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On the blackboard we defined multi-player games and Nash equilibria, 
and showed Nash’s theorem that a Nash equilibrium exists in every 
game. 

In our proof, we used Brouwer’s fixed point theorem. In this presentation, 
we explain Brouwer’s theorem, and give an illustration of Nash’s proof. 

We proceed to prove Brouwer’s Theorem using a combinatorial lemma 
whose proof we also provide, called Sperner’s Lemma. 



Brouwer’ s Fixed Point Theorem 



Brouwer’s fixed point theorem 

f 

Theorem:  Let f : D       D  be a continuous function from a 
convex and compact subset D of the Euclidean space to itself.  

−→

Then there exists an  x          s.t.  x = f (x) . ∈ D

N.B. All conditions in the statement of the theorem are necessary. 

closed and bounded 

D D 

Below we show a few examples, when D is the 2-dimensional disk. 
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fixed point 



Nash’s Proof 



 ƒ: [0,1]2 →[0,1]2, continuous 
such that 

fixed points ≡ Nash eq. 
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 ƒ: [0,1]2 →[0,1]2, cont. 
such that 

fixed point ≡ Nash eq. 
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Sperner’s Lemma 
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Lemma: Color the boundary using three colors in a legal way.  



Sperner’s Lemma 

Lemma: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 
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Sperner’s Lemma 

Lemma: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 



Proof of Sperner’s Lemma 

Lemma: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 

Next we define a 
directed walk 
starting from the 
bottom-left triangle. 



Transition Rule:  If  ∃  red - yellow door cross it 
with red on your left hand. 

? 

Space of Triangles 
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Proof of Sperner’s Lemma 

! 

Lemma: Color the boundary using three colors in a legal way. No matter how the internal 
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those. 

For convenience we 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 

Next we define a 
directed walk 
starting from the 
bottom-left triangle. 

Starting from other 
triangles we do the 
same going forward 
or backward. 

Claim: The walk 
cannot exit the 
square, nor can it 
loop around itself in 
a rho-shape. Hence, 
it must stop 
somewhere inside. 
This can only happen 
at tri-chromatic 
triangle… 



Proof of Brouwer’s Fixed Point Theorem 

We show that Sperner’s Lemma implies Brouwer’s 
Fixed Point Theorem. We start with the 2-dimensional 
Brouwer problem on the square. 



2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

say d is the �∞ norm
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∀� > 0, ∃δ = δ(�) > 0, s.t.
d(z, w) < δ =⇒ d(f(z), f(w)) < �
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2D-Brouwer on the Square 
Suppose ƒ: [0,1]2 →[0,1]2, continuous 

must be uniformly continuous (by the Heine-Cantor theorem) 

< δ(�)

choose some       and  
triangulate so that the 
diameter of cells is at 
most   

�
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color the nodes of the 
triangulation according 
to the direction of  

f(x)− x

say d is the �∞ norm

∀� > 0, ∃δ = δ(�) > 0, s.t.
d(z, w) < δ =⇒ d(f(z), f(w)) < �

tie-break at the boundary 
angles, so that the 
resulting coloring 
respects the boundary 
conditions required by 
Sperner’s lemma 

find a trichromatic 
triangle, guaranteed by 
Sperner 



2D-Brouwer on the Square 
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Claim: If zY is the yellow corner of a 
trichromatic triangle, then 

say d is the �∞ norm
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Proof of Claim 

Claim: If zY is the yellow corner of a trichromatic triangle, then |f(zY)− zY|∞ < � + δ.

Proof: Let zY, zR , zB be the yellow/red/blue corners of a trichromatic triangle. 
By the definition of the coloring, observe that the product of   

(f(zY )− zY )x and (f(zB)− zB)x is ≤ 0.

Hence: 

|(f(zY )− zY )x|
≤ |(f(zY )− zY )x − (f(zB)− zB)x|
≤ |(f(zY )− f(zB))x| + |(zY − zB)x|
≤ d(f(zY ), f(zB)) + d(zY , zB)
≤ � + δ.

|(f(zY )− zR)y| ≤ � + δ.

Similarly, we can show: 
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choosing δ = min(δ(�), �)

|f(zY )− zY |∞ < 2�.
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2D-Brouwer on the Square 

- pick a sequence of epsilons: �i = 2−i, i = 1, 2, . . .

- define a sequence of triangulations of diameter: 

- pick a trichromatic triangle in each triangulation, and call its yellow corner 
zY
i , i = 1, 2, . . .

Claim: 

Finishing the proof  of Brouwer’s Theorem: 

δi = min(δ(�i), �i), i = 1, 2, . . .

- by compactness, this sequence has a converging subsequence wi, i = 1, 2, . . .

with limit point  w∗
f(w∗) = w∗.

Proof: Define the function                                 . Clearly,    is continuous since              
is continuous and so is    . It follows from continuity that 

g(x) = d(f(x), x) g d(·, ·)
f

g(wi) −→ g(w∗), as i→ +∞.

But                                   . Hence,                       . It follows that                     . 0 ≤ g(wi) ≤ 2−i+1 g(wi) −→ 0 g(w∗) = 0

Therefore,  d(f(w∗), w∗) = 0 =⇒ f(w∗) = w∗.


