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In the previous lecture we saw that there always exists a Nash equilibrium in two-player zero-sum
games. Moreover, the equilibrium enjoys several attractive properties such as polynomial-time tractabil-
ity, convexity of the equilibrium set, and uniqueness of players’ payoffs in all equilibria. In this lecture
we explore whether we can generalize this theorem to multi-player zero-sum games. Before answering
the question, let us formally define multi-player zero-sum games and generalize the concept of a Nash
equilibrium from last lecture to these games.

1 Definitions

We start with a formal definition of multiplayer games.

Definition 1. A (finite) multiplayer game is specified by:

• the number of players n; we denote the set of players by [n] = {1, 2, . . . , n};

• for each player p ∈ [n]:

– a finite set of pure strategies Sp available to player p;

– a utility function up :
∏

p∈[n] Sp → R, specifying the payoff to player p for each selection of
pure strategies by the players of the game.

We often summarize this information in a tuple 〈n, (Sp)p∈[n], (up)p∈[n]〉.

Relative to a game specification, we introduce a few useful concepts/pieces of notation:

Definition 2. Let 〈n, (Sp)p∈[n], (up)p∈[n]〉 be a multiplayer game. Then

• the set of mixed strategies available to player p are all distributions over Sp, denoted

∆Sp =

xp˜ ∈ RSp

≥0

∑
sp∈Sp

xp(sp) = 1

 ;

• an element of S :=
∏

p∈[n] Sp is called a pure strategy profile;

• an element of ∆ :=
∏

p∈[n] ∆Sp is called a mixed strategy profile;

• if s ∈ S, we denote by sp the pure strategy of player p in s; in particular, sp ∈ Sp; we also denote
by s−p the vector of pure strategies of all players except p in s; in particular, s−p ∈

∏
q 6=p Sq;

• similarly, if x˜ ∈ ∆, we denote by x˜p the mixed strategy of player p in x˜; in particular, x˜p ∈ ∆Sp ;
we also denote by x˜−p the vector of mixed strategies of all players except p in x˜; in particular,

x˜−p ∈∏
q 6=p ∆Sq ;

• finally, we are quite lax in our notation and often omit ∼ from under vector symbols.

When players are using randomized strategies it is assumed that they sample from their mixed
strategies independently of the other players. Hence, given a mixed strategy profile x˜ ∈ ∆, the expected
payoff of player p is given by

up(x˜) =
∑
s∈S

up(s)
∏
q∈[n]

x˜q(sq),
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where, for a pure strategy profile s ∈ S,
∏

q∈[n] x˜q(sq) is just the probability that s is arises, when
players independently sample their mixed strategies. We use the following shorthand for the above
(ugly) expression:

up(x˜) = Es∼x˜ [up(s)] ,

where it is implied in the notation “s ∼ x˜”, that s ∈ S is drawn by having each player q ∈ [n]
independently draw a sample from his mixed strategy x˜q. Having this notation in place, we define the
concept of Nash equilibrium as follows:

Definition 3 (Nash Equilibrium). A mixed strategy profile x˜ ∈ ∆ is a Nash equilibrium iff for all p ∈ [n]

and x˜′p ∈ ∆Sp :
up(x˜) ≥ up(x˜′p;x˜−p).

In other words, x˜ is a Nash equilibrium iff no player can strictly increase his or her payoff by switching
to a different mixed strategy, if the other players don’t change their strategies. Notice that the expected
payoff of a player is a linear function of his own mixed strategy, since

up(x˜) ≡
∑

sp∈Sp

x˜p(sp) · up(sp;x˜−p).

Hence, an equivalent definition of Nash equilibrium is the following:

Definition 4. A mixed strategy profile x˜ ∈ ∆ is a Nash equilibrium iff for all p ∈ [n] and sp, s
′
p ∈ Sp

such that x˜p(sp) > 0, we have
up(sp;x˜−p) ≥ up(s′p;x˜−p).

Sometimes we need to relax the Nash equilibrium conditions, allowing for a small margin of improving
one’s payoff. This gives rise to notions of approximate equilibrium:

Definition 5 (ε-approximate Nash equilibrium). A mixed strategy profile x˜ ∈ ∆ is a ε-approximate

Nash equilibrium iff for all p ∈ [n] and x˜′p ∈ ∆Sp we have

up(x˜) ≥ up(x˜′p;x˜−p)− ε.

Definition 6 (ε-well-supported Nash equilibrium). A mixed strategy profile x˜ ∈ ∆ is a ε-well-supported
Nash equilibrium iff ∀p ∈ [n], sp, s

′
p ∈ Sp such that x˜p(sp) > 0, we have

up(sp;x˜−p) ≥ up(s′p;x˜−p)− ε.

Notice that these two notions of approximate equilibrium are no longer equivalent. It is easy to see
that an ε-well-supported Nash equilibrium is also an ε-approximate Nash equilibrium. However, the
opposite is not always true.

2 Nash’s Theorem

We defined multi-player games and their corresponding notions of Nash equilibrium, but never estab-
lished that Nash equilibria exist in these games. Indeed, we haven’t even established that Nash equilibria
exist in two-player non zero-sum games. The following theorem was established in a one-page paper by
John Nash in 1950 [2], i.e. twelve years after von Neumann’s proof that a Nash equilibrium exists in
two-player zero-sum games [4].

Theorem 1 (Nash [2]). Every (finte) game has a Nash equilibrium.

We will prove this theorem later in the course, using Brouwer’s fixed point theorem. 1 We will also
argue that (subject to complexity theoretic assumptions) this proof cannot be turned into an efficient
algorithm, even for (non zero-sum) two-player games. What we explore in the next sections is whether,
at least for the case of zero-sum games, the theorem can be made constructive beyond the two-player
game setting.

1Nash’s original proof [2] used Kakutani’s theorem [1], but he later simplified his proof to only use Brouwer’s theorem [3],
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3 Nash Equilibria in Multi-player Zero-sum Games

It does not take too much thought to observe that multi-player zero-sum games are at least as hard as
general two-player games. In particular,

Proposition 1. For all n ≥ 3, computing a Nash equilibrium in an n-player zero-sum game is at least
as hard as computing a Nash equilibrium in a general (n− 1)-player game.

Proof: (Sketch) Here is a reduction from the computation of a Nash equilibrium in a general (n− 1)-
player game to the computation of a Nash equilibrium in an n-player zero-sum game. Introduce a new
player whose payoff is minus the payoff of all other players, but who does not affect their payoff. �

We have already noted above that, subject to complexity-theoretic assumptions, there is no efficient
algorithm for general two-player games. Hence, the above proposition implies that there is no hope of
obtaining efficient algorithms for n-player zero-sum games, when n > 2. Nevertheless, we show next
that we can do this for a special case of multiplayer zero-sum games.

4 Nash Equilibria in Separable Multiplayer Zero-Sum Games

We define a separable multiplayer game as one in which each player plays a (potentially different) two-
player game with a subset of the other players.

Definition 7. A separable n-player game is specified by a collection of integers {mp ∈ N}p∈[n], repre-
senting the number of strategies available to each player, where we identify player p’s strategies with the
set [mp], and a collection of matrices {A(p,q) ⊆ Rmp×mq}(p,q), where (A(p,q), (A(q,p))T) represents the
two-player game between players p and q, so that the payoff of player p under mixed strategy profile x is

up(x) =
∑
q

xTpA
(p,q)xq.

Likewise, if player p plays pure strategy j ∈ [mp] and the others play strategy x−p then p gets:

up(j ; x−p) =
∑
q

eTj A
(p,q)xq.

Observe that separable multiplayer games generalize two-player games. Hence, without any restric-
tion on these games, there is no hope of computing their equilibria efficiently. We show that, if a
separable multiplayer game is zero-sum, this suffices for its equilibria to be efficiently computable.

Theorem 2. A Nash equilibrium of a separable multi-player zero-sum game can be found efficiently with
linear programming.

Proof: Suppose we are given a separable multiplayer zero-sum game (as in Definition 7). In terms of
the given game, we define the following linear program:

min
∑
p

wp

s.t. wp ≥ up(j ; x−p), ∀p, ∀j ∈ [mp];

∀p :
∑

j∈[mp]

xp(j) = 1 and xp(j) ≥ 0,∀j ∈ [mp].

Notice that this is truly a linear program as, for all p, up(j ; x−p) is a linear function. We argue that any
optimal solution of the linear program gives a Nash equilibrium of the game via the following sequence
of claims.

Claim 1. Let x = (x1, . . . , xn) be a Nash equilibrium of the given game (guaranteed to exist by Nash’s
theorem). For all p, let also wp = up(x). Then (x1, . . . , xn ; w1, . . . , wn) is a feasible solution of the
linear program of value 0.
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Proof: Since x is a Nash equilibrium, clearly wp ≡ up(x) ≥ up(j ; x−p), ∀p, ∀j ∈ [mp]. So
(x1, . . . , xn ; w1, . . . , wn) is a feasible solution of the LP. Moreover,

∑
p wp =

∑
p up(x) = 0, since the

game is zero-sum. �

Claim 2. The above LP has value 0.

Proof: By Claim 1, it follows that the value of the LP is at most 0. Let now (x1, . . . , xn ; w1, . . . , wn)
be any feasible solution. We will argue that the value of the solution is ≥ 0. Indeed, for all p, it follows
from

wp ≥ up(j ; x−p), ∀j ∈ [mp],

that
wp ≥ up(x).

Hence,
∑

p wp ≥
∑

p up(x) = 0, where the last equality follows from the fact that the game is zero-sum.
�

Claim 3. Let (x1, . . . , xn ; w1, . . . , wn) be an optimal solution to the above LP. Then (x1, . . . , xn) is a
Nash equilibrium.

Proof: We argued in the proof of Claim 2 that any feasible solution of the LP satisfies:

wp ≥ up(x),∀p; (1)∑
p

wp ≥
∑
p

up(x) = 0. (2)

Combining the second inequality above with the fact that the LP has value 0 (which also follows from
Claim 2), it follows that: ∑

p

wp =
∑
p

up(x).

Using the latter with Eq (1) we obtain that

wp = up(x),∀p.

Combining the latter with the LP feasibility constraints we obtain that:

up(x) = wp ≥ up(j ; x−p), ∀p, ∀j ∈ [mp],

which implies that x is a Nash equilibrium. � �

Remark 1 (Exercise). Observe that in the proof of Theorem 2 we used Nash’s theorem (Theorem 1).
Hence, while we argued successfully that Nash equilibria can be computed efficiently in separable multi-
player zero-sum games, we haven’t provided a proof that Nash equilibria exist in these games. Prove the
existence of equilibria in these games using linear programming duality, i.e. without resorting to Nash’s
theorem.
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