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NOTE: The content of these notes has not been formally reviewed by the
lecturer. It is recommended that they are read critically.

Administrivia

• There are no scribe notes from Lecture 1. Please refer to the slides on the website.

• Ankur Moitra (moitra@mit.edu) is the TA for the class.

• Please do not forget to register for the class if you are listening.

• Exercises are due in class one week after they are given in lecture.

1 The MCMC Paradigm

We are interested in studying a general class of sampleability problems:

• input: a (large) finite set Ω and a positive weight function w : Ω→ R+;

• goal: sample an element x in Ω with probability π(x) that is proportional to its weight w(x), i.e.,
with probability

π(x) def=
w(x)
Zw

,

where Zw
def=
∑

x∈Ω w(x) is called the partition function of the weight function w in Ω.

In the Markov-Chain Monte-Carlo (MCMC) Paradigm, we consider a general solution approach to this
class of sampleability problems, where we construct a sequence of random variables X = (Xt)t∈N that
converges to the target probability distribution π, i.e., for which

lim
t→+∞

(
Pr
[
Xt = y

∣∣X0 = x
])

= π(y) .

Note that the limit probability distribution π is independent of the “starting point” X0. We think of t
as a “time” variable.

2 Basic Definitions

More formally:

Definition 1. A Markov chain on a finite set Ω is a stochastic process X = (X0, X1, . . . , Xt, . . . ) such
that the following three conditions are satisfied:

1. for each time t ∈ N, the random variable Xt takes on values within Ω;

2. for each time t ∈ N, for every x0, x1, . . . , xt+1 ∈ Ω, the probability that the random variable Xt+1

takes on the value xt+1, conditioned on Xi taking on the value xi for 0 ≤ i ≤ t, is equal to the
probability that the random variable Xt+1 takes on the value xt+1, conditioned only on Xt taking
on the value xt, i.e.,

Pr
[
Xt+1 = xt+1

∣∣Xt = xt , Xt−1 = xt−1 , . . . , X0 = x0

]
= Pr

[
Xt+1 = xt+1

∣∣Xt = xt

]
; and
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3. for every two elements x and y in Ω, Pr
[
Xt+1 = y

∣∣Xt = x
]

is independent of t.

Informally, in a Markov chain, given the “present” state, “future” and “past” states are independent.
In particular, it makes sense to define the transition probability from an element in Ω to another (possibly
the same) element in Ω:

Definition 2. For any two elements x and y in Ω, the transition probability from x to y in the Markov
chain X is

PX (x, y) def= Pr
[
Xt+1 = y

∣∣Xt = x
]
.

That is, given that at some time t, the chain is at element x, PX (x, y) gives the probability that the chain
will be at time y at the next time t+ 1. (Again, this probability is independent of time.)

The transition probabilities in X , ranging over all pairs of elements in Ω, induce a transition matrix:

Definition 3. The transition matrix of a Markov chain X is the |Ω| × |Ω| matrix with [0, 1] entries
defined as follows:

PX
def= {PX (x, y)}x,y∈Ω .

Observe that the transition matrix PX of a Markov chain X is a stochastic matrix, because it satisfies
the following two properties:

1. non-negativity: for every two elements x and y in Ω, PX (x, y) ≥ 0; and

2. stochasticity: for every element in x in Ω,
∑

y∈Ω PX (x, y) = 1 (i.e., each row “adds up to 1”).

Example 1 (Card Shuffling). When considering the problem of shuffling cards, say, via the riffle shuffle,
we can set:

• Ω def= { all possible permutations of the deck },

• w(x) def= 1 for every deck permutation x (so that π(x) is the uniform distribution over all the deck
permutations),

• X0 is the initial configuration of the deck (which can be arbitrary), and

• Xt is the state of the deck after the t-th riffle, for t ∈ N.

Note that, indeed, Xt+1 is independent of Xt−1, . . . , X0 when conditioning on Xt.

For each element x ∈ Ω and time t ∈ N, we will denote by the row vector p(t)
x ∈ R1×|Ω|

+ the distribution
of Xt when conditioned on X0 = x. The following relations hold for every time t ∈ N:

p(t+1)
x = p(t)

x PX and

p(t)
x = p(0)

x P t
X .

These two relations characterize how the Markov chain evolves over time.

3 Markov Chains as Graphs

It is often useful to give a combinatorial interpretation of a Markov chain. Specifically, given a Markov
chain X , we can define a weighted directed graph G(X ) defined as follows:

• the vertex set V is identified with the element set Ω;

• the edges set E contains the directed edge (x, y) if and only if PX (x, y) > 0 (and, if so, this edge
is assigned weight equal to PX (x, y), i.e., the transition probability from x to y).
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Note that self-loops are allowed (i.e., when PX (x, x) > 0). While we have defined the graph G(X ) as
a weighted graph, much of the theory of Markov chains only depends on the topology of G(X ), rather
than on the particular weights on its edges. Indeed, we will even call a graph G(X ) undirected if both
PX (x, y) > 0 and PX (y, x) > 0 for every two elements x and y in Ω, ignoring the potential difference
between the weights of the two edges.

Example 2 (Card Shuffling). When considering the problem of shuffling cards, say, via the riffle shuffle,
G(X ) consists of a (huge!) weighted directed graph where the set of vertices consists of every possible per-
mutation of the deck, and the directed edges indicate whether it is possible (i.e., with positive probability)
to go from a certain deck configuration to another deck configuration through a single riffle.

Note that not every edge is present! For example, the vertices 1234 and 4132 do not share any edges,
because there is no way to move between 1234 and 4132 (at least two “cuts” are needed). Also, while
there is an edge from 123456 to 142536, there is not an edge to “come back” (again, for at least two cuts
would be needed).

4 Basic Properties

We now introduce basic but very important characterizations of Markov chains.

Definition 4. Let X be a Markov chain. For every time t ∈ N and every two elements x and y in Ω, we
define P t

X (x, y) to be the probability that the chain will be at y at time t0 + t, conditioned on the chain
being at x at time t0, for some time t0. (Again, this probability does not depend on t0.)

Definition 5. A Markov chain X is irreducible if (and only if), for every two elements x and y in Ω,
there exists some time t ∈ N such that P t

X (x, y) > 0.

Note that, equivalently, a Markov chain X is irreducible if and only if its graph G(X ) is strongly
connected. (And, in case the graphical representation is undirected, strong connectivity “collapses” to
connectivity.)

Definition 6. A Markov chain X is aperiodic if (and only if), for every two elements x and y in Ω, it
holds that

gcd
{
t ∈ N : P t

X (x, y) > 0
}

= 1 .

Definition 7. Let X be a Markov chain. For any element x in Ω, define the period of x as

gcd
{
t ∈ N : P t

X (x, x) > 0
}
.

Lemma 1. Let X be an irreducible Markov chain such that G(X ) is undirected. Then X is aperiodic if
and only if G(X ) is non-bipartite.

Proof: Suppose that X is bipartite. Then, choosing x and y “on the same side”, we see that every
path from x to y will have even length (and at least one such path exists because X is irreducible).
Hence, gcd{t ∈ N : P t

X (x, y) > 0} ≥ 2 > 1, thereby establishing that X is periodic.
Conversely, suppose that X is non-bipartite so that there exists some cycle C of odd length in G(X ).

Consider any two elements x and y in Ω. Take any path px to from x to an element c ∈ C and any
path py from c to y. (Both paths exist because X is irreducible.) We can now move from x to y in
at least two ways. In the first way, we can follow px, then go around C, and then follow py; the total
length is |px| + |C| + |py|. In the second way, we can follow px, then go half-way around C and back,
and then follow py; the total length is now |px|+ 2 · |C|−1

2 + |py|. However, the greatest common divisor
of |px|+ |C|+ |py| and |px|+ (|C| − 1) + |py| must be equal to 1, because they are consecutive integers.
As x and y were arbitrary elements in Ω, we conclude that X must be aperiodic. �

Lemma 2. Let X be a Markov chain. If X is irreducible, then all the elements in Ω have the same
period.

Exericse (1pt): Prove Lemma 2.
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Lemma 3. Let X be an irreducible Markov chain. Then X is aperiodic if and only if there exists some
time t ∈ N such that P t

X (x, y) > 0 for every two elements x and y in Ω.

Exericse (1pt): Prove Lemma 3. (Hint: Review the Coin Problem and the Frobenius number.)

Lemma 4. Let X be a Markov chain. If X is irreducible and contains at least one self-loop (i.e.,
PX (x, x) > 0 for some x ∈ Ω), then X is aperiodic.

Proof: For any two elements x and y in Ω, any self-loop on an element z easily allows for creating
two paths from x to y with two respective lengths that are consecutive integers, forcing their greatest
common divisor to be equal to 1, and thus forcing X to be aperiodic. (And the condition of irreducibility
is used to ensure the existence of such paths.) �

5 Mixing of Markov Chains

We begin analyzing the mixing properties of a Markov chains. First, we introduce the notion of a
stationary distribution:

Definition 8. Let X be a Markov chain. A probability distribution π over Ω is a stationary distribution
for X if π = πPX .

Next, we state an important basic limit theorem:

Theorem 1 (Fundamental Theorem of Markov Chains). If a Markov chain X is irreducible and aperi-
odic, then it has a unique stationary distribution π. In particular, π is the unique (`1-normalized) left
eigenvector of PX corresponding to the eigenvalue 1. Moreover, limt→+∞ P t

X (x, y) = π(y) for every two
elements x and y in Ω.

Because of this theorem, we shall sometimes refer to an irreducible, aperiodic Markov chain as ergodic.
In the next lecture, we will give a combinatorial proof of the theorem. Today, we give an algebraic proof
of a slightly weaker theorem, where we make the additional assumption that the Markov chain X is
reversible with respect to a given distribution π:

Definition 9. Let X be a Markov chain and let π > 0 be a probability distribution over Ω. The Markov
chain X is reversible with respect to π if, for every two elements x and y in Ω,

π(x)PX (x, y) = π(y)PX (y, x) .

Note that any Markov chain X where its transition matrix PX is symmetric is trivially reversible
(with respect to the uniform distribution π). Intuitively, in a Markov chain that is reversible with respect
to π, the probability mass that flows from node x to node y is the same as the one that flows from y
back to x. Therefore, we expect that π is stationary under the transition matrix PX :

Lemma 5. If a Markov chain X is reversible with respect to a probability distribution π over Ω, then π
is a stationary distribution for X .

Proof: Using the definition of reversibility, for any y ∈ Ω,∑
x∈Ω

π(x)PX (x, y) =
∑
x∈Ω

π(y)PX (y, x) = π(y)
∑
x∈Ω

PX (y, x) = π(y) .

We therefore conclude that πPX = π. �

Reversible Markov chains can be represented also using ergodic flows:

Definition 10. The ergodic flow between nodes x and y relative to a probability distribution π is defined
to be the amount of probability mass flowing between x and y under π:

Q(x, y) def= π(x)π(x, y) ≡ π(y)PX (y, x) .
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Thus, we can always write the transition probabilities of a reversible Markov chain X using ergodic
flows:

PX (x, y) =
π(y)PX (y, x)

π(y)
=

π(y)PX (y, x)∑
x∈Ω π(y)PX (y, x)

=
Q(x, y)∑

x∈ΩQ(x, y)
.

We can also write the stationary distribution of X in terms of the transition probabilities, which is
implied directly by the reversibility:

π(x)
π(y)

=
PX (y, x)
PX (x, y)

.

We now turn to the proof of the theorem, in the special case of reversible Markov chains:

Proof: [Proof of Theorem 1] Consider a diagonal matrix D = diag
{√

π(1),
√
π(2), . . . ,

√
π(|Ω|)

}
.

Because of the reversibility, DPXD−1 is now symmetric and all of its eigenvalues are real. Let them be
λ0, λ1, . . . , λ|Ω|−1.

We invoke the Perron-Frobenius theorem, which states that if a Markov chain is aperiodic and
irreducible, then λ0 = 1 with multiplicity 1, and its corresponding eigenvector e0 is coordinate-wise
positive; moreover, all other eigenvectors satisfy |λi| < 1.

Now we can write any starting distribution p
(0)
x using the basis of eigenvectors (guaranteed by the

Spectral Theorem): p(0)
x =

∑
i αiei. Then, we get:

p(1)
x = p(0)

x PX =
∑

i

αieiPX =
∑

i

αiD
−1(eiDPXD

−1)D =
∑

i

αiD
−1λieiD =

∑
i

αiλiei .

We have used the fact that for any vector, left multiplying it by D−1 and right multiplying it by D does
not change it. In general, we can write p(t)

x =
∑

i αiλ
t
iei. Using the fact that |λi| < 1 for i > 0, we

conclude that p(t)
x → α0e0 as t→ +∞. �

Note that:

• When X is reducible, then there may exist multiple stationary distributions. (Different components
of the graph may have different stationary distributions, and there is no probability flow between
them.)

• When X is irreducible (but not necessarily aperiodic), then the stationary distribution π still exists
and is unique, but the Markov chain does not necessarily converge to π from every starting vertex.

For example, consider the two-state Markov chain with transition matrix PX =
(

0 1
1 0

)
: the

stationary distribution is the uniform one, yet it cannot be reached from any vertex; indeed, if we
start at vertex 1, we go to vertex 2 after a single step, and then back and forth between 1 and 2
forever. (In this example, λ0 = 1 and λ1 = −1, so there is another eigenvalue of magnitude 1.)

On the other hand, for any irreducible Markov chain X (that is not necessarily aperiodic), for any
α ∈ (0, 1), the Markov chain X ′ whose transition matrix is P ′X

def= αPX + (1 − α)I is irreducible and
aperiodic; moreover, X ′ has the same stationary distribution as X . The operation of going from X to
X ′ corresponds to introducing a self-loop at all vertices of G(X ), each with weight 1 − α. We call X ′
the lazy version of X .

6 Examples on Card Shuffling

We now argue that the three card shuffling methods that we mentioned in the previous lecture all converge
to the uniform distribution. We are going to analyze the irreducibility, aperiodicity, and reversibility (with
respect to the uniform distribution) of each Markov chain, and then invoke Theorem 1 for establishing
the result.

Recall that the set Ω now consists of n! vertices, each corresponding to a permutation of the n cards
in the deck.
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6.1 Random Transpositions

In the method of random transposition, in each iteration we pick uniformly at random two cards i and
j and switch them. The Markov chain is irreducible because we can reach every permutation from any
starting permutation; it is aperiodic because every state has a self-loop to itself (by choosing i = j);
it is reversible with respect to the uniform distribution. Hence, by Theorem 1, random-transposition
shuffling converges to the uniform distribution over all card permutations.

6.2 Top in at Random

In the method of top in at random, in each iteration we take the top card and insert it at one of the n
positions uniformly at random. The Markov chain is irreducible because we can reach every permutation
from any starting permutation; it is aperiodic because we can put the top card back to its top position,
forming a self-loop. We now argue that it is also reversible with respect to the uniform distribution.

At every state x, the Markov chain goes to n new states each with probability 1/n. Moreover, for
every state y, it comes back from exactly n states each with probability 1/n also. (This is because with
the same probability, we can choose a card in the middle and put it back to the top.) Therefore the
transition matrix satisfies that every row and every column sums up to 1. We call such matrix doubly
stochastic, and it is clear that it is reversible with respect to uniform:∑

x

1
n
PX (x, y) =

1
n

=
∑

y

1
n
PX (y, x) .

Hence, again by invoking Theorem 1, top-in-at-random shuffling converges to the uniform distribution
over all card permutations.

Let us formulate the fact that we have used as a lemma:

Lemma 6. If a Markov chain X has a transition matrix PX that is doubly stochastic, then it is reversible
with respect to the uniform distribution.

6.3 Riffle Shuffle

In the method of riffle shuffle, in each iteration we: (1) split the deck into two parts according to the
binomial distribution Bin(n, 1/2); and (2) drop cards in sequence, where the next card comes from the
left hand L (resp., right hand R) with probability |L|

|L|+|R| (resp., |R|
|L|+|R| ).

The Markov chain is irreducible because using riffle shuffle we can “simulate” top-in-at-random with
positive probability; and we already established that top-in-at-random is irreducible. The aperiodicity
of this chain still comes from self-loops, as we can always take the left deck to be the empty set.

We now argue that the transition matrix for this Markov chain is also doubly stochastic, and again
this suffices to prove that the chain is reversible with respect to the uniform distribution (and thus
it converges to the uniform distribution). Indeed, if we write down the transition matrix, every row
sums up to 1 by definition. Because the shuffle is symmetric, no state is given priority over any others,
therefore, the summation of probabilities in each column must be the same value, but this value cannot
be any number other than 1. As a consequence, the transition matrix is doubly stochastic.

Exericse (2pt): Prove that the riffle shuffle induces a random interleaving of the two decks. That
is, given two sequences T = (t1, . . . , tn) and S = (s1, . . . , sm), prove that the random process used to
“mix” them in the riffle shuffle induces a uniform distribution over the space of all possible interleavings
between S and T .
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