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On the blackboard we defined multi-player games and Nash equilibria,
and showed Nash's theorem that a Nash equilibrium exists in every

game.

In our proof, we used Brouwers fixed point theorem. In this presentation,

we explain Brouwer s theorem, and give an illustration of Nash's proof.

We proceed to prove Brouwer s Theorem using a combinatorial lemma
whose proof we also provide, called Sperner s Lemma.




Brouwer’s Fixed Point Theorem




Brouwer’s fixed point theorem

Theorem: Let/: D— D be a continuous function from a
convex and compact subset D of the Euclidean space to itself.

/ Then there existsan x€ D s.t. x=f(x).

closed and bounded

Below we show a few examples, when D 1s the 2-dimensional disk.

-

N.B. All conditions in the statement of the theorem are necessary.
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Brouwer’s fixed point theorem




Brouwer’s fixed point theorem




Nash s Proof




Visualizing Nash’s Construction
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Dive
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| ) f:10,1]> —=[0,1]%, continuous
such that
fixed points = Nash eq.

Right

Penalty Shot Game




Visualizing Nash’s Construction
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Sperner s Lemma







Sperner’s Lemma

no yellow

|

no

Lemma: Color the boundary using three colors in a legal way.




Sperner’s Lemma

no yellow

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.
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Sperner’s Lemma
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Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.




Proof of Sperner’s Lemma
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For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Next we define a
directed walk
starting from the
bottom-left triangle.
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Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.




Proof of Sperner’s Lemma

p

Transition Rule:

\?ace of Triangles

If 3 - yellow door cross it
with on your left hand.

4

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.




Proof of Sperner’s Lemma

Claim: The walk
cannot exit the
square, nor can it
loop around itself in
a rho-shape. Hence,
it must stop
somewhere inside. €
This can only happen
at tri-chromatic
triangle...
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For convenience we
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

Next we define a
directed walk
starting from the
bottom-left triangle.

Starting from other
triangles we do the
same going forward

or backward.

Lemma: Color the boundary using three colors in a legal way. No matter how the internal
nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.




Proof of Brouwer s Fixed Point Theorem

We show that Sperner’s Lemma implies Brouwer’s
Fixed Point Theorem. We start with the 2-dimensional
Brouwer problem on the square.




2D-Brouwer on the Square

say d is the £, norm

Suppose f: [0,1]> —[0,1]?, continuous

L> must be uniformly continuous (by the Heine-Cantor theorem)

Ve >0, 36 = d(e) > 0, s.t.
dz,w) <0 = d(f(z), f(w)) <e
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2D-Brouwer on the Square

Suppose f: [0,1]> —[0,1]?, continuous

say d is the £, norm

L> must be uniformly continuous (by the Heine-Cantor theorem)
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Ve >0, 36 = d(e) > 0, s.t.
dz,w) <0 = d(f(z), f(w)) <e

N

J\\ Claim: If z¥ is the yellow corner of a
trichromatic triangle, then

\ |f(zY)—zY|oo<e+5.
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Proof of Claim

Claim: If zY is the yellow corner of a trichromatic triangle, then |f(2Y) — 2" |00 < € + 6.

Proof: Let zY¥, zR , zB be the yellow/red/blue corners of a trichromatic triangle.

By the definition of the coloring, observe that the product of
(f(z") = 2" )z and (f(27) = 27), is <0.

Hence:
VN A\

Q’\\ )]

< < 2V) =2V, — (f(2P)
\\\\ ) = (el + |(2Y — 2P
N
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N
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=32

2'), f(z7)) +d(2", 27)

/\\ Similarly, we can show:
/\ (f(z7) =)y < et
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2D-Brouwer on the Square

Suppose f: [0,1]> —[0,1]?, continuous

say d is the £, norm

L> must be uniformly continuous (by the Heine-Cantor theorem)
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2D-Brouwer on the Square

Finishing the proof of Brouwer’s Theorem:

- pick a sequence of epsilons: €; = 2_i, 1=1,2,...

- define a sequence of triangulations of diameter: §; = min(d(e; ), €;), ¢

- pick a trichromatic triangle in each triangulation, and call its yellow corner

2Xi=1,2,...

7 )

- by compactness, this sequence has a converging subsequence w;, %= 1,2,...

i} . with limit point w”*
Claim: f(w") =w".

Proof: Define the function g(z) = d(f(x),z). Clearly, 9 is continuous since d(-, )
is continuous and so is f. It follows from continuity that

g9(wi) — g(w*), as i — +o0.

But 0 < g(w;) <27t Hence, g(wi) — 0.1t follows that g(w*) =0

Therefore, d(f(w*),w™) =0 = f(w") = w". -




