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ABSTRACT

The CD-DNN-HMM system has became the state-of-art
system for large vocabulary continuous speech recognition
(LVCSR) tasks, in which deep neural networks (DNN) plays
a key role. However, DNN training suffers from the van-
ishing gradient problem, limiting training of deep models.
In this work, we address this problem by incorporating the
successful long-short term memory (LSTM) structure, which
has been proposed to help recurrent neural network (RNN)
to remember long term dependencies, into DNN. Also, we
propose a generalized formulation of the LSTM block, which
we name general LSTM(GLSTM). In our experiments, it is
shown that our proposed (G)LSTM-DNN scales well with
more layers, and achieves 8.2% relative word error rate re-
duction on the 2000-hour Switchboard data set.

Index Terms— speech recognition, DNN, LSTM, acous-
tic model

1. INTRODUCTION

Recently, there has been great interest to use recurrent neural
networks (RNN), especially with the long-short term mem-
ory (LSTM) structure, as an acoustic model in the automatic
speech recognition (ASR) community[1, 2, 3, 4]. The LSTM-
RNN has been shown to be able to preserve long-term tem-
poral information in various tasks[5, 6]. By stacking multi-
ple layers of LSTM layers, LSTM-RNN shows better perfor-
mance than both the RNN model and the state-of-art DNN
model.

The LSTM structure addresses the “vanishing gradient”
problem[7] suffered by RNN training: the gradient flow will
decay sharply through a non-linear operation. LSTM[8] alle-
viates this problem by introducing a “memory cell” structure
which allows the gradient to travel without being squashed
by a non-linear operation. Also, it has a set of gates which
enable the model to decide whether to memorize, forget, or
output information.

The “vanishing gradient” problem also exists for DNN[9],
which is usually alleviated by layer-wise pre-training[10, 11].
In this work, we apply the LSTM structure to a DNN model.
The “memory cell” structure in the LSTM structure can help

train a deeper DNN, and the “gates” have potential to grant
DNN more modeling power.

The idea of using the LSTM-like memory structure along
depth instead of recurrence has been investigated by a few
recent works[12, 13, 14]. [12, 14] proposed a unified way of
using LSTM for multiple dimensions, and [13] introduces a
simple memory structure into DNN. However, none of these
works conducted experiments on LVCSR tasks.

The contributions of this work are as follows. Firstly, we
incorporate the LSTM structure into DNN for LVCSR tasks
and show the proposed model has better modeling power
than the baseline DNN. We also report a way to prevent the
model from over-fitting. Secondly, by spotting a symmetry
of the cell layer and the output layer in the LSTM structure,
we propose a general formulation of LSTM which provides
a new view of that successful structure. Finally, we show
that the proposed LSTM-DNN achieves significant WER
improvement when applied to a large-scale LVCSR task.

2. MODEL FORMULATION

In this section, we describe in detail the formulation of the
LSTM-DNN structure.

2.1. The formulation of LSTM-DNN
Denoting the output of each non-linear layer in DNN as hl,
we first formulate the building block of a normal DNN with
L hidden layers as follows:

hl = φ(W lhl−1 + bl)

y = softmax(WL+1hL + bL+1)
(1)

where W l is the transformation matrix and bl is the bias vec-
tor, φ can be a chosen non-linear operation such as Sigmoid,
Tanh, orRELU . The input feature vector x is denoted as h0,
the output y, which is the state posterior P (s|x), is obtained
after a soft-max normalization operation.

The proposed LSTM-DNN is obtained by stacking the
LSTM-DNN blocks instead of the original normal DNN
blocks. The LSTM-DNN network structure is depicted in
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Fig. 1. The structure of LSTM-DNN and GLSTM-DNN
block, each square represents a layer output vector, each trian-
gle refers to a gating operation, an circle means an propagat-
ing operation(”A” means an affine operation and ”S” means a
non-linear operation)

Figure 1(a) and layer l is formulated as follows: 1

il = Sigmoid(W l
hih

l−1 +W l
cic

l−1 + bli)

f l = Sigmoid(W l
hfh

l−1 +W l
cfc

l−1 + blf )

cl = il � φ(W l
hch

l−1 + blc) + f l � cl−1

ol = Sigmoid(W l
hoh

l−1 +W l
coc

l + blo)

hl = ol � φ(cl)

(2)

where vector il, f l, ol are the input gate, forget gate, out-
put gate, respectively, φ is a non-linear function such as
Tanh. Note that a different set of transformation matrices
are used for each layer block, which introduces significantly
more parameters that a normal DNN. In this work, diago-
nal matrices are used for W ∗

ci,W
∗
cf ,W

∗
co in the LSTM-DNN

block as in [2]. In order to save parameters, the same set of
Wci,Wcf ,Wco can be used across layers.
2.2. The formulation of GLSTM-DNN
The formulation of the LSTM-DNN block (2) is much more
complicated than the normal DNN block (1) because it in-
troduces an additional layer of cell memory, which is usually
regarded as an inner structure. By regarding the cell memory
layer cl and output layer hl both as normal layers, we propose
a new structure called the general LSTM (GLSTM) block,
which is depicted in Figure 1(b) and formulated as follows:

1Readers maybe confused that no x appear in our formula, which is com-
mon in the LSTM-RNN literature[5]. In our preliminary experiments, we
added links from the input vector to every hidden layer but got worse perfor-
mance, so they are not kept.

il = Sigmoid(W l
h1ih

l−1 +W l
h2ih

l−2 + bli)

f l = Sigmoid(W l
h1fh

l−1 +W l
h2fh

l−2 + blf )

hl = il � φ(W l
hhh

l−1 + blc) + f l � hl−2

(3)

where we follow the same notation convention as in Equa-
tion 2. Here no diagonal matrices are used.

Compared to the LSTM-DNN block, the GLSTM-DNN
doesn’t lose any modeling power. By stacking two GLSTM-
DNN blocks, we get a LSTM-DNN block with additional
operations. Furthermore, every layer in a GLSTM-DNN
has a “memory” feature for the gradient flow to bypass the
non-linearity, which doesn’t exist for the h layers in the
LSTM-DNN. Finally, the GLSTM-DNN block provides a
new, clearer view of the successful LSTM structure, bringing
a few natural extensions such as connecting memory from
more than one previous layer.

3. EXPERIMENTS

We first analyze the modeling power and limitations of the
proposed LSTM-DNN and GLSTM-DNN on a normal 80-
hour LVCSR task AMI, and then apply it to the 2000-hour
Switchboard and Fisher data set.
3.1. Experiments on AMI
First, we test the modeling power of different models on the
public AMI LVCSR dataset2. The AMI corpus defines several
partitions of the data for different purposes, and we choose to
use the “full-corpus-ASR partition of meetings.”3 It contains
81 hours of training data, 9.7 hours of development data, and
9.1 hours of evaluation data. We use the close-talking IHM
(individual headset microphone) signals exclusively in our ex-
periments.

The base acoustic features are 40-dimensional mel-
frequency filterbank coefficients(MFCC), processed through
a 10th root filter in place of the more common logarithmic
compression. These features are then processed using ut-
terance level cepstral mean normalization. Following the
CD-DNN-HMM framework, context dependent tri-phone
HMM is used as phonetic model. They share a total of 5000
unique context dependent states, which corresponds to the
output dimension of the DNN acoustic model. A context
window of 27 is used(input dimension of DNN is 1080). The
labels for training data are created by forced alignment with a
classic GMM-HMM acoustic model trained on that data. The
GMM-HMM has 24 gaussian components per state and 5000
shared states.

Cross entropy is used as the training criterion for DNN.
In our experiments, the mini-batch size is fixed to 256, and a
L2 regularization of 1e-6 is used. The learning rate is intially

2http://groups.inf.ed.ac.uk/ami/download/
3http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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set to a large value, and is halved if the model performance
on the development data degrades. No momentum is used.
24 hours of data will be fetched for every new epoch, and it
takes around 50 epochs for the training to complete.

For the Sigmoid-DNN and highway-DNN (we follow the
exact formulation as in [13]), we tried different numbers of
layers and report the model with the best performance on
cross-validation data. Note that for fair comparison with the
highway-DNN, a normal DNN block is used for the first
hidden layer in our (G)LSTM-DNN structure, followed by
(G)LSTM-DNN blocks. As shown in Table 1, the high-
way network, which can be regarded as a simplified version
of GLSTM-DNN, enables deeper DNN to learn but can
not achieve better performance in this task. On the other
hand, severe over-fitting is observed for RELU-DNN and
LSTM-DNN. This indicates these models have great model-
ing power, but makes comparison based on training with the
cross-validation difficult.

Model Scale CE(CV) CE(TR) WER
Sigmoid-DNN 2048L6 2.04 1.46 31.4
highway-DNN 2048L10 2.04 1.4 31.8
RELU-DNN 2048L6 2.49 1.25 -
LSTM-DNN 2048L3 2.34 1.28 -

Table 1. Results of training with cross-validation for different
models, “2048L6” is to be interpreted as 6 hidden layers of
2048 hidden units. Cross entropy(CE) per sample is reported
for the final model on the training and cross-validation data,
WER(%) is reported for the models that did not over-fit.

To present a direct comparison of the modeling power of
the proposed LSTM-DNN and the RELU-DNN model, we
optimize the models directly on the training data without re-
gard to the over-fitting issue or development set performance.
Two critical question are to be discussed: how do the mod-
els scale with more layers, and how do they scale with total
parameter count.

In Figure 2, performance of the baseline RELU-DNN is
compared with the proposed (G)LSTM-DNN with varying
model depth. The introduced memory path and gates in the
proposed (G)LSTM-DNN model are working as expected
to enable deeper (G)LSTM-DNN to get better performance,
while RELU-DNN can not. We conclude that our proposed
model has potential to out-perform the baseline DNN when
applied to a larger LVCSR data-set.

To test the scaling of model power with model size, a
large range of model scales and a few natural variants of the
proposed (G)LSTM-DNN is tried, and the results is shown in
Figure 3. Parameter number of each model is calculated and
shown on the x-axis. The convex-hull of the baseline RELU-
DNN model performance is drawn on the figure for easier
comparison. It can be observed that although (G)LSTM-
DNN achieves better performance compared to RELU-DNN
of the same scale (hidden layer width and layer size), it does
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Fig. 2. Performance of RELU-DNN, LSTM-DNN and
GLSTM-DNN of different layer size with 1024 hidden units

not achieve a good trade-off in terms of parameter number.
LSTM-RELU-DNN has the same of number of parameters
as the LSTM-DNN of the same scale and achieves better per-
formance. It can be also observed that tying the gates helps
GLSTM-RELU-DNN to get a better trade-off, which is rea-
sonable because GLSTM-DNN introduces considerably more
parameters. Overall, our proposed (G)LSTM-DNN does not
get a significantly better trade-off than RELU-DNN in terms
of parameter number, which is a limitation of the proposed
model: the powerful model comes at a price of large number
of parameters.
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Fig. 3. Results for training data optimization. “(G)LSTM-
RELU-DNN” means (G)LSTM-DNN with RELU as the
non-linear function(φ in formula 2).“(G)LSTM-TIE-RELU-
DNN” means (G)LSTM-RELU-DNN with theW parameters
in the gating functions tied, as discussed in section 2.1.

Finally, L2 regularization and dropout[15] is tried for
RELU-DNN and (G)LSTM-DNN to avoid over-fitting. A
fixed dropout rate of 0.3 is applied for the first 20 epochs and
reduced to zero afterwards, and a large L2 regularization of
1e−5 is tried. Tests are conducted for a 2048L6 RELU-DNN
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and (G)LSTM-DNN of different scales. As shown in Table 2,
dropout prevents over-fitting of these models and gives rea-
sonable decoding performance. However, achieving the best
decoding result on AMI is beyond the scope of this work.

DNN Scale no dropout with dropout
Model TR CV TR CV WER
RELU 2048L6 1.1 2.36 1.4 2.05 30.8

GLSTM 1024L8 1.1 2.15 1.3 1.96 30.3
LSTM 2048L6 1.04 2.09 1.28 1.99 31.11

Table 2. Performance of RELU-DNN, (G)LSTM-DNN with
or without dropout. Cross-entropy on the training(TR) and
cross-validation (CV) data and WER(%) on the test data are
reported.

3.2. Experiments on Switchboard
To avoid over-fitting observed on the AMI data set, we move
to the large-scale Switchboard 2000 hour data set. The train-
ing data consists of two publicly available Switchboard CTS
corpora: 309 hours of SWBD1 and 1700 hours of Fisher. For
testing, we use the publicly available Hub5’00 “sw”set (1831
utterances). The decoding language model is an interpola-
tion of a tri-gram trained on the Fisher transcripts, and one
trained on written background text. The same feature extrac-
tion procedure as on AMI data is followed. The labels for
training DNN was created by forced alignment with a classic
GMM-HMM acoustic model trained on 3850 hours of conver-
sational speech, including Switchboard, Fisher, and lecture
recordings. The GMM-HMM system has 24 gaussian com-
ponents per state and 9000 shared states, which is also the
output dimension of DNN. For DNN input a context window
size of 23 is used.

During DNN training, 24 hours of data is fetched to form
each epoch. A fixed learning rate and mini-batch size, and
a momentum of 0.9 is used. In our baseline DNN experi-
ment, only 1 GPU is used for training. However, to speed
up the RELU and (G)LSTM-DNN experiments, we switch to
4-GPU parallel training with the one-bit SGD[16] technique.
All models are trained until no improvement is observed on
the cross-entropy of the training data.

DNN with 7 layers of 2048 hidden units are trained for the
baseline Sigmoid and RELU DNN. We also tried 2048L9 and
3072L7 Sigmoid-DNN but observe no performance gain. In
Table 3, it is shown that LSTM-DNN4 has 8.2% relative per-
formance gain compared to the baseline DNN, which means
the introduced memory and gating structure is helping DNN
to get better performance. However, the significant perfor-
mance gain comes at a price of vast parameters: the LSTM-
DNN has 3 times the parameters of baseline DNN. By ty-
ing the gating parameters, LSTM-TIE-DNN gets 4% relative
performance gain with comparable parameter count with the

4Due to time and resource limitation, we only tried (G)LSTM-DNN with
Tanh.

baseline DNN model. Unfortunately, the 2048L11 GLSTM-
DNN has really large amounts of parameters, but does not
have significant decoding performance gain.

Model Scale PN WER(%)
Sigmoid-DNN 2048L7 45M 15.69
RELU-DNN 2048L7 45M 16.29
LSTM-DNN 2048L7 121M 14.39

LSTM-TIE-DNN 2048L7 58M 15.05
GLSTM-DNN 2048L11 230M 15.02

Table 3. Decoding results on Switchboard for baseline
models and our proposed models, parameter number is also
shown. All models are randomly initialized. Parameter num-
ber is calculated for each model.

In Figure 2 it is shown that our proposed model scales
well with more layers on AMI. To investigate whether this
scaling behavior extends to a large data set like 2000-hour
Switchboard , small-scale GLSTM-DNN models of different
layer numbers are tried, and their learning curves are shown in
Figure 4. It is shown that the GLSTM-DNN can also achieve
better performance with more layers on Switchboard.
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Fig. 4. Learning curves of GLSTM-DNN of different layers
of 1024 hidden units

4. CONCLUSION AND FUTURE WORK

In this work, the modeling power of our proposed (G)LSTM-
DNN is analyzed in various aspects. It is shown that our
model is capable of utilizing deeper layers and get signif-
icant decoding performance gain on the Switchboard 2000
hour data set. We also proposed an generalized formulation,
namely GLSTM. One concern, as discussed in section 3.1, is
that the performance of the proposed (G)LSTM-DNN comes
at a price of large parameter number, it would be worthwhile
to find a configuration(e.g. using diagonal matrices) that
saves parameter while retaining its modeling power.

Finally, an exciting next step would be to incorporate the
LSTM-DNN back into the LSTM-RNN AM so that it would
have LSTM structure both in depth and recurrence.
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