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Input:  a. very large, but finite, set  Ω ;    
 b. a positive weight function  w : Ω → R+. 

Recall: the MCMC Paradigm 

Goal: Sample x ∈ Ω,  with probability  π(x) ∝ w(x). 

in other words: π(x) = w(x)
Z

the “partition function” 
Z =

�
x∈Ω w(x)

MCMC approach: 
construct a Markov Chain (think sequence of r.v.’s)            
converging to    , i.e. π

(Xt)t

as t → +∞Pr[Xt = y | X0 = x] → π(y) (independent of x) 



Markov Chains 
Def: A Markov Chain on Ω is a stochastic process (X0, X1,…, Xt, …) 
such that 

Xt ∈ Ω, ∀ta. 
b. Pr[Xt+1 = y | Xt = x,Xt−1 = xt−1, . . . , X0 = x0] ≡ Pr[Xt+1 = y | Xt = x] =: P (x, y)

P (x, y)the transition probability from state x to state y 

Properties of the matrix P: 

�

y∈Ω

P (x, y) = 1, ∀x ∈ ΩStochasticity:                                            . 

Non-negativity: ∀x, y ∈ Ω, P (x, y) ≥ 0; such a matrix is 
called 

stochastic 



Sample a random permutation of a deck of cards 
Card Shuffling 

Markov Chain:	



Xt: state of the deck after the t-th riffle; X0 is initial configuration of the deck; 

Ω = {all possible permutations} 

w(x) =1,  for all permutations x  

and repeat forever 

Xt+1 is independent of Xt-1,…,X0 conditioning on Xt. 



Evolution of the Chain 

p(t+1)
x = p(t)x P

distribution of  Xt conditioning on X0 = x. p(t)x ∈ R1×|Ω|
+ :

then 

p(t)x = p(0)x P t



Graphical Representation 
Represent Markov chain by a graph G(P):	



- there is a directed edge between states x and y if  P(x, y) > 0, with 
edge-weight P(x,y);	


-  no edge if P(x,y)=0;	



- nodes are identified with elements of the state-space Ω  	



- self loops are allowed (when P(x,x) >0)	



Much of the theory of Markov chains only depends on the 
topology of G (P), rather than its edge-weights. 

Many natural Markov Chains have the property that P (x, y)>0 if 
and only if P(y, x)>0. In this case, we’ll call G(P) undirected 
(ignoring the potential difference in the weights on an edge). 



e.g. card Shuffling 

… … 

“ ” : reachable via a cut and riffle 

e.g. of non-edge: no way to go from permutation 1234 to 4132 
e.g. of directed edge:  Can go from 123456 to 142536, but not vice versa 



Ir-reducibility and A-periodicity 

Def: A Markov chain P is irreducible if for all x, y, there exists 
some t such that Pt(x, y) > 0.  

Def: A Markov chain P is aperiodic if for all x, y we have  
   

   gcd{t : Pt(x, y) > 0} = 1. 

[Equivalently, G(P) is strongly connected. In case the graphical representation 
is an undirected graph, then it is equivalent to G(P) being connected.] 



True or False 

For an irreducible Markov chain P, if G(P) is undirected then 
aperiodicity is equivalent to G(P) being non-bipartite. 

A: true, look at lecture notes 



True or False (ii) 

Define the period of  x as gcd{t : Pt(x, x) > 0}. For an irreducible 
Markov chain, the period of every x ∈ Ω is the same. 

[Hence, if G(P ) is undirected, the period is either 1 or 2.] 

A: true, 1 point exercise 



True or False (iii) 

Suppose P is irreducible. Then P is aperiodic if and only if 
there exists t such that Pt(x,y) > 0 for all x, y ∈ Ω. 

A: true, 1 point exercise to fill in the details of the sketch we 
discussed in class. For the forward direction, you may want to use 
the concept of the Frobenius number (aka the Coin Problem). 



True or False (iv) 

Suppose P is irreducible and contains at least one self-loop 
(i.e., P(x, x) > 0 for some x). Then P is aperiodic.	



A: true, easy to see. 



Stationary Distribution 

Def: A probability distribution π over Ω is a stationary 
distribution for P if π = π P. 

Theorem (Fundamental Theorem of Markov Chains) : 

If a Markov chain P is irreducible and aperiodic then it has a 
unique stationary distribution π.  

In particular, π is the unique (normalized such that the entries sum to 1) 
left eigenvector of  P corresponding to eigenvalue 1. 

Finally, Pt(x, y) → π(y) as t → ∞ for all x, y ∈ Ω. 

In light of this theorem, we shall sometimes refer to an irreducible, 
aperiodic Markov chain as ergodic. 



Reversible Markov Chains 

Def: Let π > 0 be a probability distribution over Ω. A Markov 
chain P is said to be reversible with respect to π if  

 ∀ x, y ∈ Ω:  π(x) P(x, y) = π(y) P(y,x). 

Lemma: If a Markov chain P is reversible w.r.t. π, then π is 
a stationary distribution for P. 

Proof: On the board. Look at lecture notes. 

Note that any symmetric matrix P is trivially reversible (w.r.t. 
the uniform distribution π). 



Reversible Markov Chains 

Representation by ergodic flows: 

Q(x, y) := π(x) · P (x, y) ≡ π(y)P (y, x)

P (x, y) =
Q(x, y)�
x Q(x, y)

From flows to transition probabilities: 

the amount of probability mass flowing from x to y under π  

From flows to stationary distribution: 
π(x)

π(y)
=

P (y, x)

P (x, y)

detailed balanced condition 

(verify) 

(verify) 



Mixing of Reversible Markov Chains 
Theorem (Fundamental Theorem of Markov Chains) : 

If a Markov chain P is irreducible and aperiodic then it has a unique 
stationary distribution π.  

In particular, π is the unique (normalized such that the entries sum to 1) 
left eigenvector of  P corresponding to eigenvalue 1. 

Finally, Pt(x, y) → π(y) as t → ∞ for all x, y ∈ Ω. 

Proof of FTMC: For reversible Markov Chains (today on the board-see 
lecture notes); full proof next time (probabilistic proof). 



Mixing in non-ergodic chains 
When P is irreducible (but not necessarily aperiodic), then π still 
exists and is unique, but the Markov chain does not necessarily 
converge to π from every starting state.  

For example, consider the two-state Markov chain with P = [0 1 ; 1 0].  

Notice that in this example λ0 = 1 and λ1 = −1, so there is another 
eigenvalue of magnitude 1.  

This has the unique stationary distribution π = (1/2,1/2), but does not 
converge from either of the two initial states.  



Lazy Markov Chains 
Observation: Let P be an irreducible (but not necessarily aperiodic) 
stochastic matrix. For any 0 < α < 1, the matrix P′ = α P + (1 − α) I 
is stochastic, irreducible and aperiodic, and has the same stationary 
distribution as P. 

This operation going from P to P′ corresponds to introducing a 
self-loop at all vertices of G(P) with probability 1 − α. 

Such a chain P′ is usually called a lazy version of P. 



Argue  that the following shuffling methods converge to the uniform 
distribution: 

e.g. Card Shuffling 

- Top-in-at-Random:	



- Riffle Shuffle: 

- Random Transpositions 
Pick two cards i and j uniformly at random with replacement, and 
switch cards i and j; repeat. 

Take the top card and insert it at one of the n positions in the deck 
chosen uniformly at random; repeat. 

a. Split the deck into two parts according to the binomial distribution 
Bin(n, 1/2). 
b. Drop cards in sequence, where the next card comes from the left 
hand L (resp. right hand R) with probability             (resp.             ). |L|

|L|+|R|
|R|

|L|+|R|
c. Repeat. 


