6.896: Topics in Algorithmic Game Theory Lecture 18

Constantinos Daskalakis

Overview

- → Social Choice Theory
- → Gibbard-Satterwaite Theorem
- → Mechanisms with Money (Intro)
- → Vickrey's Second Price Auction
- → Mechanisms with Money (formal)

Social-Choice Preliminaries

Social Choice Theory

Setting:

A : Set of alternatives ("candidates")

I: Set of n voters

L: Preferences on A; usually this is the set of total orders on A

Social Welfare Function: $f: L^n \rightarrow L$ Social Choice Function: $f: L^n \rightarrow A$

Arrow's Impossibility Theorem

Theorem [Arrow '51]

Every social welfare function on a set A of at least 3 alternatives that satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

Proof: Last Lecture

Electing a President

- use a social choice function f
- ideally f should satisfy the following properties:
 - 1. it should not be a *dictatorship*

Def: A social choice function f is a *dictatorship* if there exists some voter i such that

$$f(<_1,<_2,...,<_n) = top(<_i);$$

Such voter i is called the *dictator* of f.

2. it should not be susceptible to strategic manipulation

Def: *f* can be strategically manipulated by voter *i* if there exist preferences $<_1, <_2, ..., <_n$ and $<_i$ ' such that $f(<_1, ..., <_i, ..., <_n) = a <_i a' = f(<_1, ..., <_i', ..., <_n)$

If *f* cannot be manipulated it is called *incentive compatible*.

Monotonicity

Def: f is monotone iff

$$f(<_{1},...,<_{i},...,<_{n}) = a \neq a' = f(<_{1},...,<_{i}',...,<_{n}) \rightarrow \left(\begin{array}{c}a' <_{i} a\\ and\\ a <_{i}' a'\end{array}\right)$$

i.e. if the outcome changes from *a* to *a*' when *i* changes his vote from $>_i$ to $>_i'$, then it must be because the swing voter *i* also switched his preference from *a* to *a*'

Proposition:

(f is incentive compatiable) iff (f is monotone)

Proof: Immediate by definition.

Gibbard-Satterthwaite Thm

Gibbard-Satterthwaite Theorem

Theorem:

If f is an incentive compatible social choice function *onto* a set of alternatives A, where $|A| \ge 3$, then f is a dictatorship.

Remark: "onto" is important; if |A|=2 then the majority function is both incentive compatible and non-dictatorship.

Proof Idea: Suppose f is both incentive compatible and nondictatorship. Use f to obtain a social welfare function F that satisfies unanimity, independence of irrelevant alternatives and non-dictatorship, which is impossible by Arrow's theorem.

Proof of the GS theorem

From the social choice function f to a social welfare function F

Notation: If $S \subseteq A$, and $\leq \in L$, we denote by \leq^S the preference obtained from \leq by moving all elements of *S* to the top of \leq .

e.g. $S = \{a, b\}$, and x < a < y < b < z then x < s < y < s < s < a < s < b.

Definition of $F(<_1, <_2, ..., <_n) =: <$ a < b iff $f(<_1^{\{a, b\}}, <_2^{\{a, b\}}, ..., <_n^{\{a, b\}}) = b$

Claim 1: F is a social welfare function.

What can go wrong?

Claim 2: F satisfies unanimity, IIA, and non-dictatorship.

Proof of the GS theorem (cont.)

Lemma: For any S, $<_1, <_2, ..., <_n, f(<_1^S, <_2^S, ..., <_n^S) \in S$.

Proof: hybrid argument, on board.

Claim 1: F is a social welfare function.

Proof: By direct application of lemma, F is a total order and it is anti-symmetric. Transitivity?

Suppose that a < b < c < a (*).

W.l.o.g. suppose that $f(<_1^{\{a, b, c\}}, <_2^{\{a, b, c\}}, ..., <_n^{\{a, b, c\}}) = a.$

Hybrid argument: by sequentially changing $\langle a, b, c \rangle$ to $\langle a, b \rangle$ argue that $f(\langle 1^{\{a, b\}}, \langle 2^{\{a, b\}}, ..., \langle n^{\{a, b\}} \rangle) = a$, contradiction to (*).

Proof of the GS theorem (cont.)

Claim 2: F satisfies unanimity, IIA, and non-dictatorship.

Proof:

unanimity, IIA on board

non-dictatorship: 2 points

Mechanisms with Money

Going beyond the GS obstacle

- The GS theorem applies to the setting where voters declare ordinal preferences over the alternatives, rather than cardinal preferences.

- What if the voters assign a "score" to each alternative ?

valuation function $v_i : A \to \mathbb{R}$

 $v_i(a)$: value of alternative a for voter i, in terms of some currency

- Voter's *utility* if alternative *a* is chosen and money m_i is given to him

Example 1: Auctioning off a single item

- each bidder *i* has value w_i for the item
- alternatives $A = \{1 \text{ wins}, 2 \text{ wins}, ..., n \text{ wins}\}$

- for all *i*:

 $v_i(i \text{ wins}) = w_i$ $v_i(j \neq i \text{ wins}) = 0$

- suppose we want to implement the social choice function that gives the item to the bidder with the highest value for the item

- unfortunately we don't know the w_i 's

- want to cleverly design the payment scheme to make sure that the social choice cannot be strategically manipulated

Example 1: Auctioning off a single item (cont)

- first attempt: no payment

- second attempt: pay your bid

- third attempt: Vickrey's second price auction

the winner is the bidder *i* with the highest declared value $w_i = \max_i w_i$

non-winners pay 0, and the winner pays $\max_{i \neq i} w_i$

Theorem (Vickrey): For all $w_1, w_2, ..., w_n$ and w_i ', let u_i be bidder *i* 's utility if she bids her true value w_i and let u_i ' be her utility if she bids an untrue value w_i '. Then $u_i \ge u_i$ '.

General Framework

Mechanisms with Money

Setting:

- *A* : Set of alternatives ("candidates")
- I: Set of n players

 $v_i: A \to \mathbb{R}$ valuation function of player *i*

$$v_i \in V_i \subseteq \mathbb{R}^A$$

set of possible valuations

Def: A direct revelation mechanism is a collection of functions (f, p_1, \ldots, p_n) where

$$f: V_1 \times \ldots \times V_n \to A$$
 is a social choice function

and

 $p_i: V_1 \times \ldots \times V_n \to \mathbb{R}$ is the *payment function* of player *i*.

Incentive Compatibility

Def: A mechanism $(f, p_1, ..., p_n)$ is called *incentive compatible*, or *truthful*, or *strategy-proof* iff for all i, for all $v_1 \in V_1, ..., v_n \in V_n$ and for all $v'_i \in V_i$

i.e. no incentive to lie!

but isn't it too good to be true ?