-stabilization, and Γmin

So far, we neglected two key obstacles in our approach for
constructing fast clocks:

• Γmin is not known, and therefore we do not know an
appropriate choice for B.
• Due to persistent or transient faults, Γmin may be very

small or not even well-defined.

Concerning the first issue, there are basically three options:
We can rely on analytical bounds, simulation results, or
experimental data. All approaches have pros and cons; for a
final system, experimental data is the most valuable, but it is
also the most difficult and expensive to create, as one needs
a chip and a suitable apparatus for measurements first. From
[17] and bounds for the layer 0 clock generation algorithm
employed, analytical worst-case bounds can be derived. The
results from Section V provide insight into the skew distribu-
tions for an average-case setting under some fairly conservative
assumptions on the parameters.

Regarding the second issue, we clearly must exclude faulty
nodes as well as triggering time differences from the self-
stabilization period when estimating (an equivalent to) Γmin

in the general setting. Note that there is a trade-off: We can
consider a non-faulty node that experiences large skews as
incorrect, permitting the use of a less conservative bound on
Γmin; in turn, we are losing the guarantee that this node will
be able to complete each clock burst before the next pulse
arrives, even after stabilization of the HEX pulse generation.
The results from Section V give an idea on the behavior of
the system under faults. It should be noted, though, that the
specific values are highly dependent on the implementation of
the HEX nodes, the layer 0 clock generation algorithm, and
the used technology.

Once a suitable estimate Γ̃min taking the role of Γmin

has been determined, one can choose B according to B ≤
fminΓ̃min. Note that using a smaller value for B may be desir-
able in some situations, as a smaller value of B also leads to a
smaller skew. On the downside, B < fminΓ̃min is equivalent to
using a smaller value of Γ̃min, which leads to a lower amortized
frequency of the fast clocks. The resulting decrease in the
amortized frequency can of course be mitigated by increasing
the frequency of the layer 0 pulse generation algorithm, which
reduces Γ̃min, Γavg and the gap fminΓ̃min −B.

VII. CONCLUSION AND FUTURE WORK

In the work presented in this paper, we (i) implemented
the HEX clock distribution grid [17] using the UMC 90 nm



standard cell library, (ii) performed extensive ModelSim-based
simulations to gain insight on the average-case performance of
the approach, and (iii) constructed small-skew high-frequency
fast clocks and analyzed their performance. As argued in Sec-
tion III, such clocks are a suitable basis for an efficient point-
to-point communication subsystem. While it is still a long
road to a fully-engineered solution, our results demonstrate
the potential of the envisioned clocking scheme to serve in
highly dependable, multi-synchronous GALS architectures.

Future Work. There are several vital improvements to the
presented solutions that are subject to our ongoing research.

• The communication system proposed in Section III is not
self-stabilizing, but merely pseudo-stabilizing [27]. That
is, once transient faults cease, the system is guaranteed
to eventually operate correctly, but there is no bound on
the time the recovery process takes to actually complete.
Based on the self-stabilizing fast clocks, it seems reason-
able to assume that also fully self-stabilizing communi-
cation primitives can be devised.

• The skews offered by HEX compare unfavorably to those
of less resilient solutions; in particular the gap to the
performance of standard clock distribution trees (which
cannot withstand any faults) is large. Because of the
simplicity of the HEX state machine (Figure 4), we
are positive that a HEX node can be implemented as a
transistor-level custom standard cell. This would certainly
decrease the resulting skews and pulse separation times
further, and thus result in an improved HEX performance.

• The cylindrical hexagonal grid topology assumed in this
work and [17] is convenient for analysis, but suffers from
two drawbacks: (i) providing a synchronized clock to the
entire layer 0 is difficult unless the grid is very narrow
(i.e., W is small) and (ii) “folding” a cylindrical HEX grid
onto an actual chip would result in two clock layers with
physically close-by nodes that are far from each other in
the grid. In [17], we proposed an alternative topology
resolving these issues, and the analysis in the paper
provides strong intuition that the resulting skews will
not be larger. Generalizing the analysis from [17] to the
new topology and performing corresponding simulations
is thus of high interest.
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