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ABSTRACT

Due to effective word context encoding and long-term context pre-
serving, recurrent neural network language model (RNNLM) has
attracted great interest by showing better performance over back-off
n-gram models and feed-forward neural network language models
(FNNLM). However, it still has the difficulty of modelling words
of very low frequency in training data. To address this issue, a new
framework of structured word embedding is introduced to RNNLM,
where both input and target word embeddings are factorized into
weighted sum of the corresponding sub-word embeddings. The
framework is instantiated for Chinese, where characters can be
naturally used as the sub-word units. Experiments on a Chinese
twitter LVCSR task showed that the proposed approach effectively
outperformed the standard RNNLM, yielding a relative PPL im-
provement of 8.8% and an absolute 0.59% CER improvement in
N-Best re-scoring.

Index Terms— Recurrent Neural Network, Word Embeddings,
Language Model, Speech Recognition

1. INTRODUCTION

Although the conventional back-off n-gram language model has
been widely used in the automatic speech recognition (ASR) com-
munity for its simplicity and effectiveness, it has long suffered
from the curse-of-dimensionality problem caused by huge number
of possible word combinations in real text. Various smoothing
techniques[1] are proposed to address this issue but the improve-
ments have been limited. Recently, neural network based language
models have attracted great interest due to its effective encoding of
word context history [2, 3, 4, 5].In neural network based language
models, both the word context and the target word are projected
into a continuous space and the projection, represented by the
transformation matrices in the neural network which are learned
during training. The projected continuous word vectors are also re-
ferred to as word embeddings.With the word context representation,
feed-forward neural network language models (FNNLM), including
NNLM [2, 3, 4, 5], or log-bilinear LM [6], have achieved both better
PPL and word error rate (WER) for ASR.

Despite the benefits of effective context modelling brought by
word embeddings, FNNLM is still a short-span language model and
not capable of utilizing long-term (e.g. context that is 5 or 6 words
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away) word history for the target word prediction. To address this
issue, recurrent neural network language model (RNNLM), which
introduces a recurrent connection in the hidden layer, is proposed
to preserve long-term context. It has achieved the-state-of-art per-
plexity and word error rate (WER) performance on various data sets
[7,8,9, 10, 11, 12], outperforming traditional back-off n-gram mod-
els and FNNLMs.

However, even with word context encoding and long term con-
text preserving, the neural network model’s prediction of rare words
(i.e. OOV or words that only occur several times in the training data)
is still poor due to data sparsity. To improve the performance of
neural network based LM, a natural extension is to incorporate rich
features, such as syntactic or morphological features, into the input
layer of FNNLM or RNNLM [13, 14, 15]. The hope is that neural
network can learn context representation via richer input informa-
tion. Although overall performance can be improved with richer in-
put features, rare word prediction improvement is still limited. The
weights for the rare words on the output layer are still poorly trained
since they always receive negative gradient during training. An al-
ternative line of thought is to further work on embeddings of the
target words on the output layer. In [16], factorised word embed-
dings are investigated within a log-bilinear LM framework, where
both input and target word embeddings are represented as a sum-
mation of the surface word embedding and its corresponding mor-
pheme embeddings. Although the structured word embedding idea
in [16] provides a promising methodology, it has not been inves-
tigated within the state-of-the-art RNNLM framework and its per-
formance on ASR has not been tested. Furthermore, using additive
morpheme embeddings to form structured word embedding some-
times may lead to negative effects because linguistic correlation of
a morpheme in different words can be ambiguous or even useless.
Careful pre-processing and prior linguistic expert knowledge have
to be used.

In this paper, a complete structured word embedding frame-
work is investigated for RNNLM used in ASR. Here, both target
word embeddings and input word embeddings in RNNLM are en-
hanced by sub-word embeddings using a linear combination . A
word-dependent scaling factor is introduced for each word to reflect
the importance of the additional sub-word embeddings. This offers
more flexibility of the word embedding factorisation and allows the
dependence of the sub-word embeddings to be learnt from data. The
proposed RNNLM with structured word embedding is instantiated
using a Chinese ASR task in this paper. This is because character
is a natural and meaningful sub-word unit in Chinese, and the map-
ping between word and the corresponding characters is trivial. Note
that the proposed approach be readily extended to alphabetical lan-
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guages.

The rest of the paper is organized as follows. In section 2, a
detailed description of RNNLM with structured word embeddings is
given. Experimental results and analysis are presented in section 3.
Finally, section 4 concludes the paper and discusses the future work.

2. RNNLM WITH STRUCTURED WORD EMBEDDINGS

In this section, the architecture of standard RNNLM is reviewed,
then the proposed RNNLM with structured word embeddings is de-
scribed in detail.

2.1. Standard RNNLM

Language models aim to model the probability of the next word
w1 based on word history (or context). It can be denoted as
P(wis1|w}), where w} represents the word sequence from time 1
to t. Short-span LMs, either n-gram or FNNLM, usually employ
the Markov assumption that P(wit1|w}) =~ P(wip1|wi_niq)-
RNNLM, however, preserves long-term context by introducing re-
current” connections which propagate the output of the hidden layer
of the previous time instance to the current time instance, as depicted
in figure 1.

output layer |Vword| |

Who
hidden layer h(t) T ~< ~  recurrent

~
~
Whn S

Win \

input layer |Vword| | h(t-1)

Fig. 1. Architecture of standard RNNLM

The input layer, denoted as v(¢), encodes the current word w;
using 1-of-V coding. The activation of the hidden layer of time ¢t —
1, denoted as h(¢ — 1), is propagated back to the input layer. The
RNNLM output vector y(t) is the language model probability of all
words in the vocabulary at time ¢+ 1 given the whole word sequence
history up to time ¢, which is obtained using a softmax function. The
propagation process of RNNLM can be formulated as

h(t) = f(WIHV(t) + h(t — 1)) D
u(t) = Wyoh(t) 2

ek (t)
u; (t)
ZiEVword e

where activation function f is an element-wise sigmoid function,
u(t) is a |Viora| dimensional vector denoting the input to the final
softmax function. Wiy, Wy, Wy denote the transformation matri-
ces in the neural network, which form the parameter set of a standard
RNNLM:

P(wig1 = k‘|w§) =yr(t) = 3)

ernnlm = {WIH, WHH7 WHO}

Since each neuron in the input or the output layer represents a word,
each column in Wiy or each row in Wyg can be viewed as a contin-
uous vector representation of the corresponding word, i.e. the word
embedding.

RNNLM can be trained using the “back propagation through
time” (BPTT) algorithm[17]. Note that since 1-of-V coding is used

in the input layer, most computational cost is induced by propagation
on Wy, which can be sped up by segmenting output layer in to word
classes [18]:

Payace(we|w!™Y) = P(wi|es, wi ™) PegJwi ™) )

Note that the output layer is first extended to incorporate neurons
that represent the classes. During inference or training, only the
fraction of Wyg related to the classes and words in the same class
as the target word is propagated or updated, saving a lot of compu-
tation. Commonly used word classes are frequency-based classes.
Class-based RNNLM is widely used because significant speed-up
can be achieved with this technique at a cost of slight degradation of
performance.

2.2. RNNLM with Structured Word Embeddings

The introduction of structured word embedding aims to give a bet-
ter representation for rare words they can borrow well-trained shared
sub-word embeddings from high-frequency words, with the assump-
tion that the data sparsity issue for sub-word units is much less se-
rious than words. In addition to input and target word embeddings,
two set of sub-word embeddings are added to the model which are
shared among the input and target words, respectively. The word
embeddings are then enhanced by summing up the additional sub-
word embeddings. As noted in section 1, not all words can be ex-
pressed well by its sub-word units, so a word-dependent scaling fac-
tor « is introduced for each word to endow the model more flexibil-
ity. The definition of sub-word may vary for different languages. In
this paper, Chinese is used to instantiate the structured embedding
framework and character is employed as the sub-word unit. It is
worth noting that sub-word definition is independent of the frame-
work proposed in this paper and hence, the RNNLM with structured
word embedding can also be readily applied to other languages pro-
vided the mapping between word and sub-word can be well defined.
Equation (5) shows both Chinese and English examples of structured
word embeddings:

Eng: decaf = decaf + Oldecaf((% + caf)
— — - =
Chn: 1REF = R + oy (R 4+ 1) 5)
SN~~~ ———

word—embd char —embd

To incorporate character embeddings into the RNNLM model,
two additional hidden layers are added into the neural network, as
shown in figure 2. Apart from two sets of character embeddings, a
sparse 0-1 mapping matrix(|Viora| by | Venar|) is constructed to map a
word index into its corresponding character indexes. The matrix is a
constant matrix as there is deterministic and trivial mapping between
Chinese words and characters. When used for other languages, the
construction of the mapping matrix may need linguistic knowledge
and can be probabilistic. The input and the output weight matrices
with structured word embeddings can be written as

Wio = Wi + diag(cto)WaapWoo
VAVIH =Wy + WICW,,Tapdiag(ai)

where Whap is the |Viera| X |Venar| constant mapping matrix, Wy
and Wy are the input and output word embedding matrices, Wic and
Wi are the input and target character embedding matrices, o; and
o, Which are vectors of length |Viera|, denote the word-dependent
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scaling factors for input word embeddings and target word embed-
dings, respectively, diag(c) means a |Viora| X |Viora| matrix whose
diagonal is cx.

3.1. LM and ASR Performance Evaluation

In the experiments, back-off n-gram models and standard RNNLM
and class-based RNNLM were used as baselines, on which are struc-
tured word embeddings are then applied. As note in section 2.2,

output layer | |Vwora| |
several variations of rnnlm_se exist and it is worth investigating the
Winap separate or combined effect of applying structured input embeddings
|Vehar| Who or structured target embeddings. Evaluation results are shown in ta-
ble 1 and table 2 for RNNLM and class-based RNNLM, respectively,
Woc where ”SI”, ”SO”, ”a” stand for structured input word embeddings,
hidden layer h(t) T TS~ o eurrent structured ta.rget word embeddings and word-dependent scaling fac-
Wic N . tors, respectively.
[Vetar] W, L \\ Structured Embedding | #Hidden
Wi ; v IM =5 750 o | Unis | PPL | CER®%
input layer Viword] | | h(t-1) 3-gram N/A N/A | 4515 | 3532
4-gram N/A N/A 448.5 35.30
Fig. 2. Architecture RNNLM with structured word embeddings. RNN — — — 200 410.5 33.63
— — — 300 407.9 33.50
RNNLM with structured word embedding can be obtained by Vv — — 408.7 33.56
replacing Wiy and Wy in equation (1) and (2) with WIH and WHO. RNN - v - 200 405.0 33.35
The proposed model, denoted as rnnlm_se, has free parameter set: +SE Vv Vv — 387.1 33.08
Vv Vv N4 374.2 33.04

Ornnlnse = {WIH, WHH, Who 5 Wi , O, WDC7 Oéo}

Note that structured input and target word embeddings can be
either or both applied(e.g. Input word embeddings can be left un-
changed by forcing Wic = 0), thus bringing variations of rnnlm_se,
which will be closely studied in section 3. The proposed model can
be trained using standard BPTT algorithm, with slight modification
that errors are back-propagated through Woc and Wyo and aggre-
gated on the hidden layer. In all our experiments, all weights are
randomly initialized and o;, o, are initialized to 1.

3. EXPERIMENTS

RNNLM with structured word embeddings was evaluated on a Chi-
nese twitter LVCSR task. Unlike alphabet based languages like En-
glish, Chinese is a character based language, so no word factori-
sation is needed. The training data consisted of 780k sentences and
4m tokens(tokenization is done by Chinese word segmentation). The
cross-validation set for RNNLM training consisted of 25k sentences
and 157k tokens. A word vocabulary of size 50k(including single-
character words) whose OOV rate on test data is 1.8%, and a char-
acter set of size 6k which covered all words in the vocabulary are
used. OOV words are neglected when calculating perplexity. The
test dataset consists of 6-hour transcribed smart-phone audio data
(6k utterances). It was used for both PPL and character error rate
(CER) evaluation. For fair comparison, in all RNNLM training the
network was unfolded 3 times(bptt=3).

The acoustic model was a context-dependent DNN-HMM][19]
model with 6021 tied triphone states, trained on 600 hours of audio
data collected from smart-phones. The acoustic feature used was
13-dimensional PLP with its first and second derivatives. Altogether
11 frames, 5 on the right and 5 on the left, were used as the input to
DNN. An RBM initialized DNN with 6 hidden layer and 2048 nodes
per layer was then trained using stochastic gradient descent. Back-
off N-gram model with Kneser-Ney smoothing is used as language
model for generating lattice, from which N-best lists are generated.
N-best re-scoring was used to evaluate the ASR performance. A LM
scaling factor of 11 was used for all experiments and 100-best lists
were used for re-scoring with different language models. The oracle
CER of the 100-best lists is 23.57%.

Table 1. Evaluation results of standard RNNLM with structured
word embeddings

The hidden layer size of the baseline RNNLM is set to 200 be-
cause using larger hidden layer did not give further performance im-
provement. It is shown that RNNLM obtained significant improve-
ment over the back-off n-gram models. RNNLM get a significant
PPL(relative 8.4%) and CER (absolute 1.7%) improvement over the
back-off n-gram LM. The proposed model, rnnlm se has a rela-
tive PPL improvement of 8.8% and an absolute 0.59% CER im-
provement comparing to the baseline RNNLM. Also note that small
performance improvement can be achieved by applying either struc-
tured input or target word embeddings.

It is also interesting to investigate the performance of structured
word embeddings on class-based RNNLM in which target word em-
beddings are trained separately for each class but character embed-
dings are shared across classes. In the experiment, all words were
clustered to 30 classes according to their frequency in the training
data. The results are shown in table 2. Comparing to the baseline
class-based RNNLM whose hidden layer size is 300, rnnlm_se has
a relative PPL improvement of 9.1% and an absolute CER improve-
ment 0.5%.

Structured Embedding | #Hidden
M SI [ SO [ « Units PPL | CER(%)
Class — — — 300 425.1 33.80
RNN — — — 400 420.2 33.62
vV — — 409.4 33.58
Class
RNN — vV — 300 413.3 33.60
SE v N4 — 392.5 33.32
+ Vv v v 386.1 | 33.30

Table 2. Evaluation results of class-based RNNLM with structured
word embedding(class number is 30)

Finally, evaluation results of interpolated LM are shown in table
3, where standard non-class RNNLM and the proposed rnnlm_se is
interpolated with the 4-gram LM and interpolation weight for rnnlm
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and rnnlm_se is set to 0.6. It is shown that structured word embed-
dings give a relative PPL improvement of 5.4% and an absolute CER
improvement of 0.45%.

| LM [ PPL | CER% |
ronnlm + 4-gram 3423 | 33.47
rnnlm_se +4-gram | 323.7 | 33.02

Table 3. Evaluation results of interpolated LM

In this section, structured word embedding is applied on both
standard and class-based RNNLM and both PPL and CER improve-
ment are observed. It is also shown that either structured input or
target word vectors can improve RNNLM’s performance and their
effects are complementary.

3.2. Discussion and analysis

To investigate on what kind of tokens RNNLM can get most gain
from structured word embeddings, we divided the test text tokens
in to three categories : low-frequency, medium-frequency and high-
frequency tokens. Here frequency means the number of occurrences
of the token in the training data, and the thresholds are carefully
tuned so that the three categories’ ratio in the test textis 1 : 1 : 1.
We then calculated PPL for the three categories separately, the re-
sults are shown in figure 3. It is shown that structured word em-
beddings deliver a very significant gain for low-frequency tokens,
but doesn’t help the model predict high-frequency tokens. Further,
on the case of rare tokens, factoring target word embeddings gives
much better gain than factoring input word embeddings. The reason
could be that having better context representation doesn’t directly
help predict a rare word since the target word’s representation is still
poorly trained.

25 T

:
[ structured input embedding
[ structured target embedding

I both
20 H

relative PPL improvement(%)
(&, 8
T
.

L ﬂﬂl | m

. . .
low-frequency tokens medium—frequency tokens high—frequency tokens

Fig. 3. PPL improvement of variations of rnnlm_se compared to
the baseline class-based RNNLM on test data tokens of different fre-
quencies.

Although adding word-dependent scaling factor did not give fur-
ther significant performance improvement, it reflects whether char-
acter embeddings actually help modelling a specific word. In figure
4 we show « for target words of different frequencies. All word
are sorted by their frequencies first, then we average their o’s for
each bin. It is observed that high-frequency words tend to have a

small « since they are covered by sufficient data, and low-frequency
words show more dependence on character embeddings. It would
also be interesting to check words whose « are relatively high or
low , in table 4 some examples are shown, most examples are cho-
sen to have moderate frequency(between 20 and 100 counts in train-
ing data). Some phenomenon can be observed : high-frequency
words, proper nouns, terminologies, words contain ambiguous char-
acters and some compositionally complicated words have a low «,
and words with high « usually consist of unambiguous characters or
characters that have similar meanings. We conclude that the pro-
posed word-dependent scaling factor gives the model more flexi-
bility, but still, additive word representation has its limitations and
sometimes fails to compose” a proper representation out of charac-
ter embeddings.

a, > 1.5 | E S AL K - Bt
a, <05 | N EARTEERENEEARS

Table 4. Examples of words who have a low or high o in rnnlm_se

300

I \ord count D/O'OPO'O
= © = word-dependent scaling factor O’Qe 1
250 00
0000000 © _
2% s
108 8
g
£ 8
8 106 £
E -
B I}
2 g
® 3
104 o
S
B
o
&
10.2
0
0 5 10 15 20 25 30

word bins

Fig. 4. Word-dependent scaling factor for words of different fre-
quencies in rnnlm_se.

4. CONCLUSION AND FUTURE WORK

In this work, both target word embeddings and input word embed-
dings in RNNLM are enhanced by additive character embeddings,
and word-dependent scaling factor is introduced to endow the model
more flexibility. The character embeddings suffer less data sparsity
problem and are shared among the words. The evaluation is done
on a Chinese twitter data set and the proposed model got a rela-
tive PPL improvement of 8.8% and an absolute 0.59% CER im-
provement comparing to the baseline RNNLM. Further gain can be
achieved when interpolated with 4-gram LM. It has also been shown
that structured word embeddings greatly help the model give a better
representation for rare words.

For future work, adopting additive sub-word embeddings has
its limitations : it can not deal with ambiguous sub-word units and
sometimes fail to compose a proper representation of a word out of
its sub-word embeddings. Therefore, a more sophisticated way of
factoring word embeddings is worth investigating.
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