
RESHAPING DEEP NEURAL NETWORK FOR FAST DECODING BY NODE-PRUNING

Tianxing He Yuchen Fan Yanmin Qian Tian Tan Kai Yu

Institute of Intelligent Human-Machine Interaction
MOE-Microsoft Key Lab. for Intelligent Computing and Intelligent Systems

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
{cloudygoose,fyc0624,yanminqian,tantian,kai.yu}@sjtu.edu.cn

ABSTRACT

Although deep neural networks (DNN) has achieved signifi-
cant accuracy improvements in speech recognition, it is com-
putationally expensive to deploy large-scale DNN in decoding
due to huge number of parameters. Weights truncation and
decomposition methods have been proposed to speed up de-
coding by exploiting the sparseness of DNN. This paper sum-
marizes different approaches of restructuring DNN and pro-
poses a new node pruning approach to reshape DNN for fast
decoding. In this approach, hidden nodes of a fully trained
DNN are pruned with certain importance function and the
reshaped DNN is retuned using back-propagation. The ap-
proach requires no modification on code and can directly save
computational costs during decoding. Furthermore, it is com-
plementary to weight decomposition methods. Experiments
on a switchboard task shows that, by using the proposed node-
pruning approach, DNN complexity can be reduced to 37.9%.
The complexity can be further reduced to 12.3% without ac-
curacy loss when node-pruning is combined with weight de-
composition.

Index Terms— Deep Neural Networks, Node Pruning,
Singular Value Decomposition, Speech Recognition

1. INTRODUCTION

The recently proposed Context-Dependent Deep-Neural-
Network HMM (CD-DNN-HMM) has achieved significant
improvement over the state-of-art CD-GMM-HMM for both
phoneme recognition[1, 2] and large vocabulary continuous
speech recognition(LVCSR) [3] tasks. It uses a deep neural
network (DNN) to calculate posteriors of senones states and
convert them into state-level conditional likelihood to be used
in HMM. To ensure good recognition performance, deep neu-
ral network (DNN) used in speech recognition, especially in
LVCSR, usually has a wide and deep structure. For exam-
ple, a typical CD-DNN-HMM with 3000 senone states has
7 hidden layers with 2000 nodes per layer, leading to more

This work was supported by the Program for Professor of Special Ap-
pointment (Eastern Scholar) at Shanghai Institutions of Higher Learning,
the China NSFC project No. 61222208 and JiangSu NSF project No.
201302060012.

than 30M parameters. The huge number of parameters incur
significant computational costs (mainly due to large matrix
multiplication) and memory requirements in decoding, which
limits its application in real-world LVCSR[4]. Hence, there
has been great interest in studying how to reduce the DNN
model complexity while preserving its powerful modeling
capacity[5, 6, 7], to speed up the decoding process.

Recent works all focused on exploiting the sparseness of
weights in DNN, referred to as weight operation in this paper.
One approach is direct weight truncation. It has been shown
that by first throwing away the weights close to zero (up to
85% weights can be pruned) and then retuning the pruned net-
work, DNN would not suffer any accuracy decline[5]. How-
ever, it is non-trivial to use this approach to actually speed up
decoding and special code implementation is required. An-
other type of weight operation is to restructure DNN by ex-
ploiting redundancy of weights matrices calculation between
layers. [7] aims to speed up both training and decoding by
replacing the weight matrix below the output layer with the
product of two small matrices. Further, [6] applies singular
value decomposition (SVD) on all weight matrices of a ful-
ly trained DNN, and retune the restructured model. These
approaches can dramatically reduce DNN complexity while
keeping the original recognition performance.

In contrast to the previous weight operation approaches,
this paper focuses on node level restructuring of DNN. The
proposed algorithm reshapes a fully trained DNN by node-
pruning, and then retunes it to prevent accuracy loss. Earlier
works of node-pruning[8, 9, 10] were all applied to small-
scale shallow neural networks with the motivation of alleviat-
ing the over-fitting problem for better performance. Most of
early proposed importance functions examine the outputs of a
node. It has not been investigated that how node-pruning can
help reduce complexity of a large scale DNN. In this work,
a new framework of node-pruning along with novel node im-
portance functions are proposed for reshaping DNN. To the
best of our knowledge, this is the first attempt to perform n-
ode operation in order to reduce complexity of DNN and ap-
ply it to LVCSR tasks. Considering that node operation is
independent of weight operation, node-pruning can be com-

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 245

bined with methods focusing on weights mentioned before to
get additive improvements on model size reduction.

The remainder of the this paper is organized as follows.
Section 2 describes the framework of node-pruning on DNN.
Then experimental setup and results on TIMIT and switch-
board English tasks are given in section 3, including results of
combining node-pruning with the SVD method[6]. Section 4
concludes the paper and discusses future research directions.

2. RESHAPING DNN BY NODE-PRUNING

The basic assumption of the proposed node-pruning frame-
work is that the DNN prior to pruning has redundant nodes.
Since there is no sound theoretical guidance of choosing the
the shape(number of hidden nodes of each layer) or scale
to achieve optimal DNN structure, people normally employ
certain level of redundancy to guarantee good decoding per-
formance. Sometimes, the redundancy can be large, for ex-
ample, DNN of 2048 nodes per layer may be adopted for
the TIMIT experiments. This practical choice makes the as-
sumption in this paper reasonable. Therefore, a pre-requisite
of node-pruning is a sufficiently wide and deep neural net-
work, referred to as original DNN. In this paper, the original
DNN is the one after parameter fine-tuning using the back-
propagation (BP) algorithm 1.

At each time instance, DNN accepts an input observation
vector o and converts it to posterior probability P (s|o), where
s is usually a senone state. Assuming that the DNN has L
hidden layers (layer l has N l hidden nodes) with layer 0 as
the input layer and layer L + 1 as the output layer, for each
input feature vector o, the output of node i of hidden layer l,
yli(o), can be computed as follows:

yli(o) = f

∑
j

wl
jiy

l−1
j (o) + bli

 , 1 ≤ l ≤ L (1)

where wl
ji is the transition weight on the arc between node j

of layer l − 1 and node i of layer l, bl is the bias vector of
layer l, and f is the activation function, normally a sigmoid
function, defined as:

f(x) =
1

1 + e−x
(2)

Node-pruning is only applied to hidden nodes in this
work. Prior to pruning, it is necessary to evaluate the im-
portance of each hidden node. In this paper, three node
importance functions are proposed as below.

• Entropy

1Some early experiments on TIMIT showed that using the RBM-
pretrained DNN as the original DNN resulted in noticeable performance
degradation. Hence it is not further investigated in the paper.

The entropy importance function directly examines the
activation distribution of each node. A node is activat-
ed if the output value is greater than a threshold (0.5 is
used in this paper). Let |O| be the total number of input
frame set O, which is chosen to be the whole training
dataset in this work. Let ali(O) and dli(O) be the total
number of frames which activate or de-activate node i
of layer l respectively (ali(O) + dli(O) = |O|), the en-
tropy importance function of node (l, i) is then defined
as

Je(l, i) =
dli(O)

|O|
log2(

dli(O)

|O|
) +

ali(O)

|O|
log2(

ali(O)

|O|
)

The intuition is that if one node’s outputs are almost i-
dentical on all training data, these outputs do not gener-
ate variations to later layers and consequently the node
may not be useful. The entropy importance function
is similar to the ones proposed in early works[10, 11]
since it focuses on the outputs of a node.

• Output-weights Norm (onorm)

onorm measures the importance of a node (l, i) by the
average L1-norm of the weights of its outgoing links,
which is formulated as

Jo(l, i) =
1

N l+1

N l+1∑
j=1

|wl+1
ij |

where N l+1 is the number of nodes of the layer l +
1. The intuition is that a node’s importance should be
reflected by its related weights after the BP process.

• Input-weights norm (inorm)

Similiar to onorm, inorm reflects the importance of a
node by the average L1-norm of the weights of its in-
coming links, which is formulated as

Ji(l, i) =
1

N l−1

N l−1∑
j=1

|wl
ji|

After training, a score is calculated for each hidden node us-
ing one of the above importance functions. Then all the nodes
are sorted by their scores and nodes with less importance val-
ues are removed. Along with the removal of a node, all rele-
vant incoming and outgoing links are also removed. It’s worth
noting that although every node removal will affect the scores
of some other nodes, in this paper, all nodes are only exam-
ined once with the scores calculated using the original DNN.

In contrast to weight truncation or decomposition, direct-
ly pruning hidden nodes will result in significant performance
degradation, as will be shown later in section 3.1. Hence,
the pruned DNN needs to be re-finetuned. This means node-
pruning requires more training time. However, different from
other methods, the reshaped DNN can be directly used with-
out any code or resources modification during decoding.

246

3. EXPERIMENTS

Various aspects of the node-pruning approach was first in-
vestigated in detail using the TIMIT corpus. With the best
importance function chosen from experiments on TIMIT, the
approach was applied to a LVCSR task: switchboard English.
Combination with SVD based weight decomposition was
then performed and achieved the largest reduction of DNN
complexity without significant performance degradation.

Note that ”complexity” of DNN here refers to the total
number of parameters of the weight transition matrices, which
was also adopted in [12]. The complexity is proportional to
the computational cost of calculating state posteriors from
DNN and directly reflects decoding speed of a DNN-based
speech recognition system.

3.1. Experiments on TIMIT
The proposed node-pruning approach was first investigated
on a phone recognition task using the TIMIT corpus. The
standard training set consisting of 462 speakers was used for
RBM pre-training and DNN fine-tuning, and the 24-speaker
core test set was used for evaluation. 40-dimensional Mel-
scale filter bank coefficients along with their first and second
derivatives were used as features. 11 consecutive frames were
concatenated to form the input vectors of DNN. 183 target
classes labels (3 states/phone, 61 phones) and mini-batches
of size 128 were used during training.

The RBM-pretrained DNN was fine-tuned with cross-
entropy objective function, along with a L2-norm weight-
dacay term of coefficient 10−6, a learning rate annealing and
early stopping strategies as in [1] was used. After decoding,
the 61 phone classes were mapped to a standard set of 39
classes for scoring. A 5-layer DNN with 1024 nodes per
layer was trained as baseline. The phone error rate (PER) is
20.79% and the complexity is 5.76M parameters.

4 4.5 5 5.5 6

x 10
6

20

25

30

35

40

45

50

55

60

65

complexity

P
E

R

baseline L5−1024

entropy without re−finetune

onorm without re−finetune

inorm without re−finetune

onorm after re−finetune

Fig. 1: Performance of node-pruned DNN without re-
finetuening on TIMIT.

To investigate how much damage would node-pruning do
to the baseline DNN, results of node-pruning with and with-
out re-finetuning were compared. 100, 250, 500, 750 hidden

nodes were pruned using the three importance functions de-
fined in section 2 respectively. Figure 1 shows that without
retraining, PER of the pruned DNN (1000 nodes pruned) in-
creases from 20.79% to around 40%. The severe performance
degradation has not been observed in weight decomposition
methods[6]. This implies that node pruning changes DNN
structure more significantly and retraining is necessary to ob-
tain comparable performance to the original DNN. This is jus-
tified by the performance of the onorm node pruning with re-
training in figure 1, which yielded almost the same PER as
the baseline DNN.

2.5 3 3.5 4 4.5 5 5.5 6

x 10
6

20.4

20.6

20.8

21

21.2

21.4

21.6

complexity

P
E

R

baseline L5−1024

random

entropy

onorm

inorm

Fig. 2: Performance of different node importance functions
after re-finetuning on TIMIT

To investigate the impact of using different importance
functions, the three importance functions defined in section
2 and a random score function were evaluated respectively.
The results are illustrated in figure 2. It is shown that node-
pruning with the proposed importance functions can get the
same or even better performance compared to the baseline
DNN after retraining, and onorm still has the best perfor-
mance. In contrast, random importance function generally
performed worse than the proposed ones and showed insta-
bility in performance change. This demonstrates that the pro-
posed ones give better and more stable indications about the
importance of hidden-nodes. From the above results, node
pruning can effectively obtain 37.50% complexity reduction
(from 5.6M to 3.5M) without hurting the decoding perfor-
mance. Since onorm showed the best and most stable per-
formance, it was used for the following experiments.

3.2. Experiments on Swithboard English
In this section node-pruning is evaluated on a LVCSR task,
Switchboard English. For fast experiments, a subset consist-
ing of data of 810 speakers(approximately 50 hours) was first
selected from the whole 309 hours data set for training. 13-
dimensional PLP features with per-speaker CMN and CVN,
along with first and second derivatives were extracted. Cross-
word triphone models with 3001 tied-states was used. S-
tate alignment for DNN training was generated using a G-
MM model. A trigram language model which was trained on

247

the transcription of the 2000h Fisher corpus and interpolat-
ed with a background trigram model was used for decoding.
For all the experiments, the switchboard (swb) part of the
Hub5’00 data set and the fisher (fsh) part of the RT03S data
set were used as the test set in this paper, which is the same
as [13]. The baseline DNN has 7 hidden layers of 2048 nodes
per layer. Node pruning with onorm importance function was
applied and the results of the subset and full training set are
shown in table 1.

System #Pruned DNN WER (%)
Nodes Complexity swb fsh

Baseline — 32.2M 25.7 28.8

Node-Pruning
6500 13.1M 25.6 28.9
7000 12.2M 25.5 28.8
8000 10.4M 26.0 29.1

Table 1: Word error rate(WER) versus pruned complexity on
switchboard 50 hours data

It can be seen that with 7000 hidden nodes pruned, about
62.1% DNN complexity reduction is obtained on the 50-hour
task without any performance loss. This again demonstrates
the effectiveness of the node-pruning approach.

3.3. Combination with Weight Matrices Decomposition
As stated in section 1, node-pruning is complementary to
weight matrices decomposition methods and may be com-
bined to get better complexity saving. This is investigated on
the 50 hours switchboard English task in this section. Here,
SVD[6] was applied on the weight matrices of a node-pruned
DNN. For comparison, standard SVD restructuring with dif-
ferent ranks was also performed. Note that SVD was applied
on all matrices except the one above the input layer.

SVD #Pruned DNN WER (%)
Rank Nodes Complexity swb fsh

192 — 6.5M 25.3 28.3
128 — 4.6M 25.9 29.0
192 6500 3.95M 25.7 28.5

Table 2: WER versus pruned SVD complexity on switch-
board 50 hours data

Table 2 shows that DNN complexity can be effectively re-
duced to 20.1% (rank 192) by pure SVD restructuring. SVD
with smaller rank will further reduce complexity at a cost
of slight WER increase. By combining SVD rank-192 with
node-pruning2, a more compact DNN (87.7% complexity re-
duction) can be obtained. It is worth noting that the resul-
tant compact DNN is smaller than SVD rank-128 and suffer
no accuracy loss from baseline DNN(table 1), which means

2SVD is only applied on matrices that has fairly large size (a r-rank SVD
can reduce complexity of a m× n matrix only if m× r+ r× n < m× n)

 SVD-192

SVD-192

SVD-192

SVD-192

SVD-192

output:3001 nodes

1767 nodes

1071 nodes

587 nodes

164

662 nodes

1604 nodes

1981 nodes

input:429 nodes

Fig. 3: illustration of node-pruning combined with SVD re-
structuring

node-pruning combined with SVD can achieve better tradeoff
between complexity and performance.

One interesting observation is that, in all the node-pruning
experiments(especially on SWB task), without explicitly re-
straining the layer size, the reshaped DNN reveals an extreme-
ly small middle hidden layer as shown in figure 3. This natu-
ral bottleneck shape not only implies some rationality of us-
ing bottleneck features, but also may reveal new properties of
DNN. The relevant investigation will be a future work.

4. CONCLUSION AND FUTURE WORK

In this work, a new framework of reshaping DNN by node-
pruning is proposed, which is complementary to the previ-
ously proposed approaches based on weight operation. Sev-
eral novel node importance functions are proposed and exper-
imented on the TIMIT task. The L1 norm of outgoing links,
referred to as onorm, is shown to be most effective. With
onorm node-pruning, on a 50 hours switchboard English task,
the DNN complexity can be reduced to 37.9% without losing
any performance. By further combination with SVD based
weight matrices decomposition, up to 87.7% DNN complexi-
ty reduction can be achieved without affecting the recognition
accuracy. The node pruning also reveals natural bottle-neck
shape of DNN, which will be investigated in the future.

It is worth noting that the complexity reduction depend-
s on the redundancy of the DNN. Node-pruning experiments
on the 309 hours SWB data set have also been conducted and
achieved exactly 50% complexity reduction with a bottleneck
middle layer of 547 nodes. More sophisticated investigation
on the model redundancy issue will also be carried in the fu-
ture.

5. ACKNOWLEDGEMENTS

We would like to thank Jian Xue for valuable discussions
about the SVD method.

248

6. REFERENCES

[1] Abdel rahman Mohamed, George E. Dahl, and Geof-
frey E. Hinton, “Acoustic modeling using deep belief
networks,” IEEE Transactions on Audio, Speech & Lan-
guage Processing, vol. 20, no. 1, pp. 14–22, 2012.

[2] Abdel rahman Mohamed, Dong Yu, and Li Deng, “In-
vestigation of full-sequence training of deep belief net-
works for speech recognition,” in Proc. InterSpeech,
2010.

[3] George E. Dahl, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks
for large vocabulary speech recognition,” IEEE Trans-
actions on Audio, Speech, & Language Processing, vol.
20, pp. 30–42, 2012.

[4] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao,
“Improving the speed of neural networks on cpus,” in
Proc. Deep Learning and Unsupervised Feature Learn-
ing Workshop, NIPS, 2011.

[5] Dong Yu, Frank Seide, Gang Li, and Li Deng, “Exploit-
ing sparseness in deep neural networks for large vocab-
ulary speech recognition,” in Proc. ICASSP, 2012.

[6] Jian Xue, Jinyu Li, and Yifan Gong, “Restructuring of
deep neural network acoustic models with singular value
decomposition,” in Proc. InterSpeech, 2013.

[7] Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, E-
bru Arisoy, and Bhuvana Ramabhadran, “Low-rank
matrix factorization for deep neural network training
with high-dimensional output targets,” in Proc. ICAS-
SP, 2013.

[8] Russel Reed, “Pruning algorithms-a survey,” IEEE
transactions on Neural Networks, vol. 4, no. 5, pp. 740–
747, 1993.

[9] Bruce E. Segee and Michael J.Carter, “Fault tolerance
of pruned multilayer networks,” Neural Networks, vol.
2, pp. 447–452, 1991.

[10] Shinji Yamamoto, T.Oshino, T.Mori, A.Hashizume, and
J.Motoike, “Gradual reduction of hidden units in the
back propagation algorithm, and its application to blood
cell classification,” in Proc. International Joint Confer-
ence on Neural Networks, 1993.

[11] J. Sietsma and R. J. F. Dow, “Creating artificial networks
that generalize,” Neural Networks, vol. 4, pp. 67–69,
1991.

[12] Oriol Vinyals and Nelson Morgan, “Deep vs. wide:
Depth on a budget for robust speech recognition,” in
Proc. InterSpeech, 2013.

[13] Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in Proc. ASRU,
2011.

249

