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Overview 

Introduction to Frugal Mechanism Design 

Path Auctions 

Spanning Tree Auctions 

Generalization 



Procurement  

●  The auctioneer is a buyer, she wants to purchase goods or services. 

●  Agents are sellers, who have costs for providing the good or service. 

●  The auctioneer’s goal is to maximize the social welfare. 

What is the auctioneer’s payment? 



Single Good 

●  Vickrey’s auction. 

●  Payment = second cheapest price. 



Multiple Goods 

In general, we might want to procure sets of goods that 
combine in useful ways, e.g. be a spanning tree of a graph. 

●  When does VCG never pay more than the cost of the second cheapest 
set of goods? 

●  When does no incentive compatible mechanism achieve a total 
payment of at most the  second cheapest set of goods? 

●  If no mechanism can achieve that the total payment is at most the 
second cheapest price, what is the mechanism that guarantees the best 
worst-case approximation to it? 

We can use VCG! 



Paths & Spanning Trees 

We consider the cost a buyer incurs in procuring a set of 
two paradigmatic systems: paths and spanning trees. 

●  Path auctions: Given a network, the auctioneer wants to buy a s-t path. 
Each edge is owned by a different agent. The auctioneer will try to buy the 
shortest path (maximize the social welfare). 

●  Spanning tree auctions: Given a network, the auctioneer wants to 
buy a spanning tree. Each edge is owned by a different agent. The 
auctioneer will try to buy the minimum spanning tree (maximize the 
social welfare). 



Example 1.1 (path auction) 

1 1 1 

10 

s t 

 shortest path = 3 



VCG (with Clarke Pivot Rule) 

Def: A mechanism                          is called a Vickrey-Clarke-Groves
(VCG) mechanism if  

(f, p1, . . . , pn)

(i)                                                                               f(v1, . . . , vn) ∈ argmaxa∈A
�

i vi(a)

(ii) Choose                                                     (Clarke Pivot Rule) hi(v−i) = maxb∈A
�

j �=i vj(b)

(iii) Payment  pi(v1, . . . , vn) = hi(v−i)−
�

j �=i vj(f(v1, . . . , vn))



Example 1.1 (path auction) 

1 1 

10 

s t 

 shortest path = 10 
 payment = 10 − (3 − 1) = 8 

1 



Example 1.1 (path auction) 

1 1 1 
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 VCG payments = [10 − (3 − 1)] × 3 = 24 

 second cheapest path = 10 
 overpayment ratio = 24 ⁄ 10 



Example 1.2 (spanning tree auction) 

 VCG payments = 10 + 10 + 11 = 31 

  second cheapest edge disjoint 
spanning tree = 10 +11+12 = 33 

 overpayment ratio = 31 ⁄ 33 
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Frugal Mechanism Design 

●  The mechanism should minimize the total 
cost paid.  

●  The mechanism should be frugal even in 
worst-case. (not the Bayesian setting) 

●  In path auctions, VCG pays more than 
the second cheapest cost path. In spanning 
trees, it does not. 



Frugal Mechanism Design 

●  Does VCG on spanning trees never cost much more 
than the second cheapest (disjoint) spanning tree cost? 

●  How bad can VCG on paths be in comparison to the 
second cheapest (disjoint) path cost? 

●  If VCG on paths can be very bad, is there some other 
mechanism that does well? 

Questions that we will explore: 



Path Auctions 



Path Auction 

We know VCG’s payment may be more than the cost of the second 
cheapest path.  

But how bad can VCG be? 

As bad as one might imagine, could be a factor of  
more than the second cheapest path cost. 

Θ(n)



Path Auction 

0 0 0 

1 

s t  

Proof: Consider the following graph: 

Proposition: There exists a graph G and edge valuation v where VCG pays 
a          factor more than the cost of the second cheapest path. Θ(n)



Proof (cont): 

0 0 0 

1 

s t  

The VCG mechanism selects the top path (which has total cost zero). Each 
edge in the top path is paid 1. There are n-1 edges resulting in VCG 
payments totaling n-1. The second cheapest path cost is the bottom path 
with total cost 1. Therefore, the overpayment ratio is         . Θ(n)



Path Auction 

●  Is it a flaw of the VCG? 

Why does VCG has such poor performance? 

●  Is this worst-case overpayment an intrinsic property of any 
incentive compatible mechanism? 



Path Auction 

Theorem: For any incentive compatible mechanism       and any graph G 
with two vertex disjoint s-t paths     and      , there is a valuation profile v 
such that       pays an                        factor more than the cost of the 
second cheapest path.   

M
P �P

M Ω(
�

|P ||P �|)

Corollary: There exists a graph for which any incentive compatible 
mechanism has a worst-case          factor overpayment.  Ω(n)



Path Auction 

Theorem: For any incentive compatible mechanism       and any graph G 
with two vertex disjoint s-t paths     and      , there is a valuation profile v 
such that       pays an                        factor more than the cost of the 
second cheapest path.   

M
P �P

M Ω(
�

|P ||P �|)

Proof: Let k= |P| and k’ =|P’|. First we ignore all edges not in P or P’ by setting 
their cost to infinity. Consider edge costs V (i, j) of the following form. 



Proof (cont):  

●  the cost of the i-th edge of P is vi = 1/√k, 

●  the cost of the j-th edge of P’ is vj = 1/√k’, and 

●  all other edges cost zero. 

V(i, j) 

P 

P’ 

0
vi 0

s t 
0vj 

0

0 0



Proof (cont):  

Notice that       on V (i, j) must select either all edges in path P or all edges in 
path P’ as winners. We define the directed bipartite graph G’ = (P, P’, E’) on 
edges in path P and P’. For any pair of vertices (i, j) in the bipartite graph, 
there is either a directed edge (i, j) in E’ denoting       on V (i, j) selecting path 
P’ (called “forward edges”) or a directed edge (j, i) denoting       on V (i, j) 
selecting path P (called “backwards edges”). 

M

M
M



Proof (cont):  

Notice that the total number of edges in G’ is kk’. WLOG, assume that there 
are more forward edges than backwards edges. G’ has at least kk’/2 forward 
edges. Since there are k edges in path P, there must be one edge i with at least 
k’/2 forward edges. Let N(i) with |N(i)| ≥ k’/2 represent the neighbors of i in 
the bipartite graph. 



Proof (cont): Consider the valuation profile V(i, 0) of the following form  

●  the cost of the i-th edge of P is vi = 1/√k, and 

●  all other edges cost zero. 

0
vi 0

s t 
00 

0

0 0



Proof (cont):  

Notice that by definition of N(i), for any j in N(i),       on V(i, j) selects path P’. 
Since       is incentive compatible, its allocation rule must be monotone: if 
agent j is selected when bidding vj, it must be selected when bidding 0 
(WMON). Therefore,       selects P’ on V(i, 0). 

M
M

M



Proof (cont):  

Also, for any j in N(i), the payment should be at least 1/√k’. Since when the 
valuation profile is V(i, j), the payment should be at least 1/√k’. Otherwise, j 
will receive negative utility. By the direct characterization of incentive 
compatible mechanisms, we know when other bidders’ valuations and the 
outcome are the same, the payment should also be the same. So payment for j 
is at least 1/√k’ when the valuation profile is V(i, 0). 

So on V(i, 0) , the total payment of        is at least N(i)×1/√k’ ≥√k’/2. Remember 
that the second cheapest path is P with cost 1/√k. Therefore, the overpayment 
ratio is √kk’/2. 

" " " " " " " " " " " " " " " " " 

M



Path Auction 

Remarks: 1. No incentive compatible mechanism is more 
   frugal than VCG in worst-case.  

   2. But it is possible to design mechanisms that are 
   better  than VCG on non-worst-case inputs 



Spanning Tree Auctions 



Spanning Tree Auction 

We will show that the overpayment of VCG for spanning trees 
is minimal.  

Theorem: The total VCG cost for procuring a spanning tree is at most 
the cost of the second cheapest disjoint spanning tree. 



Spanning Tree Auction 

To prove this main theorem, we make the following definitions. 

Definition: The replacement of e in a spanning tree T of a graph G=(V,E) 
are the edges             that can replace e in the spanning tree T. I.e., 
                                                                  . The cheapest replacement of e 
is the replacement with minimum cost. 

e� ∈ E
{e� : T/{e} ∪ {e�}is a spanning tree}
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11 

1 

1 
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●  The MST is given by three edges with cost 1. 

●  The replacements of the left-most 1 in the MST 
are the edges with cost 10 and 11. 

●  The cheapest replacement is therefore the 10 
edge 



Spanning Tree Auction 

Definition: The bipartite replacement graph for edge disjoint trees 
T1 and T2 is G’= (T1, T2, E’) where                      , if      is a 
replacement of      in T1.  

(e1, e2) ∈ E� e2

e1

Remark: The neighbors N(e) of e that belongs to T1 (respectively T2) in the 
bipartite replacement graph are simply the replacements of e in T1 (respectively 
T2). 



Proof Plan 

1.  The total VCG cost is at most the sum costs of the 
cheapest replacements of the MST edges. 

2.  If there is a perfect matching in the bipartite replacement 
graph for cheapest spanning tree T1 and the second 
cheapest disjoint spanning tree T2 then the total VCG cost 
is at most the cost of T2. 

3.  There is a perfect matching in the bipartite replacement 
graph given T1 and T2. 



VCG Payments and Cheapest replacements 

Lemma: VCG pays each agent (edge) the cost of their cheapest replacement. 

The proof of this lemma is based on the following basic facts about 
minimum spanning tree. 

Fact 1: The cheapest edge across any cut is in the minimum spanning tree. 

Fact 2: The most expensive edge in any cycle is not in any minimum    
      spanning tree. 



Proof :  

Consider an edge e1 in the MST T1. Removal of this edge from T1 partitions 
the graph into two sets A and B. The replacements for e1 are precisely the 
edges that cross the A-B cut. Since e1 is the only edge in the MST across the 
A-B cut, by Fact 1 it must be the cheapest edge across the cut. Let e2 be the 
second cheapest edge across the A-B cut (and therefore e1’s cheapest 
replacement). 

We claim that if we were to raise the cost of e1 it would remain in the MST 
until it exceeds the cost of e2 after which e2 would replace it in the MST. 



Proof  (cont):  

First, e1 is in the MST when bidding less than e2. This follows from Fact 1 as 
with such a bid, e1 is still the cheapest edge across the A-B cut. Second, e1 is 
not in the MST when bidding more than e2. This follows because there is a 
cycle in                  that contains e1 and e2. Since e2 is not in the T1 and all other 
edges in the cycle are, it must be that e2 is the most expensive edge (by Fact 2). 
However, if e1’s cost is increased to be higher than that of e2, e1 would become 
the most expensive edge in the cycle. Fact 2 then implies that with such a cost 
e1 could not be in the MST. 

T1 ∪ {e2}



Proof  (cont):  
Now, we have proved the claim that if we were to raise the cost of e1 it would 
remain in the MST until it exceeds the cost of e2 after which e2 would replace 
it in the MST. We still need to argue that the payment for e1 is the cost of e2, 
when e1 is in the MST. 

We know that the payment for e1 will remain the same as long as e1 is in the 
MST. But to guarantee that e1 has positive utility, the payment should be 
higher than the cost. So the payment is at least as high as e2’s cost. But on the 
other hand, the payment should not exceed the cost of e2. Otherwise, if e1’s 
cost is between e2’s cost and the payment, e1 can increase his utility by 
misreporting his cost to be lower than e2. Because, if he is truthful, he will not 
be in the MST and his utility will be 0, but if he misreports his cost to be 
smaller than e2’s, he will be in the MST and receive positive utility. Therefore, 
the payment is exactly the cost of e2.          

        
" " " " " " " " " " " " " " " " " 



Bipartite Replacement Graph and 
 VCG Payment 

Lemma: For cheapest and second cheapest (disjoint) spanning trees T1  and 
T2, if there is a perfect matching in the bipartite replacement graph then the 
VCG payments sum to at most the cost of T2. 

Proof: Let M be a perfect matching in the bipartite replacement graph for T1 
and T2. For e1 in T1 let M(e1) denote the edge e2 in T2 to which e1 is matched 
in M. For e1 in T1, let r(e1) denote the cost of the cheapest replacement for e1. 
And let c(e) denote the cost of edge e. Notice that r(e1) ≤ c(M(e1)).  

V CG payments =
�

e1∈T1

r(e1)

≤
�

e1∈T1

c(M(e1))

=
�

e2∈T2

c(e2)
 



Perfect Matching 

Lemma: The bipartite replacement graph for two edge disjoint spanning 
trees T1 and T2 has a perfect matching. 

The proof follows from Hall’s Theorem.  

Definition: Let N(v) denote the neighbors of a vertex v in a graph G = (V, E). 
The neighbors of a set of vertices           is the union of the neighbors of each 
vertex in the set, i.e.,                                . 

S ⊂ V
N(S) =

�
v∈S N(v)



Perfect Matching 

Theorem (Hall’s Theorem): For a bipartite graph G = (A, B, E), G has a 
perfect matching if and only if it satisfies Hall’s condition. 

Definition (Hall’s condition): A bipartite graph G = (A, B, E) satisfies Hall’s 
condition if all subsets            satisfy                     .   S ⊆ A |S| ≤ |N(S)|



Perfect Matching 

Lemma: The bipartite replacement graph for two edge disjoint spanning 
trees T1 and T2 has a perfect matching. 

We only need to argue that Hall’s condition 
holds in the bipartite replacement graph for 
any T1 and T2. 

Proof: Consider some subset               . Let k = |S1|. When we remove S1 from T1 
the remaining tree edges do not span G. In particular there are exactly k+1 
connected components. We can view these connected components as a “super-
node” and S1 as a spanning tree of these super-nodes. Let                be the set of 
edges from T2 that connect any pair of super-nodes. We now make two 
arguments. 

S1 ⊂ T1

S2 ⊂ T2



Proof  (cont):  

1. Any              is a replacement for some             , i.e.,                    .    

Consider any             . By definition, e2 connects two super nodes. S1 is a 
spanning tree of the super-nodes which implies that there is exactly one path in S1 
that connects them. The edge e2 is a replacement for any edge e1 in this path. 

2. |S2| ≥ k. 

Since T2 spans the original graph and S2 is precisely the set of edges from T2 that 
are between super-nodes, S2 must span the graph of super-nodes. There are k+1 
super-nodes. Therefore, such a set of spanning edges must be of size at least k. 

Combining the above two arguments: |N(S1)| ≥ |S2| ≥ k = |S1|. Thus, Hall’s 
condition holds for the bipartite replacement graph. Hall’s Theorem then implies 
a perfect matching exists." " " " " " " " " " "$
 " " " " " " " " " " " " " " " " "  

e2 ∈ S2 e1 ∈ S1 S2 ⊆ N(S1)

e2 ∈ S2



Spanning Tree Auction 

The proof of the theorem follows from  the three lemmas we 
showed above.  

Theorem: The total VCG cost for procuring a spanning tree is at most 
the cost of the second cheapest disjoint spanning tree. 



Generalizations 



Generalizations 

We can generalize our results for spanning trees to matroid set 
systems. 

Matroids are set systems where analogs of Fact 1 and Fact 2 
hold. 

These facts imply a single-replacement property. 



Generalizations 

Besides matroids, is there any other set systems for which VCG 
overpayment is minimal? It turns out there is a very precise 
answer to this, but stating it requires moving beyond the 
framework discussed in this lecture. Instead we summarize. 

Proposition: There is a very precise sense in which matroid set systems 
are the only set systems for which VCG has no overpayment. 


