
6.896 Topics in Algorithmic Game Theory February 17, 2010

Lecture 5
Lecturer: Constantinos Daskalakis Scribe: Tony Liu

NOTE: The content of these notes has not been formally reviewed by the lecturer. It is recommended
that they are read critically.

We have seen that there always exists a Nash equilibrium in two-player zero-sum games. In this
lecture, we prove Nash’s theorem on the existence of Nash equilibrium in any n-player finite game. The
proof requires Brouwer’s fixed point theorem. Although this is a topological result, we give a proof for
two dimensions using combinatorial methods via Sperner’s lemma.

1 Preliminaries

We start by giving a few precise definitions.

Definition 1. A n-player finite game 〈[n], (Sp)p∈[n], (up)p∈[n]〉 is formally defined as follows.

• We have a set of n players [n] = {1, 2, . . . , n}.

• Each player p ∈ [n] has a finite set of strategies or actions Sp.

• The set S =
∏

p∈[n] Sp is the set of strategy profiles.

• Each player can choose a distribution of strategies x˜p ∈ ∆Sp = {xp ∈ RSp

+ |
∑

sp∈Sp
xp(sp) = 1}.

• Each player has a utility function up : S → R.

Here, given a mixed strategy profile x˜ ∈ ∆ =
∏

p∈[n] ∆Sp , the payoff of player p is given by the
expected utility

up(x˜) = Es∼x˜ [up(s)] .

Given a strategy profile s ∈ S, we also adopt the notation sp to denote player p’s strategy and s−p to
denote everyone else’s strategies. Similarly, given x˜ ∈ ∆, we let x˜p denote the distribution of strategies
for player p and let x˜−p denote the distribution of strategies for everyone else.

Next, we give a few definitions for types of Nash equilibria.

Definition 2. A distribution of strategies x˜ ∈ ∆ is a Nash equilibrium iff ∀p ∈ [n], sp ∈ Sp, we have

up(x˜) ≥ up(sp;x˜−p).

In other words, x˜ is a Nash equilibrium iff no player can strictly increase his or her payoff by using
pure strategies. Note that checking against all pure strategies is sufficient because expected payoff is
linear in the payoff of pure strategies. Also, note that if x˜ is a Nash equilibrium, then for all p, the
support of x˜p is a subset of the maximizers, or

supp(x˜p) ⊂ argmaxsp∈Sp
up(sp;x˜−p).

The set of pure strategies is a subset of mixed strategies. Therefore, an equivalent definition is the
following.

Definition 3. A distribution of strategies x˜ ∈ ∆ is a Nash equilibrium iff ∀p ∈ [n], sp, s
′
p ∈ Sp such that

x˜p(sp) > 0, we have
up(sp;x˜−p) ≥ up(s′p;x˜−p).
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Here are two definitions for approximate Nash equilibria.

Definition 4. A distribution of strategies x˜ ∈ ∆ is a ε-approximate Nash equilibrium iff ∀p ∈ [n], sp ∈ Sp,
we have

up(x˜) ≥ up(sp;x˜−p)− ε.

Definition 5. A distribution of strategies x˜ ∈ ∆ is a ε-well-supported Nash equilibrium iff ∀p ∈
[n], sp, s

′
p ∈ Sp such that x˜p(sp) > 0, we have

up(sp;x˜−p) ≥ up(s′p;x˜−p)− ε.

Note that these two definitions are not equivalent. Indeed, the latter implies the former. A ε-well-
supported Nash equilibrium needs to be within ε of the optimal for every pure strategy, whereas a
ε-approximate Nash equilibrium only needs to be within ε of the optimal for the mixed strategy.

2 Nash’s Theorem

The following theorem was established by John Nash in 1951 [2].

Theorem 1 (Nash). Every game 〈[n], (Sp)p∈[n], (up)p∈[n]〉 has a Nash equilibrium.

Before we delve into the proof of this theorem, we need Brouwer’s fixed point theorem. This will be
proved (in the two-dimensional case) in the next few sections.

Theorem 2 (Brouwer). Let D be a convex, compact subset of the Euclidean space. If f : D → D is
continuous, then there exists x ∈ D such that f(x) = x.

The idea behind Nash’s proof is to construct a function f : ∆ → ∆ that satisfies the conditions of
Brouwer’s fixed point theorem such that the fixed point x˜ is a Nash equilibrium. To do so, we introduce
the idea of a gain function.

Definition 6. Suppose x˜ ∈ ∆ is given. For a player p and strategy sp ∈ Sp, we define the gain as

Gainp;sp(x˜) = max{up(sp;x˜−p)− up(x˜), 0}.

In other words, the gain is equal to the increase in payoff for player p using strategy sp if it is positive
and zero otherwise.

Proof of Theorem 1: We define a function f : ∆ → ∆ as follows. Given x˜ ∈ ∆, we set f(x˜) = y,
where for p ∈ [n] and sp ∈ Sp, we have

yp(sp) :=
x˜p(sp) + Gainp;sp

(x˜)
1 +

∑
s′

p∈Sp
Gainp;s′

p
(x˜)

.

Here, the denominator ensures that
∑

sp∈Sp
yp(sp) = 1. We note that f is continuous. Moreover, ∆ is a

product of simplices, so is convex. It is easy to see that ∆ is both closed and bounded, so is compact as
well. Therefore, we can apply Brouwer’s fixed point theorem to get a fixed point x˜. Given that f(x˜) = x˜,
we claim that it is a Nash equilibrium. To do so, it suffices to prove that

Gainp;sp(x˜) = 0 ∀p ∈ [n], sp ∈ Sp.

We proceed by contradiction. Assume that there is some player who can improve, i.e.

∃p ∈ [n], sp ∈ Sp s.t. Gainp;sp
(x˜) > 0. (∗)

Then, it will be enough to show the following.
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Claim 1. The above (*) implies that ∃s′p ∈ supp(x˜p) such that

up(s′p;x˜−p)− up(x˜) < 0.

The claim follows the fact that a linear combination of the terms up(s′p;x˜−p) − up(x˜), with weights
corresponding to the weights of the pure strategies in x˜p, gives zero. Moreover, there is at least one
positive term (with positive gain) so there is at least one negative term. The corresponding strategy s′p
must belong to supp(x˜p).

This implies that Gainp;s′
p
(x˜) = 0, so

yp(s′p) =
x˜p(s′p) + Gainp;s′

p
(x˜)

1 +
∑

s′′
p∈Sp

Gainp;s′′
p
(x˜)

< x˜p(s′p),

since the numerator is x˜p(s′p), while the denominator is greater than 1 (there is at least one nonzero
gain). Therefore, x˜ is not a fixed point, contradiction.

It follows that x˜ is a Nash equilibrium, as desired. �

3 Sperner’s Lemma

Consider a grid composed of square cells and a triangulation of the grid where the diagonals are drawn
from the upper left corner to the lower right corner of the individual cells. We color the nodes one of
three colors: red, blue, or yellow.

Definition 7. We call a coloring legal if there are no blue nodes on the left boundary, no red nodes on
the bottom boundary, and no yellow nodes on both the top and right boundaries.

Figure 1: An example of a legal coloring

Definition 8. A tri-chromatic triangle is a triangle in which all three nodes are different colors.
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Figure 2: Tri-chromatic triangles in the above coloring

We are now ready for Sperner’s lemma.

Lemma 1 (Sperner). Given a legal coloring of a grid, there exists a tri-chromatic triangle. In fact,
there are an odd number of tri-chromatic triangles.

For convenience, we introduce an outer boundary with red on the left (including the top left corner),
yellow on the bottom (including the bottom right corner), and blue on the remaining sides. The following
claim is easily verified.

Claim 2. The boundary does not introduce any tri-chromatic triangles.

Figure 3: The grid with our additional outer boundary

Next, we define a directed walk starting from the bottom-left triangle. If there exists an edge with a
red node and a yellow node (a “red-yellow door”), then cross the door with the red node on the left. Note
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that there is only one red-yellow door in the outer boundary, but with red on the right. If we start from
the bottom-left triangle, it cannot return to itself, so must end at a tri-chromatic triangle. Moreover,
note that every triangle has at most two red-yellow doors, so we cannot get any loops. Therefore, the
following claim is true.

Claim 3. The walk cannot exit the square, nor can it loop around itself in a rho-shape. Hence, it must
stop somewhere inside. This can only happen at tri-chromatic triangle.

Starting from other triangles with two red-yellow doors, we do the same going forward or backward.
Considering going forward from such a triangle. We will either loop back to itself, or hit a tri-chromatic
triangle. In the latter case, we can go backward and encounter another tri-chromatic triangle. The
two tri-chromatic triangles cannot be the same, as there is only one red-yellow door. This allows us to
complete the proof of Sperner’s lemma.

Figure 4: Illustration of the directed walks

Proof of Lemma 1: Starting from the bottom-left triangle, the walk ends at a tri-chromatic triangle.
For any other triangle that has two red-yellow doors, we start both the forward and backward walk. If
they meet, we end in a loop and without any more tri-chromatic triangles. Otherwise, both walks end
at a tri-chromatic triangle. This means we have an odd number of tri-chromatic triangles, as claimed.

�

4 Proof of Brouwer’s Fixed Point Theorem

Now, we show that Sperner’s lemma implies Brouwer’s fixed point theorem for D = [0, 1]2. We will work
over the `∞ norm. Suppose we have a continuous function f : D → D. Because D = [0, 1]2 is compact,
by the Heine-Cantor theorem, we get that f is uniformly continuous as well.

Given ε > 0, there is some δ(ε) > 0 such that for all z, w ∈ D,

d(z, w) < δ(ε) =⇒ d(f(z), f(w)) < ε.

We triangulate D so that the diameter of the cells is at most δ(ε). Next, color the nodes x according
to the direction of f(x)− x, as shown below. In other words, given a vector (x, y), we color it yellow if
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Figure 5: Determining the color of a node based on the direction of f(x)− x

x, y ≥ 0, red if x ≥ y, y ≤ 0, and blue if x ≤ y, y ≥ 0. We tie-break at the boundaries to ensure that
coloring is legal.

By Sperner’s lemma, there is a tri-chromatic triangle. Suppose zY , zR, zB are the yellow, red, blue
nodes of the triangle, respectively.

Claim 4. We have |f(zY )− zY |∞ < ε+ δ.

Figure 6: A triangulation of D with a tri-chromatic triangle

Proof of Claim 4: By definition of the coloring, note that

(f(zY )− zY )x · (f(zB)− zB)x ≤ 0.
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Hence,

|(f(zY )− zY )x| ≤ |(f(zY )− zY )x − (f(zB)− zB)x|
≤ |(f(zY )− f(zB))x|+ |(zY − zB)x|
≤ d(f(zY ), f(zB)) + d(zY , zB)
≤ ε+ δ.

Similarly, we can show that
|(f(zY )− zY )y| ≤ ε+ δ.

�
Note that choosing δ = min(δ(ε), ε) implies that

|f(zY )− zY |∞ ≤ 2ε.

We are now ready to prove Brouwer’s fixed point theorem for D = [0, 1]2.

Proof of Theorem 2: Let εi = 2−i be a sequence for i = 1, 2, . . . . For each εi, define a triangulation
with diameter δi = min(δ(εi), εi). Note that these triangulations get finer. For the triangulation corre-
sponding to εi, let zY

i be the yellow node of a tri-chromatic triangle, which exists by Sperner’s lemma.
By compactness, this sequence has a convergent subsequence wi with limit equal to w∗. Now, we claim
that w∗ is a fixed point.

Define a function g(x) = d(f(x), x), which is continuous since both f and d(·, ·) are continuous. There-
fore, it follows that

g(wi) → g(w∗) as i→∞.

By the previous claim, we have 0 ≤ g(wi) ≤ 2εi = 2−i+1, so g(wi)→ 0. It follows that g(w∗) = 0, which
implies f(w∗) = w∗, as desired. �

5 Visualizing Nash’s Construction

Although we have all the relevant theorems, the purpose of this section is to develop some intuition for
Brouwer’s fixed point theorem and Nash’s construction. Below are a few examples of Brouwer’s fixed
point theorem in action, where D is a two-dimensional disk. Note that all the conditions for Brouwer’s
fixed point theorem are necessary to ensure a fixed point.

Finally, we give an example of Nash’s construction. Consider the simple penalty shot game below.
The only Nash equilibrium is mixing uniformly.
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Figure 7: Examples of fixed points for three different functions

Figure 8: Nash’s construction for the penalty shot game
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