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Lecture 3
Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim

In the previous lecture we saw that there always exists a Nash equilibrium in two-player zero-sum
games. Moreover, the equilibrium enjoys several attractive properties such as polynomial-time tractabil-
ity, convexity of the equilibrium set, and uniqueness of players’ payoffs in all equilibria. In the present
and the following lecture we investigate whether simple and natural distributed protocols can find the
value/equilibrium strategies of a zero-sum game. We have in mind very generic settings in which the
players may be oblivious to the exact specifications of the zero-sum game they are playing. We only
require that they know what strategies are available to them, and can observe how well each of their
strategies performs against the choices of their opponent.

1 Fictitious Play

Let (R,C)m×n be a two player zero-sum game. Suppose that the game is played repeatedly by its two
players. Say that, at time t = 0, the row player plays strategy i0 and the column player strategy j0.
For any row-player strategy i, define V 0(i) = Ri,j0 to represent the payoff achieved by strategy i, given
the current history of play by the other player (in this case the history has length 1). Similarly, for any
column-player strategy j, define U0(j) = Ri0,j to represent the loss incurred by strategy j given the
history of play of the row player.

At time t = 1, the players need to decide what strategies to play. Suppose that the players are
myopic and make their decisions greedily based on the current history of play. A myopic/greedy row
player would choose some strategy

i1 ∈ argmaxiV 0(i),

while a myopic/greedy column-player would choose some strategy

j1 ∈ argminjU0(j).

Given these strategies, the cumulative payoff and loss vectors should be updated as follows:

V 1(i) = V 0(i) +Ri,j1 ,

U1(j) = U0(j) +Ri1,j .

At an arbitrary time t, assume that we are given the cumulative payoff and loss vectors up to that
time; that is, we are given V t−1, U t−1. Fictitious play specifies that the choices made by the row and
column player at time t satisfy respectively

it ∈ argmaxiV t−1(i),

jt ∈ argminjU t−1(j).

Given it, jt, we can update the payoff and loss vectors accordingly

V t(i) = V t−1(i) +Ri,jt ,

U t(j) = U t−1(j) +Rit,j .

And the dynamics proceed ad infinitum or until some fixed period of time T is exhausted.

Example 1. Let (R,C) be a two-player zero-sum game with three strategies per player. Suppose that
the row player’s payoffs are given by

R =

 2 1 0
2 0 3
−1 3 −3

 .
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Suppose that at time t = 0 the row player plays i0 = 1 and the column player plays j0 = 3. Table 1
summarizes the first three rounds of the game if the players follow fictitious play.

t it jt V t(1) V t(2) V t(3) U t(1) U t(2) U t(3)
0 1 3 0 3 -3 2 1 0
1 2 3 0 6 -6 4 1 3
2 2 2 1 6 -3 6 1 6

Table 1: Summary of first three rounds of game. Underlined numbers indicate optimal cumulative
rewards/loesses for a given round by the two players of the game.

Observe that, in the first three rounds of the game shown in this table, maxiV t(i) ≥ minjU
t(j).

Does this hold for all two player zero-sum games and for all times t? We show that this indeed is the
case.

We begin by defining the row player’s empirical mixed strategy

xt =
1

t+ 1

∑
τ≤t

eiτ ,

where iτ is the strategy played at time τ and ei is a vector whose components are all zero, except for
the ith component, which is 1. Similarly, the column player’s empirical mixed strategy is

yt =
1

t+ 1

∑
τ≤t

ejτ .

Given this definition, we can write the row player’s payoff vector V t = (V t(1), ..., V t(m)) as

V t =
∑
τ≤t

R · ejτ = (t+ 1) ·R · yt.

Similarly, we can write the column player’s loss vector U t = (U t(1), ..., U t(n)) as

U t =
∑
τ≤t

eTiτR = (t+ 1) · (xt)TR.

We can show the following.

Claim 1. If a zero-sum game (R,C) is played repeatedly by two players following fictitious play, then
for all times t ≥ 0:

maxi
V t(i)
t+ 1

≥ v ≥ minj
U t(j)
t+ 1

,

where v is the value of the game.

Proof: It suffices to show that for all t:

maxR · yt ≥ v ≥ min(xt)TR,

where the max and min operators pick the maximum, respectively minimum, coordinate values of their
operand vectors.
Recall the linear program LP (2) from the previous lecture:

min z
s.t. Ry ≤ z · 1∑

yi = 1, yi ≥ 0.
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In every optimal solution (y∗, z∗) of this linear program, at least one of the slack constraints must be
tight. So we get z∗ = max(R · y∗). We also argued in the previous lecture that the optimal value z∗ of
this LP is equal to the value v of the game.

Now notice that (yt,max(R · yt)) is always a feasible solution of this linear program achieving value
max(R · yt). Since the linear program is a minimization problem, we must have max(R · yt) ≥ z∗ = v.
Similarly, we can argue using LP (1) that v ≥ min((xt)T ·R). This concludes the proof. �

1.1 Convergence of Fictitious Play

The above result gives an interesting property of repeated games, but does not tell if payoffs or em-
pirical strategies converge to some interesting value or object over time. Do we get convergence to an
equilibrium? Julia Robinson showed that we do get convergence of payoffs:

Theorem 1 (J. Robinson, 1950 [1]). If a zero-sum game (R,C) is played repeatedly by two players
following fictitious play, then:

lim
t→∞

max
V t

t+ 1
= lim
t→∞

min
U t

t+ 1
= v,

where v is the value of the game.

Discussion:

• Robinson’s proof is a clever inductive argument on the number of strategies of the game. We do
not provide the proof here, but encourage the interesting reader to look at it here [].

• It is a priori not clear that the above limit exist. So in particular the above theorem informs us
that these limits do exist.

• Robinson’s proof does not discuss the speed of convergence to the value of the game. Unraveling
her inductive argument we can establish the following.

Theorem 2. For all ε > 0, for all t ≥ (Rmaxε )Ω(m+n) we have∣∣∣∣max
V t

t+ 1
−min

U t

t+ 1

∣∣∣∣ ≤ ε,
where Rmax = maxi,j(|Rij |), and m, n are respectively the number of rows and columns in the
payoff matrices of the game.

And what about the empirical mixed strategies, do they converge to some interesting object? Before
discussing this, let us define the notion of an approximate Nash equilibrium.

Definition 1. A pair of strategies is an ε-approximate Nash Equilibrium if and only if

1. xTRy ≥ x′TRy − ε for all x′ ∈ ∆m,

2. xTRy ≥ xTRy′ − ε for all y′ ∈ ∆n.

That is, no player of the game can improve by more than ε by switching to a different mixed strategy.

Corollary 1 (of Theorem 2). For all ε > 0, for all t ≥ (Rmaxε )Ω(m+n), (xt, yt) is an ε-approximate Nash
equilibrium of the game.

Proof: Writing V t

t+1 as Ryt and Ut

t+1 as (xt)TR, we get from Theorem 2 that

0 ≤ maxRyt −min(xt)TR ≤ ε.

But note that min(xt)TR ≤ (xt)TRyt. The reason is that the right hand side can be interpreted
as an average of the coordinate-values of (xt)TR. This average is always greater than or equal to the
minimum coordinate value of (xt)TR.
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Summing the two inequalities above, we get

maxRyt − (xt)TRyt ≤ ε

⇔ (xt)TRyt ≥ maxRyt − ε.
That is, if the column player uses her empirical mixed stretegy yt, the row player cannot improve her
payoff by more than ε by not using his empirical mixed strategy xt. We can reason analogously to show
that the column player performs cannot improve by more than ε by deviating from yt. This establishes
that the pair (xt, yt) is an ε-approximate Nash equilibrium. �

Hence, not only the payoffs of the players converge to the value of the game under fictitious play,
but if we look at the empirical mixed strategies at any time t, these constitute an Rmax · t−

1
Ω(m+n) -

approximate Nash equilibrium. Can convergence be made faster? Samuel Karlin conjectured so..

Conjecture 1 (Samuel Karlin, 1959 [2]). Fictitious play converges with rate 1√
t
· f(|R|, |C|) for some

function f that only depends on the description sizes of R and C.

2 Experts Algorithms

We switch topics at this point and study experts algorithms. The following is the setup:

- n experts/strategies and a learner

- At every t:

- The learner chooses a probability distribution over [n], p˜t.
- Nature will output a loss vector l˜t ∈ [0, 1]n.
- The learner’s loss will be p˜t · l˜t.

- Cumulative loss up to time t, Lt =
∑
τ≤t p˜τ · l˜τ .

The goal is to devise an algorithm for the learner so as to minimize the cumulative loss, Lt, in
a reasonable way. What benchmark should we compare our algorithm’s performance against? One
possibility is

∑
τ≤t min(l˜τ ). This is exactly the best we can do given we know all the future events and

we argue that this is too stringent. It happens that the right benchmark to compare against is the best
performing expert, which is min(

∑
τ≤t l˜τ ). Below we consider a few algorithms.

2.1 “Follow the Leader” Algorithm

One simplest strategy for the learner is to pick the strategy that has performed the best so far. This is
called the “Follow the Leader” algorithm and the outline is given below:

- Let Lti =
∑
τ≤t l

τ
i .

- At time t, pick argmini L
t−1
i .

The following example shows that the above algorithm’s performance can be poor.

Example 2. In the table below, rows are indexed by the n strategies and columns are indexed by time
t = 1, 2, . . .. Each column i represents the loss vector l˜t when t = i.

t = 1 t = 2 t = 3 · · · t = n+ 1
1 1

n 1
2 1

n−1 1
3 1

n−2
...

...
. . .

n 1 1
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After n+ 1 steps, Ln = L1 + n and min(
∑
τ≤n+1 l˜τ ) = 1 + 1

n .

Hence it seems that the cumulative loss by the “Follow the Leader” algorithm can be n times the
benchmark min(

∑
τ≤τ l˜τ ). In fact, this is the worst the algorithm can do by the following theorem.

Theorem 3. For all t,
Lt ≤ n · (min

i
Lti + 1)

Proof: Assigned as an exercise problem for 2 points. �

2.2 Hedging (aka Multiplicative Weights Update Method)

The main idea of this algorithm is that instead of picking a single strategy deterministically as in the
“Follow the Leader” algorithm, we spread risk by employing a mixed strategy that depends on how pure
strategies did individually over the course of the algorithm. The following is the outline:

- At every time t, the learner maintains a weight vector w˜ t ≥ 0.

- p˜t =
w˜tw˜t·1 .

- Initial weight vector, w˜ t = 1
n · 1.

- Multiplicative weight update, wt+1
i = wti · uβ(lti), where uβ : [0, 1]→ [0, 1] is a function parameter-

ized by β such that ∀β ∈ [0, 1] : βx ≤ uβ(x) ≤ 1− (1− β)x,∀x ∈ [0, 1].

For example, uβ(x) = βx. In this case, wt+1
i = wti · βl

t
i = . . . = w0

i · βL
t
i . We can prove the following

performance guarantee of the algorithm, which we prove next time.

Theorem 4. For all t and l˜1, l˜2, . . . , l˜t,
Lt ≤

ln(n) + mini(Lti) · ln( 1
β )

1− β
.

For example, Lt ≤ 2 ln(n) + 2(ln(2)) ·mini(Lti) when β = 1
2 .

3 Homework [2 points]

Prove Theorem 3.
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