
6.896 Topics in Algorithmic Game Theory

Lecture 7
Lecturer: Constantinos Daskalakis Scribes: David Chen, Pablo Azar

NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

Continuing from the previous lecture, we finished looking at the proof of Sperner’s Lemma in the
multidimensional case. In this lecture, we adopt a more computational view of the lemma. We then
define computational versions of SPERNER, BROUWER, and NASH, the complexity class FNP, and finish with
a definition of the complexity class PPAD.

1 Sperner’s Lemma

Recall from the previous lecture that Sperner’s Lemma for many dimensions was proved:

Theorem 1 (Sperner 1928). Suppose the vertices of the canonical simplicization of the hypercube [0, 1]n

are colored with colors 0, 1, . . . , n so that the following property is satisfied by the coloring on the boundary:

• (Pn): For all i ∈ {1, . . . , n}, none of the vertices on the face xi = 0 uses color i; moreover, color
0 is not used by any vertex on a face xi = 1 for some i ∈ {1, . . . , n}.

Then, there exists a panchromatic simplex in the simplicization. In fact, there is an odd number of
such simplices.

Proof and discussion of this theorem was given in the previous lecture.

2 Computational Problems

With the general version of Sperner’s Lemma shown, we are now ready to move toward the computational
view of these problems.

2.1 SPERNER

The coloring of an n-cube can be viewed in the following way. Say that the coordinate of a point in
each direction can be represented by m bits; that is, the cube is broken up into 2m pieces along each
direction. Then, a point on the cube is defined by n coordinates of m bits, and a coloring is defined as
a circuit C such that

C : {0, 1}mn → {0, 1 . . . , n}

That is, C operates on n coordinates x1, . . . , xn and outputs a color. We can see how having such a
circuit is equivalent to a unique coloring of the cube: if we want to find the color at a vertex, just give
the circuit the coordinates of the vertex, and use the output of the circuit. The Sperner problem then
becomes the problem of finding a panchromatic simplex when given a coloring circuit C.

Notice that in the computational perspective, we meet additional complications. For one, it is fine
to talk about what to do if we know a coloring fits the Sperner property. However, given a circuit C
as above, we have no guarantee that the coloring it produces does fit the Sperner property! Indeed, as
there are Ω(n2m(n−1)) different vertices on the facets of the cube, we cannot feasibly check if a circuit
does in fact have the Sperner property! Any computational analogy of the Sperner problem must take
this into account.
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Definition 1 (SPERNER 1). Given a coloring circuit C, either find a panchromatic triangle, or find a
point on the boundary that violates the Sperner coloring property.

Definition 2 (SPERNER 2). Given a coloring circuit C, find a panchromatic triangle in the coloring
produced by another circuit C ′ that:

• Agrees with C inside the hypercube.

• Produces the “envelope coloring” at the boundary.

Note that both problems are total problems, in that one can find a solution for all inputs.

2.2 Search Problems, FNP and its Reductions

A search problem L is a language consisting of pairs (x, y). The first element x is an instance of the
problem, and the second element y is a potential solution to the problem. Formally, a search problem is
defined by a relation RL(x, y) such that

RL(x, y) = 1

if and only if y is a solution to the instance x. A search problem is called total if for all x there exists y
such that R(x, y) = 1.

A search problem L is in the class FNP if and only if there exists an efficient algorithm AL(x, y) and
a polynomial function pL(·) such that

1. if AL(x, z) = 1, then RL(x, z) = 1,

2. if there exists y such that RL(x, y) = 1, then there exists z with |z| ≤ pL(|x|) such that AL(x, z) = 1

Informally, a search problem is in FNP if all instances x of the problem that have solutions, also have
solutions that are polynomially small and efficiently verifiable. SPERNER is in FNP. Given a coloring
circuit C and a panchromatic triangle induced by this coloring circuit, we can easily verify that the
triangle is panchromatic. If we are given the circuit C and a point at the boundary that violates the
Sperner coloring property, we can easily verify that the coloring property is violated.

A search problem L in FNP, associated with AL(x, y) and pL, is polynomial time reducible to another
search problem L′ ∈ FNP associated with AL′(x, y) if and only if there exist efficiently computable
functions f, g such that 1

1. if x is an input to L, then f(x) is an input to L′,

2. if AL′(f(x), y) = 1 then AL(x, g(y)) = 1,

3. if RL′(f(x), y) = 0 for all y, then RL(x, y) = 0 for all y.

A search problem L is FNP-complete if and only if L ∈FNP and for all other L′ in FNP, L′ is
polynomial-time reducible to L. For example SAT is FNP-complete.

2.3 BROUWER

We want to turn finding a Brouwer fixed point of a function into a combinatorial problem. Note that
it is not immediately clear that such a thing is possible. For example, given a continuous function f(x)
on a compact, convex set, it could have a unique Brouwer fixed point that is irrational. Thus, the fixed
point would be impossible to compute in finite time. To define a combinatorial problem, we introduce
approximation. Let us say that a point x is an ε-approximate fixed point of f if |f(x)− x| < ε. 2

1We will see shortly that in order to compare total search problems with non-total search problems we will relax the
last condition.

2There is a stronger notion of approximate fixed point, which we won’t use in this class. In particular, we could say
that x is an ε-approximate fixed point of f , if there exists y such that

|x− y| < ε and y = f(y).

For well-behaved functions, e.g. those having a polynomially bounded modulus of continuity the stronger notion of
approximation always implies the weaker notion. For more information on the stronger notion and its computational
nature, look at [1].
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Informally, the Brouwer problem consists of finding an approximate fixed point of a continuous
function f : [0, 1]n → [0, 1]n. To guarantee that for a given approximation ε we can express the ap-
proximate fixed point with polynomial precision, we require that the continuous function have a well
behaved modulus of continuity. For example, we can require that the function f be Lipschitz. That is,
|f(x)− f(y)| ≤ c|x− y| for some constant c, for all inputs x, y.

Formally, we can define BROUWER as a search problem in FNP. An instance of the problem is given by

1. an algorithm A(x1, ..., xn) that claims to evaluate a continuous function f : [0, 1]n → [0, 1]n;

2. an approximation parameter ε;

3. a Lipschitz constant c that f is claimed to satisfy.

A solution of such an instance is a pair of points x, y ∈ [0, 1]n that satisfies any of the following conditions:

1. |f(x)− x| ≤ ε

2. |f(x)− f(y)| > c|x− y|

3. A(x) lies outside of [0, 1]n.

Remark 1. The norms used for the approximation requirement and the Lipschitz condition in the
definition of the problem are flexible.

There are three different ways in which a BROUWER instance can have a solution. The reason behind
this is that we want to guarantee that any instance of BROUWER has a solution, no matter what A, ε and
c are given in the input. That is, BROUWER is a total problem.

Claim 1. BROUWER is a total problem in FNP.

Proof: We reduce the problem to SPERNER, which is total and in FNP. Start by defining a sufficiently
fine canonical simplicization of [0, 1]n, using cells of size 2−m. We will decide m later.

Use the direction of f(x) − x to define a coloring of the vertices of the simplicization with (n + 1)
colors. In particular, color i is allowed if (f(x) − x)i ≤ 0. Color 0 is allowed if (f(x) − x)i ≥ 0 for all
i. Ties are broken to avoid violating the coloring requirements of Sperner, if at all possible (if the value
that A outputs at a point on the boundary is directed outside of the hypercube this may be impossible
to avoid, but this is OK for our reduction).

Hence, we obtain a valid instance of SPERNER. Find a solution of this instance. We show how to
obtain a solution to our original BROUWER instance.

• If our solution to SPERNER is a point x on the boundary violating the Sperner coloring requirements,
then it must be that A(x) 6∈ [0, 1]n.

• If a panchromatic simplex is returned, let z0, z1, ..., zn be the vertices colored 0, 1, ..., n. We can
argue (as we did in the 2-d case in lecture 5), that

|(f(z0)− z0)i| ≤ |(f(z0)− f(zi))i|+ |(z0 − zi)i|

for all i ∈ {1, ..., n}.

• If the Lipschitz condition is satisfied for all pairs of points (z0, zi), the above implies (in the infinity
norm) that |f(z0) − z0|∞ < (c + 1)2−m. We conclude that z0 is an approximate fixed point of f
when (c + 1)2−m ≤ ε, assuming that our m was chosen appropriately in the beginning of the
reduction. We can obtain a similar conclusion for other norms.

• If one of the pairs (z0, zi) violates the Lipschitz condition, this pair can be easily identified and
returned as a solution to the BROUWER instance.

�
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2.4 NASH

We now define the FNP problem NASH. Unlike SPERNER and BROUWER, we do not need many conditions
to ensure that this is a total problem. The reason is that Nash’s theorem guarantees that any game has
an equilibrium.

An input to NASH is described by

1. the number of players n,

2. an enumeration of the strategy set Sp for every player p,

3. a utility function up : ×pSp → R for each player p.

The NASH problem is the task of finding an ε-Nash equilibrium of the game specified in the input.
Recall that in an ε-Nash equilibrium σ = (σ1, ..., σn), every pure strategy in the support of σi gives a
payoff that is ε-close to optimum given the strategy profile σ−i of the other players.

Remark 2. We use approximation in the definition of the problem for a reason. Already in 1951,
Nash showed a three-player game whose unique equilibrium was irrational. The single exception to such
counterexamples are two-player games that always have rational equilibria as we will establish in following
lectures. Thus, for two player games we can define an analogue of the NASH problem that is exact.

Remark 3. As we mentioned before, the problem is total. Nash’s theorem guarantees that any game
has a Nash equilibrium, hence an ε-Nash equilibrium as well.

Remark 4. We could define our problem in terms of an ε-approximate Nash equilibrium. Recall that
this weaker notion of approximate equilibrium is a mixed strategy profile σ = (σ1, ..., σn) satisfying the
following property: the mixed strategy σi of each player i is an approximate best response to the other
players’ mixed strategies, but there is no requirement that everything in the support of this strategy is an
approximate best response. The following theorem shows that the two versions of the Nash problem with
the different kinds of approximation are equivalent.

Theorem 2 (Daskalakis-Goldberg-Papadimitriou 2009 [2]). Given an ε-approximate Nash equilibrium
of an n-player game, we can efficiently compute a

√
ε(
√
ε + 1 + 4(n − 1)umax) well supported Nash

Equilibrium, where umax is the maximum absolute value of a payoff in the game.

We now reduce NASH to BROUWER. For this we make use of Nash’s fuction y = f(x), which given a
mixed strategy profile x computes another mixed strategy profile y. Recall from Lecture 5 that this
function is defined as follows

yp(j) =
xp(j) + max(0, up(j;x−p)− up(x))

1 +
∑

j∈Sp
max(0, up(j;x−p)− up(x))

, for all j ∈ Sp.

The following theorem, which can be found in [2], shows that Nash’s function is Lipschitz.

Theorem 3 (Daskalakis-Goldberg-Papadimitriou 2009 [2]). For any pair of mixed strategy profiles x, y

|f(x)− f(y)|∞ ≤ [1 + 2umaxn ·m · (m+ 1)]|x− y|∞,

where m is an upper bound on the number of strategies of a player and n is the number of players.

Given the above we can solve BROUWER to obtain an approximate fixed point of f . To conclude our
reduction, we need to establish that the function f is approximation preserving; that is, if we are given
an ε-approximate fixed point of f , this corresponds to an approximate Nash equilibrium.

Theorem 4 (Daskalakis-Goldberg-Papadimitriou 2009 [2]). Let f be Nash’s function defined above. Let
also x satisfy |f(x)− x|∞ < ε. Then x is a δ-approximate Nash equilbrium of the game, where

δ = m
√
ε(1 +m · umax)(1 +

√
ε(1 +m · umax)) max(umax, 1),

m is an upper bound on the number of strategies of a player, and umax is the maximum absolute value
of a payoff in the game.
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The above theorems (which we do not prove here) show that NASH can be reduced to BROUWER.
However, there is a fine point. BROUWER is defined for functions in the hypercube, while Nash’s function
is defined on the product of simplices. For this to be a proper reduction, we have to embed the product of
simplices in a hypercube, then extend Nash’s function to points outside the product of simplices, making
sure that given an approximate fixed point of the extended function we can compute an approximate
fixed point of Nash’s function. This can be done and is a 2-point exercise.

2.5 Poly-time Reductions, FNP, Total Problems, and PPAD

We can ask ourselves if SPERNER is FNP-complete. A way to show this would be to find a reduction
from SAT to SPERNER.

This is impossible (in the present definition of poly-time reduction given above), since an instance of
SPERNER always has a solution, while an instance of SAT may or may not have a solution.

One way around this would be to change our definition of a reduction to a more robust one, requiring
that a solution to an instance of SPERNER should inform us on whether the corresponding instance of
SAT has a solution or not.

However, it is unlikely that we have such a reduction from SAT to SPERNER. Suppose such a reduction
did exist. Then we could just guess the solution to the SPERNER instance and then check whether the
SAT instance reduced to it does or does not have a solution. Hence, we could obtain verifiable certificates
both for the fact that a formula is satisfiable and for the fact that it is not satisfiable. This would mean
that NP = co− NP, which most complexity theorists do not believe is true.

Another approach would be to turn SPERNER into a non-total problem by removing the boundary
conditions. In this case SAT can be reduced to SPERNER, but for trivial reasons that do not reflect the
structure of Sperner’s problem.

In view of the difficulty to characterize the complexity of total search problems tightly using FNP, we
wish to introduce new complexity classes capturing the hardness of solving SPERNER, as well as BROUWER
and NASH. We do this by studying carefully the combinatorial structure in our proof of Sperner’s lemma.

Recall that in our (directed-walk version of the) proof of Sperner’s lemma, we constructed a directed
graph in the space of simplices, where every node had at most one incoming and at most one outgoing
edge. Moreover, there was a node in this graph (corresponding to our “starting simplex”) that had
no incoming edge, but it did have an outgoing edge. So it was a source of our graph. An easy parity
argument establishes then that somewhere in our graph there must be a sink node. In fact, all sink
nodes of our graph, and all sources different than the starting simplex are panchromatic simplices.

The END OF THE LINE problem defined next is the problem of finding a sink, or a source different
than a pre-specified one, in a graph with in-degree and out-degree at most one. This is non-trivial since
the graph could be exponentially large, but can a succinct description.

END OF THE LINE: A graph on {0, 1}n is defined by two circuits P,N that take as input an n-bit
string (a node identity) and output an n-bit string (a node identity). P is interpreted as the
“possible Previous” circuit, while N as the “possible Next” circuit. Given a pair of nodes v1, v2
there is a directed edge from v1 to v2 if and only if P (v2) = v1 and N(v1) = v2. That is, v2 claims
that v1 is its previous node AND v1 claims that v2 is its next node.

Given a pair of circuits P,N the END OF THE LINE problem is this: If 0n is an unbalanced node
(that is, its indegree is different from its outdegree), find another unbalanced node. Otherwise say
“yes”.

The class PPAD is the class of all search problems in FNP reducible to END OF THE LINE.

Proposition 1. 1. PPAD ⊆ FNP

2. SPERNER ∈ PPAD
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Proof: To see the first item, note that it is easy to verify whether a node is unbalanced in an instance
of END OF THE LINE.

To see the second item, it is sufficient to map a SPERNER instance to a pair of circuits P and N ,
so that a solution to the resulting END OF THE LINE instance corresponds to a solution of the original
SPERNER instance.

To obtain our reduction, we define an efficiently computable correspondence between the simplices
in the simplicization of the hypercube and the n-bit strings, for an appropriate choice of n. We also
assume that the starting simplex in the instance of SPERNER is mapped to 0n.

The circuits P,N are defined as follows:

• The value of P (0n) is set to 0n, while the value of N(0n) is the simplex sharing the colorful facet
with the starting simplex. Thus, the node 0n is unbalanced.

• If a simplex S is neither colorful nor panchromatic (this is efficiently checkable), P (S) = S, and
N(S) = 0n. This guarantees that the node associated with simplex S is isolated.

• If a simplex S has a colorful facet shared with another simplex S′, then if the sign of the facet is
−1 for S, we set N(S) = S′. Otherwise (if the sign of the facet is +1 for S), we set P (S) = S′.

It is clear that the graph of the END OF THE LINE instance thus created is isomorphic to the graph
that we would construct for showing the existence of a panchromatic simplex in the given instance of
SPERNER. Hence, the solutions of END OF THE LINE are in one-to-one correspondence with the solutions
of SPERNER. This completes the reduction and the proof of the proposition. Notice that it is important
that the sign of a facet is locally computable and consistent along a path in the proof of Sperner’s lemma.
Otherwise, our graph won’t satisfy that all in- and out-degrees are bounded by one. �
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