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Sperner’s Lemma	
  

(Pn): For all i ∈ {1,…, n}, none of the vertices on the face xi = 0 uses 
color i; moreover, color 0 is not used by any vertex on a face xi = 1, for 
some i ∈ {1,…, n}.  

Suppose that the vertices of  the canonical simplicization of the hypercube [0,1]n 
are colored with colors 0,1, …, n so that the following property is satisfied by the 
coloring on the boundary: 

Then there exists a panchromatic simplex in the simplicization. In fact, there is 
an odd number of those.	
  

Theorem [Sperner 1928]:	
  

pan: from ancient Greek  πᾶν = all, every 

chromatic: from ancient Greek  χρῶμα.= color 



Remarks:	
  

1.  We need not restrict ourselves to the canonical simplicization of the hypercube 
shown above (that is, divide the hypercube into cubelets, and divide each cubelet 
into simplices in the canonical way shown in the previous lecture). The 
conclusion of the theorem is true for any partition of the cube into n-simplices, as 
long as the coloring on the boundary satisfies the property stated above.  

The reason we state Sperner’s lemma in terms of the canonical triangulation is in an 
effort to provide an algorithmically-friendly version of the computational problem 
related to Sperner, in which the triangulation and its simplices are easy to define, the 
neighbors of a simplex can be computed efficiently etc. We follow-up on this shortly. 
Moreover, our setup allows us to make all the steps in the proof of Sperner’s lemma 
“constructive” (except for the length of the walk, see below). 

Sperner’s Lemma was originally stated for a coloring of a triangulation of the n-simplex, 
(rather than the cube shown above). In that setting, we color the vertices of any triangulation  
of the n-simplex---a convex combination of points                              in general position--- 
with n colors, 0,1,…,n,  so that the facet not containing vertex       does not use color i. Then 
Sperner’s lemma states that there exists a panchromatic simplex in the simplicization. 

v0, v1, . . . , vn
vi

2. 

 Our coloring of the n-dimensional cube with n+1 colors is essentially mimicking the 
coloring of a simplex whose facets (except one) correspond to the facets of the cube around 
the corner 0n, while the left-out facet corresponds to the “cap” of the hypercube around 1n. 





The structure of the Proof 



Proof of Sperner 

x1

x2

x3

color 2 

color  3 

1 

1 

color 0 

a. Start at the starting simplex; this has all the colors in {2,3,…,n, 0} but not color 1 
and hence it is a colorful simplex. One of its colorful facets lies in x1=0, while the 
other is shared with some neighboring simplex. 

b. Enter into that simplex through the shared colorful 
facet. If the other vertex of that simplex has color 1 
the walk is over, and the existence of a panchromatic 
simplex has been established. If the other vertex is 
not colored 1, the simplex has another colorful facet.  

c. Cross that facet. Whenever you enter into a 
colorful simplex through a colorful facet, find 
the other colorful facet and cross it. 

what are the possible evolutions of this walk? 



(i) Walk cannot loop into itself in a rho-shape, since that would require a simplex with 
three colorful facets. 

(iii) Walk cannot get into a cycle by coming into the starting simplex (since it would 
have to come in from outside of the hypercube ) 

Proof of Sperner	
  

The single remaining possibility is that the walk keeps evolving a path orbit, encountering a 
new simplex at every step while being restricted inside the hypercube. Since there is a finite 
number of simplices, walk must stop, and the only way this can happen is by encountering 
color 1 when entering into a simplex through a colorful facet. 

(ii) Walk cannot exit the hypercube, since the only colorful facet on the boundary 
belongs to the starting simplex, and by (i) the walk cannot arrive to that simplex from 
the inside of the hypercube (this would require a third colorful facet for the starting 
simplex or a violation to (i) somewhere else on the path). 

a panchromatic simplex exists	
  



After original walk has settled, we can start a walk from some other simplex that is 
not part of the original walk.  

Odd number of panchromatic simplices? 

- If the simplex has no colorful facet, stop immediately 
- If the simplex is colorful, start two simultaneous walks by crossing the two colorful 
facets of the simplex; for each walk: if S is a colorful simplex encountered, exit the 
simplex from the facet not used to come in; there are two cases: 

either the two walks meet 

isolated node 

cycle 
or the walks stop at a different panchromatic simplex each path 



Two simplices are Neighbors iff  they share a 
colorful facet 

? 

Space of Simplices 

1 
2 

Abstractly… 



Space of Simplices 

... 
Starting Simplex 

Proofs constructs a graph with degree ≤ 2 

= panchromatic 



The simplices share a colorful facet, that 
has sign -1 for S1 and sign +1 for S2  

? 

Space of Simplices 

1 
2 

In fact can assign directions… 

remarkable property of 
our sign function: 

all nodes on a path agree on the 
direction of the path! 



Space of Simplices 

... 
Starting Simplex 

The Directed Graph 

the colorful facet of the 
starting simplex lying 
on x1=0 has sign +1 



Computational Sperner Problem	
  

2m 

2m 

2m 

C …
	
  

x1
x2
x3

xn

0, 1, . . . , n

Coordinates of point 
in the triangulation 
    m bits/coordinate 

Color of node 

INPUT: 

SPERNER:  Given a coloring circuit C, find a panchromatic simplex. 



Trouble…	
  

C …
	
  

x1
x2
x3

xn

0, 1, . . . , n

INPUT: 

SPERNER:  Given a coloring circuit C, find a panchromatic triangle. 

The trouble is that the circuit may not produce a legal coloring. So there is 
no guarantee that there is a panchromatic simplex. 



Definition of SPERNER	
  
Two ways to circumvent this… 

1st version 

SPERNER: Given a coloring circuit C, either find a panchromatic triangle, or 
a point on the boundary that violates the legal coloring property.	
  

2nd version 

SPERNER: Given a coloring circuit C, find a panchromatic triangle in the 
coloring produced by another circuit C’ that:	
  

- agrees with C inside the hypercube; 
- produces the “envelope coloring” at the boundary. 

Both versions correspond to total problems, that is for all inputs there is a solution. 

I can also solve them both, using the algorithm we have developed. 



Function NP (FNP)	
  

A search problem L is defined by a relation RL(x, y) such that 

RL(x, y)=1      iff     y is a solution to x 

A search problem L belongs to FNP iff there exists an efficient algorithm AL(x, y) 
and a polynomial function pL( ⋅	
  ) such that 

(ii) if   ∃	
  y  s.t.  RL(x, y)=1   " "∃	
  z with |z| ≤ pL(|x|) such that AL(x, z)=1	
  

Clearly,  SPERNER  ∈	
   FNP.	
  

(i) if AL(x, z)=1          RL(x, z)=1	
  



Reductions between Problems	
  

A search problem L ∈	
  FNP, associated with AL(x, y) and pL , is polynomial-time 
reducible to another problem L’ ∈	
  FNP, associated with AL’(x, y) and pL’, iff there 
exist efficiently computable functions f, g such that 

(i) x is input to L        f(x) is input to L’ 

AL’ (f(x), y)=1         AL(x, g(y))=1 

RL’ (f(x), y)=0, ∀	
  y  RL(x, y)=0, ∀ y 

(ii) 	
  

A search problem L is FNP-complete iff 

L’	
   is poly-time reducible to L, for all L’	
  ∈	
  FNP 
L ∈	
  FNP 

e.g. SAT 



Definition of BROUWER	
  

Find an approximate fixed point of a continuous function f : [0,1]n  →	
  [0,1]n, 
with some well-behaved modulus of continuity.	
  

Informally the Brouwer problem is the following: 

Remark: An alternative (stronger) notion of approximation is to find x s.t.	
  
∃ y s.t. |x− y| < � and f(y) = y

Finding a Brouwer fixed point of a given function is not immediately a 
combinatorial problem. For one thing, the function could have a unique fixed 
point that is irrational. To define a combinatorial problem, we introduce 
approximation. 

|f(x)− x| < �, for some �

Strong approximation	
  

if well-behaved modulus of 
continuity, e.g. Lipschitz	
  

to guarantee that for given approximation       
     can express an approximate fixed point 
with polynomial precision 
�



Definition of BROUWER	
  
INPUT: a. an algorithm A (that is claimed to) evaluate a continuous function 

           f : [0,1]n →	
  [0,1] n. 

A …
	
  

x1
x2
x3

xn

f(x)

b. an approximation requirement �

BROUWER:	
  

OR a point that is mapped outside of  [0,1]n. 

OR a pair of points x, y violating the Lipschitz constraint, i.e. 
|f(x)− f(y)| > c|x− y|

c. a Lipschitz constant  c  claimed to be satisfied by the function 

Find x such that   |f(x)− x| < �



Remarks	
  

1. Choice of norm: The norms used for the approximation requirement and 
the Lipschitz-ness in the definition of the problem are flexible. 

2. Totality: No matter what the given algorithm A is the problem is total 
and in FNP. 

proof: 
- define a sufficiently fine canonical simplicization of [0,1]n, using cells 
of  size 2-m  (m to be decided later);  
- define a coloring of the vertices of the simplicization with (n+1)-colors 
depending on the direction of   f (x) – x, as follows: 

for all i=1,…,n, color i is allowed if   (f(x)− x)i ≤ 0
color 0 is allowed if  (f(x)− x)i ≥ 0, for all i

Reduce to SPERNER as follows 

when coloring boundary nodes tie-break appropriately the above rules to 
avoid (if at all possible) violating the coloring requirements of Sperner 
(for example, if   (f(x)-x)i=0 for some x, s.t. xi=0, do not use color i )	
  



Remarks	
  
proof (of totality continued): 

thus a valid instance of SPERNER is defined; solve this instance: 

- if  a point on the boundary violating the Sperner coloring requirements is returned, 
this corresponds to a point x mapped outside of the hypercube. 

- if  a panchromatic simplex is returned, it can be argued (similarly to the 2-D case 
in lecture 5) that 

|(f(z0)− z0)i| ≤ |(f(z0)− f(zi))i| + |(z0 − zi)i|,∀i

where                                 are the vertices of the simplex colored 0, 1,…, n	
  z0, z1, . . . , zn

- if Lipschitz condition is satisfied for all pairs of  points                , the above 
implies (say we are working with the infinity norm) that  

(z0, zi)

and similarly for other norms…	
  

|f(z0)− z0|∞ < (c + 1)2−m
(**)	
  

the only way (**) does not hold is when some pair               violates the Lipschitz 
condition. Such pair can be identified. 

(z0, zi)



Definition of  NASH	
  

INPUT: A game described by  
- the number of players n;	
  
- an enumeration of the strategy set Sp of every player p = 1,…, n;	
  
- the utility function                             of every player.	
  up : S −→ R

NASH:	
  

An approximation requirement   	
  �

Compute an                   equilibrium of the game.   �−Nash

that is, an  �− well supported Nash equilibrium

i.e. everything in the support of a player is an 
                              of payoff for that player given 
the strategies of the other players.	
  
�−maximizer



Remarks	
  
1. Approximation: Already in his 1951 paper, Nash provides a three-player game 
whose unique equilibrium is irrational. This motivates our definition of the 
problem in terms of approximation. 

3. Totality is guaranteed from Nash’s theorem 

2. 2-player Games: We will see later, that two-player games always have a 
rational equilibrium of polynomial description complexity in the size of the game 
(assuming that the payoffs of the game are rationals). Hence, for two-player 
games we can also define the exact NASH problem.	
  

4. Notion of approximation: We could define our problem in terms of the 
alternative notion of an                                Nash equilibrium. This won’t 
affect the complexity of the problem given the following: 

�− approximate

Given an ϵ - approximate Nash equilibrium of an n-player game, we can 
efficiently compute a 

√
� · (
√

� + 1 + 4(n− 1)umax)−Nash equilibrium

Theorem [Daskalakis-Goldberg-Papadimitriou ’09] 
maximum absolute 
value in payoffs 



Remarks	
  
5. NASH   BROUWER : 

- use Nash’s function (recall from Lecture 5), defined as follows 

yp(j) =
xp(j) + max (0, up(j;x−p)− up(x))

1 +
�

j∈Sp
max (0, up(j;x−p)− up(x))

x �−→ y
f

- f  is Lipschitz: 

Theorem [Daskalakis-Goldberg-Papadimitriou ’09]: 

|f(x)− f(y)|∞ ≤ [1 + 2umaxn · m · (m + 1)]|x− y|∞

For all pairs of mixed strategy profiles x, y:	
  

where m is an upper bound on the number of strategies of a player.	
  



Remarks	
  
5. NASH   BROUWER (cont.): 

- approximation preservation 

Theorem [Daskalakis-Goldberg-Papadimitriou ’09]: 
If a vector x satisfies 

|f(x)− x|∞ ≤ �

then x is a 

m
�

�(1 + m · umax)
�
1 +

�
�(1 + m · umax)

�
max{umax, 1}

approximate Nash equilibrium of the game. 



Remarks	
  
5. NASH   BROUWER (cont.): 

- Final Print: 

We defined BROUWER for functions in the hypercube. But Nash’s function is 
defined on the product of simplices. Hence, to properly reduce NASH to 
BROUWER we first embed the product of simplices in a hypercube, then extend 
Nash’s function to points outside the product of simplices in a way that does not 
introduce approximate fixed points that do not correspond to approximate fixed 
points of Nash’s function. 



Our Reductions so far…	
  

NASH BROUWER	
   SPERNER	
  
both Reductions are polynomial-time 

Is then SPERNER  FNP-complete? 

- with our current notion of reduction no, because SPERNER always 
has a solution, while SAT not; 

- we could try to change our notion of reduction, e.g., require that a solution to 
SPERNER informs us about whether the SAT instance is satisfiable or not, and 
provides us with solution to the SAT instance in the yes case; 

∈	
   FNP	
  

NP = co−NP

but this can be turned into a non-deterministic algorithm for checking “no” answers to 
SAT: guess the solution to SPERNER; this will inform you about whether the answer 
to the SAT instance is “yes” or “no”, leading to                                  …	
  

- finally, we could turn SPERNER into a non-total problem, by removing the 
boundary conditions; this way, SPERNER can be easily shown FNP-complete, 
but all the structure of the original problem is lost in the reduction.  



A Complexity Theory of Total Search 
Problems ?	
   ??	
  



100-feet overview of our methodology: 

1. identify the combinatorial argument of existence, responsible for making the 
problem total; 

2. define a complexity class inspired by the argument of existence; 

3. make sure that the complexity of the problem was captured as tightly as 
possible (via a completeness result). 

A Complexity Theory of Total Search 
Problems ?	
  



Space of Simplices 

... 
Starting Simplex 

Recall Proof of Sperner’s Lemma 



Combinatorial argument of existence? 



The Non-Constructive Step	



a directed graph with an unbalanced node (a node with indegree ≠ 
outdegree) must have another. 

an easy parity lemma: 

but, why is this non-constructive? 

given a directed graph and an unbalanced node, isn’t it trivial 
to find another unbalanced node? 

the graph can be exponentially large, but has succinct description… 



The PPAD Class [Papadimitriou ’94]	



Suppose that an exponentially large graph with vertex set {0,1}n is defined by 
two circuits: 

P 

N 

node id 

node id 

node id 

node id 

END OF THE LINE: Given  P  and  N: If  0n  is an unbalanced node, find 
another unbalanced node. Otherwise say “yes”. 

PPAD =  { Search problems in FNP reducible to END OF THE LINE}  

possible previous 

possible next 



Inclusions	



sufficient to define appropriate circuits P and N 

- starting simplex 0n 

- P(0n) = 0n, and N(0n) outputs the simplex sharing the colorful facet 
with the starting simplex 

- if a simplex S is neither colorful nor panchromatic, then P outputs S, 
while N outputs 0n  (this makes sure that S is isolated) 
- if a simplex S has a colorful facet shared with another simplex S’, 
then if the sign of the facet is -1 then N(S)=S’; if the sign is +1 then P
(S)=S’ 

important that the  
directions are locally 
computable, and 
consisten 

PROOF: 

(i) PPAD ⊆ FNP

(ii) SPERNER ∈ PPAD



PPAD

FNP

SPERNER

BROUWER

NASH



Other arguments of existence	



“If a graph has a node of odd degree, then it must have another.” 

PPAD  

“Every directed acyclic graph must have a sink.” 
PLS 

“If a function maps n elements to n-1 elements, then there is a collision.” 

PPP 

Formally? 



FNP

PPAPLS PPP

P

PPAD


