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Sperner’ s Lemma in n dimensions 



A. Canonical Triangulation of [0,1]n 



Triangulation 

High-dimensional analog of triangle? 

in 2 dimensions: a triangle in n dimensions: an n-simplex 
i.e. the convex hull of  n+1 points 
in general position 



Simplicization of [0,1]n? 



Divide each dimension 
into integer multiples 
of  2-m, for some 
integer m. 



note that all tetrahedra in this division 
use the corners 000 and 111 of the cube 

in 3 dimensions… 



Generalization to n-dimensions 

Tπ :=
�
x ∈ [0, 1]n | xπ(1) ≤ xπ(2) ≤ . . . xπ(n)

�
π : [n]→ [n]For a permutation                         of the coordinates, define:  

xπ(1) xπ(2) . . . xπ(n−2) xπ(n−1) xπ(n)

0 0 0 0 0 … vπ
1 =

0 0 0 0 1 … vπ
2 =

0 0 0 1 1 … vπ
3 =

0 0 1 1 1 … vπ
4 =

1 1 1 1 1 … vπ
n+1 =

…

Claim 1: The unique integral corners of        are the following n+1 points:  Tπ



Simplicization 

Claim 2:          is a simplex. Tπ

Claim 3:   
�

π

Tπ = [0, 1]n.

Theorem:                is a triangulation of  [0,1]n. {Tπ}π

Apply the above simplicization to each cubelet. 

Claim 4: If two cubelets share a face, their simplicizations agree on a common 
simplicization of the face. 



Cycle of a Simplex 
Letting                                     denote the unit vector along dimension i, and  ei, i = 1, . . . , n,

e0 = (−1,−1, . . . ,−1)

we can cycle around the corners of           as follows: Tπ

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

+e0

Claim: Hamming weight is increasing from          to             . vπ
1 vπ

n+1

vπ
1

the 0n corner of 
the cubelet 

the 1n corner 
of the cubelet 



B. Legal Coloring 



Legal Coloring in 2-d 

no red 

no blue 

no yellow 

x1

x2



2-dimensional Sperner 

n-dimensional Sperner 

Legal Coloring	  

3 colors: blue (1), red (2), yellow (0) 

(P2): None of the vertices on the left (x1=0)  side of the square uses blue, no 
vertex on the bottom side (x2=0) uses red, and no vertex on the other two sides 
uses yellow. 

n colors: 0, 1, …, n 

(Pn): For all i ∈ {1,…, n}, none of the vertices on the face xi = 0 of the 
hypercube uses color i; moreover, color 0 is not used by any vertex on a 
face xi = 1, for some i ∈ {1,…, n}.  



Legal Coloring (3-d)	  

x1

x2

x3

no use of 0 

no use of 1 

no use of 3 
no use of 2 



C. Statement of Sperner’s Lemma 



Sperner’s Lemma	  

(Pn): For all i ∈ {1,…, n}, none of the vertices on the face xi = 0 uses 
color i; moreover, color 0 is not used by any vertex on a face xi = 1, for 
some i ∈ {1,…, n}.  

Suppose that the vertices of  the canonical simplicization of the hypercube [0,1]n 
are colored with colors 0,1, …, n so that the following property is satisfied by the 
coloring on the boundary.  

Then there exists a panchromatic simplex in the simplicization. In fact, there is 
an odd number of those.	  

Theorem [Sperner 1928]:	  

pan: from ancient Greek  πᾶν = all, every 

chromatic: from ancient Greek  χρῶμα.= color 



Remarks:	  

1.  We need not restrict ourselves to the canonical simplicization of the hypercube 
shown above (that is, divide the hypercube into cubelets, and divide each cubelet 
into simplices in the canonical way shown above). The conclusion of the theorem 
is true for any partition of the cube into n-simplices, as long as the coloring on the 
boundary satisfies the property stated above.  

The reason we state Sperner’s lemma in terms of the canonical triangulation is in an 
effort to provide an algorithmically-friendly version of the computational problem 
related to Sperner, in which the triangulation and its simplices are easy to define, the 
neighbors of a simplex can be computed efficiently etc. We follow-up on this in the next 
lecture. Moreover, our setup allows us to make all the steps in the proof of Sperner’s 
lemma “constructive” (except for the length of the walk, see below). 

Sperner’s Lemma was originally stated for a coloring of a triangulation of the n-simplex, 
(rather than the cube shown above). In that setting, we color the vertices of any triangulation  
of the n-simplex---a convex combination of points                              in general position--- 
with n colors, 0,1,…,n,  so that the facet not containing vertex       does not use color i. Then 
Sperner’s lemma states that there exists a panchromatic simplex in the simplicization. 

v0, v1, . . . , vn
vi

2. 

 Our coloring of the n-dimensional cube with n+1 colors is essentially mimicking the 
coloring of a simplex whose facets (except one) correspond to the facets of the cube around 
the corner 0n, while the left-out facet corresponds to the “cap” of the hypercube around 1n. 





Proof of n-dimensional Sperner’s Lemma 
generalizing the proof of the 2-d case 



1. Envelope Construction 



Original Coloring 

no red 

no blue 

no yellow 



The Canonically Colored Envelope 

For convenience 
introduce an outer 
boundary, that does 
not create new tri-
chromatic triangles. 



Envelope construction in 3-d 

x1

x2

x3

no use of 

no use of 1 

no use of  3 
no use of  2 

use color 1, except 
for the boundary 
with x1=0 

1 

1 

use color 2, except 
for the boundary 
with x2= 0 

use color 0 
use color 3, except 
for the boundary 
with x3= 0 



Envelope construction in Many Dimensions 

where 0 is disallowed, color with 1, except for boundary with x1=0; 
where 1 is disallowed, color with 2, except for boundary with x2=0; 

where i is disallowed, color with i+1, except for boundary with xi+1=0; 

where n is disallowed, color with 0. 

…
 

…
 

Introduce an extra layer off of the boundary of the hypercube and color the 
vertices of this extra layer legally, but according to the very canonical/greedy way 
defined below: 

Claim: No new panchromatic tetrahedra were introduced during the envelope construction.  



2. Definition of the Walk 



Walk 

Like we did in the 2-d case, we show that a panchromatic simplex exists by 
defining a walk that jumps from simplex to simplex of our simplicization, starting 
at some fixed simplex (independent of the coloring) and guaranteed to conclude at 
a panchromatic one.  

- The simplices in our walk (except for the final one) will contain all the colors in the set 
{2, 3, …, n, 0}, but will be missing color 1. Call such simplices colorful. 

- In particular, every such simplex will have exactly one color repeated twice. So it will 
contain exactly two facets with colors 2, 3,…, n, 0. Call these facets colorful. 

- Our walk will be transitioning from simplex to simplex, by pivoting through a colorful 
facet. 

- When entering a new simplex through a colorful facet, there are two cases: 
 -- either the other vertex has color 1, in which case a panchromatic simplex is found! 
 -- or the other vertex has some color in {2, 3, …, n, 0}, in which case a new colorful 
facet is found and traversed, etc. 



3. Starting Simplex 



Starting Simplex 

x1

x2

x3

color 2 

color  3 

1 

1 

color 0 

π = (1, . . . , n− 1, n)

The starting simplex belongs to the cubelet 
adjacent to the 0n vertex of the hypercube, and 
corresponds to the permutation 

This simplex has a colorful facet, lying on the 
face x1=0 of the hypercube. 



4. Finishing the Proof 



The Proof of Sperner’s Lemma 

x1

x2

x3

color 2 

color  3 

1 

1 

color 0 

a. Start at the starting simplex; this has all the colors in {2,3,…,n, 0} but not color 1 
and hence it is a colorful simplex. One of its colorful facets lies in x1=0, while the 
other is shared with some neighboring simplex. 

b. Enter into that simplex through the shared colorful 
facet. If the other vertex of that simplex has color 1 
the walk is over, and the existence of a panchromatic 
simplex has been established. If the other vertex is 
not colored 1, the simplex has another colorful facet.  

c. Cross that facet. Whenever you enter into a 
colorful simplex through a colorful facet, find 
the other colorful facet and cross it. 

what are the possible evolutions of this walk? 



(i) Walk cannot loop into itself in a rho-shape, since that would require a simplex with 
three colorful facets. 

(iii) Walk cannot get into a cycle by coming into the starting simplex (since it would 
have to come in from outside of the hypercube ) 

The single remaining possibility is that the walk keeps evolving a path orbit, encountering a 
new simplex at every step while being restricted inside the hypercube. Since there is a finite 
number of simplices, walk must stop, and the only way this can happen is by encountering 
color 1 when entering into a simplex through a colorful facet. 

(ii) Walk cannot exit the hypercube, since the only colorful facet on the boundary 
belongs to the starting simplex, and by (i) the walk cannot arrive to that simplex from 
the inside of the hypercube (this would require a third colorful facet for the starting 
simplex or a violation to (i) somewhere else on the path). 

a panchromatic simplex exists 



After original walk has settled, we can start a walk from some other simplex that is 
not part of the original walk.  

Odd number of panchromatic simplices? 

- If the simplex has no colorful facet, stop immediately 
- If the simplex is colorful, start two simultaneous walks by crossing the two colorful 
facets of the simplex; for each walk: if S is a colorful simplex encountered, exit the 
simplex from the facet not used to come in; there are two cases: 

either the two walks meet 

isolated node 

cycle 
or the walks stop at a different panchromatic simplex each path 



Two simplices are Neighbors iff  they share a 
colorful facet 

? 

Space of Simplices 

1 
2 

Abstractly… 



Space of Simplices 

... 
Starting Simplex 

Proofs constructs a graph with degree ≤ 2 

= panchromatic 



5. Directing the walk 



The above argument defines an undirected graph, whose vertex set is the set 
of simplices in the simplicization of the hypercube and which comprises of 
paths, cycles and isolated vertices. 

We devise next a convention/efficient method for checking which of the two 
colorful facets of a colorful simplex corresponds to an incoming edge, and 
which facet corresponds to an outgoing edge. 

Towards a more constructive argument 

We will see in the next couple of lectures that  in order to understand the precise 
computational complexity of Sperner’s problem, we need to define a directed graph 
with the above structure (i.e. comprising of directed paths, directed cycles, and 
isolated nodes). 



Direction of the walk 

Recall that we can cycle around the corners of           as follows: Tπ

vπ
1

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

+e0

where the Hamming weight is increasing from          to            . vπ
1 vπ

n+1



Direction of the walk 
Given a colorful facet f  of some simplex, we need to decide whether the facet 
corresponds to inward or outward direction. To do this we define two permutations,                       
       and        as follows. τf σf

vπ
1

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

Let w be the vertex not on the colorful facet. w falls somewhere in the cycle of the simplex. 

w 

+e0

w = vπ
kIf                   , let       be the following permutation of  0, 1,…,n:       τf

πn−k+1, πn−k, πn−k−1, . . . , 0, πn, . . . ,πn−k+2



Direction of the walk 
In other words, start at w and travel around the cycle to get back to w. Then        is the 
permutation of indices that you encounter on the arrows as subscripts of e. 

vπ
1

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(n−2)

+eπ(1)

w 

+e0

τf



Direction of the walk 
Permutation  

+eπ(n−2)

the order, in which the colors {2, 3,…, n, 0} appear in the cycle, starting from the 
vertex w . 

σf : {2, 3, . . . , n, 0}→{ 2, 3, . . . , n, 0}

vπ
1

vπ
2

vπ
3

vπ
4

vπ
n

vπ
n+1

+eπ(n)

+eπ(n−1)

+eπ(1)

+e0

w 

τf σfGiven          and        define the sign of the facet   f   to be: 

sign(σf ) · sign(τf )sign(f) = (−1)#inversions

parity of the number of pairwise 
inversions in the permutation 



Interesting Properties of     
Suppose that f  is colorful, and shared by a pair of simplices  S and  S’.  

sign(f)

Claim:  If S and S’ belong to the same cubelet and share a faced f, then 
                                                 , i.e. simplices S and S’ assign different signs to 
             their shared colorful facet  f. 

signS(f) · signS�(f) < 0

Proof: If S and S’ belong to the same cubelet and share a facet f, then it must be that 
their permutations              are identical, except for a transposition of one 
adjacent pair of indices 

π, π�

π1, π2, . . . ,πi, πi+1, . . . ,πn

Hence if  w, w’  is the missing vertex from f   in  S and S’ respectively, w is 
located in the cycle of             respectively between indices i and i +1 , while  
all the other shared vertices appear in the same order. 

π, π�

σfHence, the color permutation        is the same in S, S’, while the permutation  
      has the pair of indices i, i+1 , transposed and hence has opposite sign in S, S’. τf



Interesting Properties of     sign(f)

Proof: 

Claim:  If S and S’ belong to the adjacent cubelets and share a facet f, then 

π

If S and S’ belong to adjacent cubelets then f  lies on a facet xi=1 of S and xi=0 
of S’. The vertex not in f in S is 0…00, while the vertex not in f  in S’  is 1…11. 
Moreover, to obtain the vertices of  f in S’, replace coordinate i in the vertices of 
f in S with 0. In other words permutations              are identical, except that i is 
moved from the last position of       to the first position of        . 

π, π�

π�

signS(f) · signS�(f) < 0.

σfIt follows that the color permutation         is the same in S, S’, while there is 
exactly one transposition in going from       in S to       in S’. τf τf



Interesting Properties of     sign(f)

Proof: 

Claim:  Let S be a colorful simplex and f, f ’ its two colorful facets. Then 

signS(f) · signS(f �) < 0.

Let w, w’ be the vertices of  S missing from f and f’ respectively. W.l.o.g w 
appears before w’ on the cycle, and they are separated by k arcs. 

if n is even: 

if n is odd: 

It is then easy to see that the permutations         and         differ by a cyclic shift 
of k positions. 

τf τf �

sign(τf �) = sign(τf )

sign(τf �) = sign(τf )(−1)k

We proceed to the comparison of permutations        and        : σf σf �



Interesting Properties of     sign(f)

Proof (cont.): Let the colors be as follows  

w 

w’ 

i1 

i2 ik 

ik+1 

in 

i1 

σf = i2i3 . . . iki1ik+1 . . . in
σf � = ik+1 . . . ini1i2 . . . ik

To obtain          from         move color i1 to the beginning of the permutation, then shift  
cyclically left k positions. 

σfσf �

sign(σf �) = sign(σf )(−1)k−1if n is even only pay for moving i1: 

if n is odd pay for moving i1 and shift: sign(σf �) = sign(σf )(−1)k−1(−1)k



Interesting Properties of     sign(f)

Proof (cont.): 

if n is even: 

Hence: 

sign(f) · sign(f �) = (−1)k−1

if n is odd: sign(f) · sign(f �) = (−1)k(−1)k(−1)k−1


