
Continuous Local Search

Constantinos Daskalakis
EECS and CSAIL, MIT∗

Christos Papadimitriou
Computer Science, UC Berkeley†

Abstract

We introduce CLS, for continuous local search, a class
of polynomial-time checkable total functions that lies at
the intersection of PPAD and PLS, and captures a par-
ticularly benign kind of local optimization in which the
domain is continuous, as opposed to combinatorial, and
the functions involved are continuous. We show that
this class contains several well known intriguing prob-
lems which were heretofore known to lie in the inter-
section of PLS and PPAD but were otherwise unclassifi-
able: Finding fixpoints of contraction maps, the linear
complementarity problem for P matrices, finding a sta-
tionary point of a low-degree polynomial objective, the
simple stochastic games of Shapley and Condon, and
finding a mixed Nash equilibrium in congestion, implicit
congestion, and network coordination games. The last
four problems belong to CCLS, for convex CLS, another
subclass of PPAD ∩ PLS seeking the componentwise lo-
cal minimum of a componentwise convex function. It is
open whether any or all of these problems are complete
for the corresponding classes.

1 Introduction

The complexity class TFNP (search problems that always
have a solution) contains some of the most fundamental,
elegant, and intriguing computational problems such as
factoring and Nash equilibrium. It is a “semantic” class
(see [18]), in the sense there is no general way of telling
whether an NP machine always has a witness, and hence
it is unlikely to have complete problems. Hence, its vari-
ous subclasses corresponding to “proof styles” of the ex-
istence theorem implicit in every problem in TFNP have
been studied extensively and productively: PPP (pigeon-
hole principle, [19]), PLS (local search [11]), PPA (parity
argument, [19]), PPAD (fixpoint problems, [19, 7, 6]) etc.,
and many were found to teem with interesting complete
problems. Of these, the complexity class PLS captures
local search, that is, the computation of a local optimum
of a potential in a discrete solution space equipped with

∗Supported by a Sloan Foundation Fellowship, and NSF

CAREER Award CCF-0953960.
†Supported by NSF Award CCF-0964033 and a Google re-

search award.

an adjacency relation. This computational mode is im-
portant partly because often finding such a local opti-
mum is not a compromise to global optimality, but the
precise objective of the problem in hand. A problem in
PLS is typically specified by two functions, one, N , map-
ping the solution space, say {0, 1}n, to itself (intuitively,
providing for each possible solution a candidate better
solution), and another, p, mapping the solution space to
the integers (depending on your point of view, the po-
tential function or the objective to be locally optimized).
The solution sought is any solution s ∈ {0, 1}n such that
p(N(s)) ≥ p(s). Many important computational prob-
lems belong to this class, and several have been shown
PLS-complete (see, for example, [22]). In contrast, the
class PPAD captures approximate fixpoints, and hence its
typical problem can be naturally defined geometrically,
in terms of a function f mapping, say, [0, 1]3 to itself
(perhaps presented as an arithmetic circuit), and seek-
ing an approximate fixpoint for some given accuracy;
the function f needs to be continuous with a given Lip-
schitz constant, and so the sought output is either an
approximate fixpoint or a violation of Lipschitz conti-
nuity (the latter option can be made moot by resorting
to representations of f , such as arithmetic circuits with
{±, ∗,max,min} gates, in which Lipschitz continuity is
guaranteed and self-evident).

It turns out (see Theorem 2.1) that any problem in
PLS can also be embedded in geometry, by encoding the
solution space into “cubelets” in the 3-dimensional unit
cube, say. The result is two functions f : [0, 1]3 → [0, 1]3

and p : [0, 1]3 → [0, 1], where f is the neighborhood
function and p the potential function, and p is assumed
Lipschitz continuous, while f is not necessarily contin-
uous. We are asked to find an approximate fixpoint
of f with respect to p, that is, a point x such that
p(f(x)) ≥ p(x) − ε, for some given ε > 0, where the
choice of ε is paired with the Lipschitz continuity of p
to make sure that a solution of polynomial description
length exists. In other words, local search can be seen
as a variant of the search for a fixpoint, in which the ex-
istence of an approximate fixpoint is guaranteed not by
the function’s continuity, but by a potential argument.

Looking at PLS and PPAD this way, as close relatives

so to speak, is particularly helpful when one considers
the class PLS ∩ PPAD (which has been mentioned often
recently because it contains many natural problems, see
immediately below). Let us begin by pointing out that,
unlike NP ∩ coNP which is a semantic class and thus un-
likely to have complete problems, PPAD ∩ PLS does have
a complete problem, implied by the discussion above,
namely the problem Either fixpoint: Given three
functions f, g and p, and ε, λ > 0, find an approximate
fixpoint of f (or violation of f ’s λ-continuity) or an ap-
proximate fixpoint of g with respect to p (or violation
of p’s λ-continuity); for the proof that this problem is
complete for PPAD ∩ PLS see Corollary 2.3. However,
there is something awkward about this characteriza-
tion; namely, we seek fixpoints of two unrelated func-
tions. Hence, the following is a most interesting open
question about PPAD ∩ PLS: If in the above problem,
f and g coincide in a single function that is both con-
tinuous and driven by a continuous potential, does the
resulting problem still capture all of PPAD ∩ PLS? We
conjecture that it does not, and this conjecture is the
starting point for the definition of our new class.

Coming now from the other direction of motivation
— proceeding from problems to classes instead of from
larger to smaller classes — during the past few years re-
searchers noticed that several intriguing computational
problems related to fixpoints and games, but not only,
lie within the intersection of PPAD and PLS.

• For example, finding a min-max strategy in the
simple stochastic games of Shapley and Condon
[23, 5] has been thus classified [8] (see [12] for an
earlier proof).

• It was also noted [4] that finding a mixed Nash
equilibrium for congestion games (in which players
choose among subsets of resources, and incur delays
depending on the resulting load on each resource)
is a problem in the intersection of PLS and PPAD
(essentially because the pure equilibrium problem
is in PLS, and in fact PLS-complete [9], while finding
a mixed Nash equilibrium for any game is a problem
in PPAD [17, 19]).

• The same problem for implicit congestion games,
in which the resources are edges on a network and
the subsets that constitute the strategy set of each
player are all paths between two endpoints.

• Ditto for the problem of finding a Nash equilibrium
of a network coordination game (in which vertices
of a graph play a game with each of their neighbors,
adding the payoffs, where in each one of these two-
person games and each pair of choices both players

get the same payoff) is also in the intersection of
PPAD and PLS [4].

• An intriguing and deceivingly simple problem in
numerical optimization (which had not been con-
sidered before in the context of PLS and PPAD) gen-
eralizes the last three problems: Find any approxi-
mate stationary point of a given multivariate poly-
nomial [16, 26]. Under certain conditions we show
that it is also in the intersection of PLS and PPAD.

• Finding a solution to a linear complementarity
problem with a P-matrix (see [14] for this elegant
and important swarm of computational problems
from linear optimization) also belongs to both
PPAD (this had been known since [19]) and PLS
[24, 15, 13].

• Finding an approximate fixpoint of a contraction
map [1] (that is a continuous function f such that
|f(x) − f(y)| ≤ c · |x − y| for some c < 1) is
an apparently easier special case of the (PPAD-
complete) general problem, which, by the above
reasoning, can be seen to lie in the intersection
of PPAD and PLS, since |f(x) − x| can serve as a
potential function.

On the basis of multiple attempts for a polynomial-
time solution resulting in very little progress (the usual
circumstantial evidence in all of Complexity), it is
tempting to conjecture that none of these problems
can be solved in polynomial time. Are any of these
problems complete for PPAD ∩ PLS? This is an important
open question. In this paper we identify a subclass of
PPAD ∩ PLS, which we call CLS for continuous local
search, that contains all of the above problems. Thus
completeness for PPAD ∩ PLS of any of these would imply
a certain class collapse. The typical (and complete)
problem in CLS is the following problem, which we call
Continuous Localopt. Given two functions f and
p assumed to be Lipschitz continuous, and ε, λ > 0,
find an ε-approximate fixpoint of f with respect to p,
or two points that violate the λ-continuity of p or of
f . In other words, CLS is a close relative to PLS, in
which not only the potential function is continuous,
but also the neighborhood function is continuous. It
is the continuity of the neighborhood function that also
places it inside PPAD; indeed, an approximate fixpoint of
the neighborhood function (which can be found within
PPAD) is a solution.

We also identify another subclass of PPAD ∩ PLS,
which we call CCLS for convex CLS, containing the
first four problems in the above list. Call a function
f : <n 7→ <n componentwise convex if it is a convex
function of each of its variables when the remaining

variables have been fixed (our precise definition given
in Section 4 is a little more general in that it allows for
a “component” to be a subset of the variables restricted
to be in a convex domain such as a simplex). A problem
in CCLS calls for a componentwise local minimum of such
a function (or a violation of componentwise convexity).
What is interesting about CCLS is that minimization can
be achieved via a “distributed update” method, which
however may not always decrease the objective — and
hence it is not immediate that CCLS ⊆ CLS. We leave
whether any of the seven problems are complete for the
respective classes, as a challenging open question.

Finally, while PPAD seeks approximate fixpoints,
Etessami and Yannakakis [8] have defined an apparently
much larger class, FIXP, of problems seeking the binary
representation of an actual exact fixpoint. The reason
why we believe this class is larger is because several
problems not known or believed to be in NP can be
reduced to it, such as that of finding the bits of the
sum of square roots of integers [10, 20, 25]. It would be
interesting to see how these new smaller classes, CLS and
CCLS, fare under the exactness restriction. In Section 5,
we show that the sum-of-square-roots problem can be
reduced to the exact version of CCLS and of CLS, and
hence also the exact version of the continuous definition
of PLS (Remarks 5.1 and 5.2).

2 Classes

We shall be considering problems in TFNP, that is, search
problems with succinct and efficiently verifiable solu-
tions that always have a solution. This is a surprisingly
rich and diverse class, see [19]. Note that, in connec-
tion with total functions, a reduction from problem A to
problem B is a polynomial-time function that maps an
instance x of A to an instance f(x) of B, plus another
polynomial-time function that maps any solution y of
f(x) to a solution g(y) of x. It is of interest to further
classify problems in TFNP in terms of the proof tech-
nique establishing that the function is total. The class
PPAD can be defined as the class of all such problems
that can be reduced to the problem End of the line:
Given n and two Boolean circuits S and P with n input
bits and n output bits (intuitively, mapping each node
in the solution space {0, 1}n to a candidate predecessor
and a candidate successor), such that 0n has no prede-
cessor and is a source (that is, P (S(0n)) 6= 0n) but does
have a successor (that is, P (S(0n)) = 0n)), find another
source or a sink. The class PLS [11] can be defined as
the class of all problems reducible to Localopt: Given
n and two Boolean circuits f and p with n inputs and
outputs, where the output of p is interpreted as an in-
teger, find an x such that p(f(x)) ≥ p(x). There are
several other interesting subclasses of TFNP, such as the

pigeonhole class PPP, the “sink only” version of PPAD
called PPADS, and the undirected parity class PPA; see
Figure 1 for a diagram of known inclusions; there are
oracle results falsifying many of the remaining potential
inclusions [3].

TFNP

PPPPLS

PPAD

PPADS

PPA

FP

Figure 1: A snapshot of TFNP.

In this paper we focus on functions from continuous
domains to continuous domains, and we shall represent
these functions in terms of arithmetic circuits with
operations +, −, ∗, max, min, and >, the latter defined
as > (x, y) = 1 if x > y and 0 otherwise; rational
constants are also allowed. If > is not used in our
circuits, the resulting functions are de facto continuous.
The outputs of arithmetic circuits can be restricted in
[0, 1] by redefining the arithmetic gates to output 0 or
1 when the true output is negative or greater than one,
respectively. We start by pointing out that both PPAD
and PLS can be defined in terms of fixpoints of real-
valued functions, represented by arithmetic circuits.
PPAD is captured by the problem Brouwer Fixpoint:
Given an arithmetic circuit f with 3 real inputs and
outputs, an ε > 0 (the accuracy) and a λ > 0 (the
purported Lipschitz constant of f in some p-norm), find
(the succinct rational representation of) an approximate
fixpoint of the function f , that is, a point x ∈ <3 such
that |f(x) − x| < ε, or two points x, x′ violating the
λ-Lipschitz continuity of f , that is |f(x) − f(x′)| >
λ|x − x′|. We show next that PLS can captured by
the problem Real Localopt: Given two arithmetic
circuits computing two functions f : [0, 1]3 7→ [0, 1]3

and p : [0, 1]3 7→ [0, 1], an ε > 0 (the accuracy) and
a λ (the purported Lipschitz constant of p), find a
point x ∈ [0, 1]3 such that p(f(x)) ≥ p(x) − ε, or two
points x, x′ violating the λ-Lipschitz continuity of p.
Notice that this is indeed a total function: starting

at an arbitrary point x, we can just follow the chain
x, f(x), f(f(x)), . . . for p(x)

ε steps, as long as a step
results in a more than ε decrease of the value of p.

Theorem 2.1. Real Localopt is PLS-complete.

Proof. It is easy to see that any problem in PLS can
be reduced to Real Localopt, by embedding the
solution space in small cubelets of [0, 1]3. At the
centers of the cubelets the values of f and p are defined
so that they capture the neighborhood function and
potential of the original problem. Then p is extended
to the rest of the cube continuously by interpolation.
f need not be continuous and is extended carefully so
that no new solutions are introduced. More precisely,
for a given instance (f, p) of Localopt, our instance
(f ′, p′, λ, ε) of Real Localopt satisfies the property
that, for all x, y, z, y′, z′ ∈ [0, 1], p′(x, y, z) = p′(x, y′, z′)
and f ′(x, y, z) = f ′(x, y′, z′); in other words only the
value of x is important in determining the values of
p′ and f ′. Now, for every n-bit string s, if x(s) ∈
{0, . . . , 2n − 1} is the number corresponding to s, we
define p′(x(s) · 2−n, y, z) = p(s)2−n, for all y, z ∈ [0, 1],
and f ′(x(s) · 2−n, y, z) = (x(f(s)) · 2−n, y, z), for all
y, z ∈ [0, 1]. To extend f ′ and p′ to the rest of
the cube we do the following. p′ is extended simply
by interpolation, i.e. for x = i2−n + t · (i + 1)2−n,
where t ∈ [0, 1] and i ∈ {0, . . . , 2n − 2}, we define
p′(x, y, z) = p′(i2−n, y, z) + tp′((i + 1)2−n, y, z), for all
y, z ∈ [0, 1]. Exceptionally, for x > 1 − 2−n, we define
p′(x, y, z) = p′(1 − 2−n, y, z), for all y, z. We have
to be a bit more careful in how we extend f ′ to the
rest of the cube, so that we do not introduce spurious
solutions. For all i ∈ {0, . . . , 2n − 2}, if p′(i2−n, y, z) <
p′((i+ 1)2−n, y, z), we set f ′(i2−n + t · (i+ 1)2−n, y, z)
to be equal to f ′(i2−n, y, z), for all t, y, z ∈ [0, 1], while
if p′(i2−n, y, z) ≥ p′((i + 1)2−n, y, z), we set f ′(i2−n +
t · (i+ 1)2−n, y, z) to be equal to f ′((i+ 1)2−n, y, z), for
all t, y, z ∈ [0, 1]. Exceptionally, for x > 1 − 2−n, we
define f ′(x, y, z) = f ′(1− 2−n, y, z), for all y, z. Finally,
we choose ε = 0, and λ = 2n, so that p is guaranteed to
be λ-Lipschitz continuous. It is easy to verify that any
solution to the Real Localopt instance that we just
created can be mapped to a solution of the PLS instance
(f, p) that we departed from.

We point out next that Real Localopt is in
PLS, by showing a reduction in the opposite direction,
from real-valued to discrete. Suppose we are given an
instance of Real Localopt defined by a four-tuple
(f, g, ε, λ). We describe how to reduce this instance to
an instance (f ′, p′) of Localopt. For a choice of n
that makes 2−n/3 sufficiently small with respect to ε
and λ, we identify the n-bit strings that are inputs to
f ′ and p′ with the points of the 3-dimensional unit cube

whose coordinates are integer multiples of 2−n/3. The
value of p′ on an n-bit string x is then defined to be
equal to the value of p on x (viewed as a point in the
cube). Similarly, the value of f ′ on an n-bit string x
is defined by rounding each coordinate of f(x) down to
the closest multiple of 2−n/3. Suppose now that we have
found a solution to Localopt, that is an n-bit string
x such that p′(f ′(x)) ≥ p′(x). Notice that f(x) and
f ′(x) are within 2−n/3 to each other in the `∞ norm.
Hence, it should be that |p(f(x))−p(f ′(x))|∞ < λ·2−n/3
(assuming that λ is the purported Lipschitz constant of
p in the `∞ norm). If this is not the case, we have
found a violation of the Lipschitzness of p. Otherwise,
we obtain from the above that p(f(x)) ≥ p(x)−λ·2−n/3,
where we used that, for an n-bit string x, p′(x) = p(x)
and p′(f ′(x)) = p(f ′(x)). If n is chosen large enough so
that ε > λ·2−n/3, x is a solution to Real Localopt. In
the above argument we assumed that λ is the Lipschitz
constant of f in the `∞ norm, but this is not important
for the argument to go through.

Finally, we consider the class PPAD ∩ PLS, and the
problem Either Fixpoint: Given three arithmetic
circuits computing functions f, g : [0, 1]3 7→ [0, 1]3 and
p : [0, 1]3 7→ [0, 1], and ε, λ > 0, find a point x ∈ [0, 1]3

such that p(g(x)) ≥ p(x)−ε, or |f(x)−x| < ε, or else two
points x, x′ ∈ [0, 1]3 violating the λ-Lipschitz continuity
of f or of p.

Theorem 2.2. If A is a PPAD-complete problem, and B
a PLS-complete one, then the following problem, which
we call Either SolutionA,B, is complete for PPAD ∩
PLS: Given an instance x of A and an instance y of B,
find either a solution of x or a solution of y.

Proof. The problem is clearly in both PLS and PPAD,
because it can be reduced to both A and B. To show
completeness, consider any problem C in PPAD ∩ PLS.
Since A is PPAD-complete and C is in PPAD, there is a
reduction such that, given an instance x of C, produces
an instance f(x) of A, such that from any solution of
f(x) we can recover a solution of C. Similarly, there
is a reduction g from C to B. Therefore, going from
x to (f(x), g(x)) is a reduction from C to Either
SolutionA,B .

Corollary 2.1. Either Fixpoint is complete for
PPAD ∩ PLS.

Proof. It follows from Theorem 2.2, given Theorem
2.1 and the fact that Brouwer Fixpoint is PPAD-
complete.

2.1 The Class CLS. We introduce our new class, a
subset of PPAD ∩ PLS, by way of the problem, Con-
tinuous Localopt, which is a special case of Real

Localopt where both functions are continuous: Given
two arithmetic circuits computing functions f : [0, 1]3 →
[0, 1]3 and p : [0, 1]3 → [0, 1], and constants ε, λ > 0,
find a point x such that p(f(x)) ≥ p(x) − ε, or two
points that violate the λ-continuity of either f or p. We
define CLS, for Continuous Local Search, as the class
of all problems that can be reduced to Continuous
Localopt. In other words, CLS contains all problems
seeking an approximate local optimum (more generally,
an approximate stationary or KKT point) of a contin-
uous function p, helped by a continous oracle—f—that
takes you from any non-stationary point to a better one;
recall that gradient descent and Newton iteration are
standard such oracles when p is smooth.

Theorem 2.3. CLS ⊆ PPAD ∩ PLS.

Proof. We show that Continuous Localopt lies in
PPAD ∩ PLS. That Continuous Localopt is in PLS
follows from the fact that it is a special case of Real
Localopt. To show that it is also in PPAD, we provide
a reduction to Brouwer Fixpoint. We reduce an
instance (f, g, λ, ε) of Continuous Localopt to the
instance (f, λ, ελ) of Brouwer Fixpoint. If on this
instance Brouwer Fixpoint returns a pair of points
violating f ’s Lipschitz continuity, we return this pair
of points as a witness of this violation. Otherwise,
Brouwer Fixpoint returns a point x such that |f(x)−
x| < ε

λ . In this case, we check whether |p(f(x))−p(x)| ≤
λ|f(x) − x|. If this is not the case, the pair of points
f(x) and x witness the non-Lipschitz continuity of p.
Otherwise, we have that p(f(x)) ≥ p(x)− ε, which is a
solution to Continuous Localopt.

Figure 2 shows the structure of TFNP with CLS included..

3 The Problems

Approximate Fixpoint of a Contraction Map
(ContractionMap). We are given a function f :
[0, 1]n 7→ [0, 1]n and some c = c(n) < 1, with the
associated claim that f is c-contracting (i.e. that,
for all x, y, |f(x) − f(y)| ≤ c · |x − y|), and we
seek an approximate fixpoint of this function, or a
violation of contraction. (The choice of norm | · | is not
important.) This problem seems easier than Brouwer’s
(if for no other reason, since the existence proof is
much simpler [1]), but there is no known polynomial-
time algorithm (but there is a pseudo-PTAS based on a
recent result in Analysis, see [2]).

Linear Complementarity Problem for P-
matrices (P-LCP). In the linear complementarity
problem (LCP) we are given an n × n matrix M and

TFNP

PPPPLS

PPAD

PPADS

PPA

FP

CLS

Figure 2: The location of CLS inside TFNP.

an n-vector q, and we seek two vectors x, y such that

y = Mx+ q, (x, y) ≥ 0 and xT y = 0.

LCP generalizes linear programming, and is an active
research area; it is in general NP-complete, but enough
special cases are in P and in PPAD. P-LCP is the spacial
case when M is a P-matrix, i.e. if all its principal minors
are positive; it is known to be in PPAD [19].

Finding a stationary point of a polynomial
(KKT). We are given a polynomial p on [0, 1]n and
constants ε, κ > 0. We are looking for a point x ∈ [0, 1]n

such that

p(y)− p(x) ≤ c

2
· ε2 + κ,∀y ∈ B2(x, ε) ∩ [0, 1]n,(3.1)

where B2(x, ε) represents the `2 ball of radius ε around
x and c is the Lipschitz constant of the gradient of p
with respect to the `2 norm (since p is a polynomial,
the coordinates of its gradient are also polynomials and
thus Lipschitz continuous on [0, 1]n). Notice that all
true stationary points of p satisfy (3.1), by Taylor’s
Theorem. Moreover, requiring (3.1), instead that the
gradient of p be zero, makes the problem total. Indeed,
a polynomial may not have a stationary point in [0, 1]n

(e.g., consider p(x) = x), but even when it does not,
there is still a point at the boundary with small margin
of increase within the hypercube as required by (3.1)
(and another one with small margin of decrease). A
proof of totality is given within the proof of Theorem 3.1
below.

Simple Stochastic Games (SSGs). Few prob-
lems in the fringes of P have attracted as much inter-
est as SSGs, proposed by Shapley [23] and studied in

earnest from the computational point of view starting
with Anne Condon [5]. One of the many ways of restat-
ing the problem is this: Given a directed graph whose
nodes have outdegree two and labels “min,” “max,” and
“average,” plus two sinks labeled 0 and 1, find ratio-
nal values for the non-sink nodes such that the value
of every min mode is the minimum of the values of its
two successors, and similarly for max and average. By
monotonicity, such values always exist.

Nash equilibrium in network coordination
games (NetCoordination). We are given an undi-
rected graph, in which each node is a player and each
edge is a 2-player coordination game between its end-
points (a game in which the two players get identical
payoffs for any combination of strategy choices). Each
node has the same strategy set at each of the games it
participates. Each player chooses a strategy, and gets
the sum of the payoffs from the games on its adjacent
edges. We seek a mixed Nash equilibrium of this game.
Finding a pure Nash equilibrium is PLS-complete [4].

Nash equilibrium in congestion games (Con-
gestion). The strategy set of each of n players is a
set of subsets of E, a set of edges (resources). Each
edge has a delay function d mapping {1, 2, . . . , n} to the
positive integers. Once all players select a subset each
from its strategy set, say P1, . . . , Pn ⊆ E, we calculate
the congestion c(e) of each edge e (the number of Pj ’s
that contain e), and the (negative) payoff of player i
is −

∑
e∈Pi d(c(e)). Finding a pure Nash equilibrium in

such a game is known to be PLS-complete [9].
Nash equilibrium in implicit congestion

games (ImplicitCongestion). The special case and
succinct representation of the above problem in the case
in which E is the set of edges of an actual network, ev-
ery player is associated with two nodes in the network,
and the set of strategies of player i is the set of all paths
between the two points corresponding to i. It is known
to be PLS-complete to find a pure Nash equilibrium [9].

Theorem 3.1. The following problems are in the class
CLS:

1. ContractionMap.

2. P-LCP.

3. KKT

4. SSG

5. NetCoordinatination

6. Congestion

7. ImplicitCongestion

Proof. 1. It is not hard to check that Contraction-
Map reduces to Continuous Localopt with po-
tential p(x) = |f(x)−x|, function f , Lipschitz con-
stant λ = c+ 1, and accuracy ε = (1− c) · δ, where
δ is the desired approximation in Contraction-
Map.

2. That P-LCP is in CLS follows from a powerful al-
gorithmic technique developed [13] for P-LCP. A
Newton-like iteration f(x) within the region {x ≥
0 : y = Mx + q ≥ 0, xT · y ≥ ε} decreases the po-
tential function p(x) = 2n log xT · y−

∑n
i=1 log xiyi

until xT ·y < ε; the logarithms can be approximated
by their expansion. If at some point the iteration
cannot be carried out because of singularity, M is
not a P matrix. By taking ε small enough, the pre-
cise rational solution x can be deduced from the
algorithm’s result.

3. To show that KKT is in CLS we need to exhibit
a potential p and a potential-improving map f .
The potential is the given polynomial p, whereas
f is a carefully constructed version of the gradient
descent method. However, the full derivation is
quite involved:

Since p is a polynomial, its partial derivatives are
also polynomials. Hence, it is easy to compute an
upper boundM on the magnitude of the derivatives
inside [0, 1]n. (For example, one could sum the
absolute values of the coefficients of all monomials).
Moreover, we can easily compute upper bounds λ1

and λ2 on the `2-`2 Lipschitz constants of p and its
gradient respectively.

Next, for some η to be decided later, we define a
continuous function f : [0, 1]n −→ [0, 1]n, such that
for all x ∈ [0, 1]n, x 7→f y, where y is as follows:

yi = min
{

1,max
{

0, xi +
∂p

∂xi
· η
}}

.

Observe that the function f is
√
n(1 + ηλ2)-

Lipschitz in the `2-`2 sense. For some δ to be de-
cided later, we invoke Continuous Localopt on
input: function f , potential p, approximation δ,
and Lipschitz constant λ = max{λ1,

√
n(1 + ηλ2)}

to find a point x, such that

p(f(x)) ≤ p(x) + δ.(3.2)

(Notice that no violation of Lipschitzness will be
detected by Continuous Localopt.) We want to
show that, when (3.2) is satisfied, x satisfies (3.1).
The following useful lemma is easy to obtain using
basic calculus.

Lemma 3.1. (Taylor’s Theorem) Let g : Rn →
R be a continuously differentiable and suppose that
its gradient ∇g is c-Lipschitz in the `2-`2 sense.
Then, for all x, x0 ∈ Rn:

|g(x)− g(x0)−∇g(x0) · (x− x0)| ≤ c

2
|x− x0|22.

Using Lemma 3.1 and (3.2), we obtain (let us use
the upper bound of λ2 on c):

∇p(x) · (f(x)− x) ≤ δ +
λ2

2
|f(x)− x|22(3.3)

≤ δ +
λ2

2
n · η2M2.

From the definition of f it follows that:

(a) if f(x)i 6= 0, 1, then f(x)i − xi = ∂p
∂xi
· η;

(b) if f(x)i = 0, then ∂p
∂xi
≤ −xiη ;

(c) if f(x)i = 1, then ∂p
∂xi
≥ 1−xi

η .

Hence, f(x)i − xi and ∂p
∂xi

always have the same
sign. Using this and (3.3) we deduce the following:

(a) if f(x)i 6= 0, 1, then

∣∣∣∣ ∂p∂xi
∣∣∣∣ ≤

√
δ + λ2

2 n · η2M2

η
;

(b) if f(x)i = 0, (−xi) ∂p∂xi ≤ δ + λ2
2 n · η

2M2;

(c) if f(x)i = 1, (1− xi) ∂p∂xi ≤ δ + λ2
2 n · η

2M2.

Now, for any y ∈ B2(x, ε) ∩ [0, 1]n, we have from
Lemma 3.1 the following:

p(y) ≤ p(x) +∇p(x) · (y − x) +
c

2
|y − x|22.

We proceed to bound the term ∇p(x) · (y − x) =∑n
i=1

∂p
∂xi

(yi − xi) term-by-term.

• if f(x)i 6= 0, 1, then we have from the above
that

∂p

∂xi
(yi − xi)

≤

√
δ + λ2

2 n · η2M2

η
|yi − xi|

≤

√
δ + λ2

2 n · η2M2

η
ε.

• if f(x)i = 0, then ∂p
∂xi
≤ 0, hence ∂p

∂xi
(yi −

xi) will be negative unless yi ≤ xi and the
quantity is maximized for yi = 0. In this case:

∂p

∂xi
(yi − xi) ≤

∂p

∂xi
(−xi) ≤ δ +

λ2

2
n · η2M2.

• if f(x)i = 1, we obtain similarly that ∂p
∂xi

(yi−
xi) ≤ δ + λ2

2 n · η
2M2.

Putting everything together, we obtain:

p(y) ≤ p(x) + c
2ε

2+(3.4)

+n ·max

{
δ + λ2η

2M2n
2 ,

√
δ+

λ2η2M2n
2

η ε

}

Choosing δ = η2, and η = η(ε, n,M, λ2, κ) > 0
small enough we can make sure that (3.4) gives

p(y) ≤ p(x) +
c

2
· ε2 + κ.

This completes the proof of 3.

4. It is known that solving a SSG can be reduced to
computing an approximate fixpoint of a contraction
map (see, e.g., [8]).

5. We show that NetCoordination is polynomial-
time reducible to KKT. For notational simplicity,
we give below the proof for two strategies per
node. Suppose that the game has n players,
1, . . . , n, and suppose that for every pair i <
j ∈ [n], we are given a 2 × 2 payoff table A(i,j)

specifying the common payoff that players receive
from their joint interaction for different selections
of strategies. Given this representation, if the
players play strategy 2 with respective probabilities
x1, x2, . . . , xn ∈ [0, 1], player i receives payoff:

Ui(x) =
∑
j<i

x̂T
j A

(j,i)x̂i +
∑
i<j

x̂T
i A

(i,j)x̂j ,

where, for all j, x̂j = (1 − xj , xj)T. Let us then
define the function Φ(x) = 1

2

∑
i Ui(x). We observe

the following.

Lemma 3.2. (Potential Function) For any
collection of mixed strategies x−i for all players
of the game except player i, and for any pair of
mixed strategies xi and x′i for player i we have:
Ui(x′i;x−i)−Ui(xi;x−i) = Φi(x′i;x−i)−Φi(xi;x−i).

Clearly, Φ(x) is a multilinear polynomial on
x1, . . . , xn of degree 2. We can easily compute an

upper bound U on the Lipschitz constant of Φ(·)
with respect to the `2 norm over [0, 1]n. Then let
us feed Φ into the problem KKT together with ε
and κ satisfying the condition U

2 ε
3 + κ · ε ≤ δ, for

some δ to be chosen later. After solving KKT we
obtain a point x such that

Φ(y)− Φ(x) ≤ U

2
· ε2 + κ(3.5)

≤ δ

ε
,∀y ∈ B2(x, ε) ∩ [0, 1]n.

Using the linearity of Φ with respect to each
player’s mixed strategy, we can show that the
point x is a δ-approximate Nash equilibrium of
the coordination game (i.e. a collection of mixed
strategies such that no player can improve her
payoff by unilaterally changing her mixed strategy).
If we choose δ sufficiently small, the approximate
equilibrium can be rounded to an exact equilibrium
via Linear Programming [7].

6. Congestion can be reduced to KKT, by adapt-
ing the previous proof. Now player i’s mixed strat-
egy Xi is a distribution over subsets of E. For a
collection of mixed strategies X1, . . . ,Xn, we can
define the function Φ(X) := ES∼XφR(S), where
φR(·) is Rosenthal’s potential function, showing
that congestion games always have pure Nash equi-
libria [21]. It can be established that Φ(·) is an ex-
act potential function of the congestion game, ex-
tending Rosenthal’s potential function from pure to
mixed strategies strategies. Moreover, Φ is a mul-
tilinear function on the players’ mixed strategies.
Since Φ is an exact potential function and multi-
linear, finding an approximate mixed Nash equilib-
rium can be reduced to KKT,1 for the same reason
that NetCoordination is reducible to KKT.

7. That ImplicitCongestion is in CLS can be shown
in a similar way, except that now a variant of
KKT is required, where the polynomial is defined
over ×ni=1Fi, where Fi is the flow polytope from
which player i choses a mixed strategy. Again the
polynomial used is the expectation of Rosenthal’s
potential function over the paths sampled from the
players’ mixed strategies. The details are omitted.

4 The Class CCLS

The four last problems in the list above (NetCoor-
dination, Congestion, ImplicitCongestion, and
SSG), lie in another interesting subclass of PPAD ∩ PLS,

1in particular, its generalization where the function is defined
over the product of larger simplices

which we call CCLS for convex CLS. Let p be a continu-
ous function from

∏
iDi → <+, where for i = 1, . . . , n,

Di is a convex domain such as [0, 1]k or the k-simplex
∆k ⊂ Rk+1. To simplify our discussion, let us assume
that all the Di’s are k-simplices. and we write the func-
tion as p(x1, . . . , xn), where each xi ∈ ∆k. We call
p componentwise convex if for every i ≤ n and every
fixed set of values vj ∈ Dj for j 6= i, the function
p(v1, . . . , vi−1, xi, vi+1, . . . , vn) of xi is convex. Notice
that a componentwise convex function may not be con-
vex — in particular, it can have many local minima.
We say that a point x1, . . . , xn is a (δ, ε)-componentwise
local-minimum iff for all i ≤ n, j ≤ k + 1:

p((1− δ)xi + δej ; x−i) ≥ p(xi ; x−i)− ε.(4.6)

In other words, mixing any single component of x with a
unit vector along some dimension j with mixing weight
δ, decreases the value of f by at most ε. Given this
definition, we define ComponentwiseConvex Lo-
calMin as the following problem: Given a (purported)
c-Lipschitz continuous componentwise convex function
p and ε, δ > 0, find a (δ, ε)-approximate local minimum
of p, or three points that violate componentwise con-
vexity, or two points violating the c-Lipschitzness. We
define CCLS as all problems reducible to Component-
wiseConvex LocalMin. We show

Theorem 4.1. 1. CCLS ⊆ PPAD ∩ PLS.

2. NetCooddination, Congestion, Implicit-
Congestion, SSG ∈ CCLS.

Proof. (Sketch.) The proof that CCLS ⊆ PLS is not
hard as the problem at hand is a local search problem
(see Appendix A.3). To show that CCLS ⊆ PPAD
we reduce the local search to a fixpoint computation
problem. Intuitively, the d components of the domain
of p can be thought of as players of an exact potential
game (with potential p) seeking their own utility, while
interacting with others in complex ways. And the goal
is to find a Nash equilibrium of the game. Inspired by
this we define a smoothened version of the function that
Nash used in his paper [17] and reduce the problem of
finding a Nash equilibrium of the game to Brouwer.
The proof that this construction works is quite intricate
and postponed to Appendix A.3.

For the second part of the theorem, the first three
problems are in CCLS by virtue of the potential functions
used to prove that they lie in CLS. In particular,
these potential functions are componentwise linear, and
their componentwise local maxima correspond to Nash
equilibria. For SSG, we utilize a proof due to Condon,
whereby SSG can be formulated as the local minimum
of a quadratic function in a convex polytope. Even

though the quadratic function is not componentwise
convex, it can be modified to incorporate a penalty
for leaving the polytope, and the resulting function is
indeed componentwise convex.

5 On Exact Fixpoints, and Variants of our
Classes

As Etessami and Yannakakis pointed out, interesting
complexity phenomena start happening when one seeks
exact, not approximate, Brouwer fixpoints [8]. Since in
this paper we are also interested in fixpoint-like compu-
tations, it would be interesting to ponder the complex-
ity of the exact versions of the problems Continuous
Localopt and ComponentwiseConvex LocalMin.
We make the following remark in this connection:

Remark 5.1. One interesting fact about FIXP, the ex-
act version of PPAD, is that the SumOfSquareRoots
problem (given integers a1, . . . , an, b, is

∑n
i=1

√
ai >

b?), not known to lie in NP, can be reduced to it. It
turns out that it can also be reduced to the exact ver-
sion of CCLS! (The same is true of CLS.) Consider the
polynomial:

p(x, t) =
t+ 1

2
·
(

3x1

2
− x3

1

2a1
+ ...+

3xn
2
− x3

n

2an
− b
)

where t ∈ [0, 1] and xi ∈ [0, ai], for all i. It is not hard to
check that p(x, t) is component-wise concave. Moreover,
it has a unique exact component-wise local maximum in
which xi =

√
ai, for all i, and, if

∑
i

√
ai > b, then

t = 1, while, if
∑
i

√
ai < b, t = 0. Given that we

can decide in polynomial time whether
∑
i

√
ai = b, it

follows from the above discussion that deciding whether
t = 1 at the exact component-wise local maximum of p
is SumOfSquareRoots-hard.

Moreover, recall that PLS is equivalent to Real Lo-
caopt, which defined in terms of a continuous potential
function p and a non-necessarily continuous neighbor-
hood function f . In Real Localopt we seek an ap-
proximate fixed point of f with respect to p. Below we
discuss the complexity of variants of Real Localopt,
when we either seek exact solutions, or we drop the con-
tinuity assumption on the potential.

Remark 5.2. Given two functions f : [0, 1]3 → [0, 1]3

and p : [0, 1]3 → [0, 1], where p is continuous but f is
not necessarily continuous, there always exists a point x
such that p(f(x)) ≥ p(x). Indeed, since p is continuous
on a compact (i.e. closed and bounded) subset of the
Euclidean space it achieves its minimum at a point x∗ ∈
[0, 1]3. Regardless then of the value of f(x∗) it must be
that p(f(x∗)) ≥ p(x∗). At the same time, it follows from

our discussion in Remark 5.1 that the exact version of
Real Localopt is also SumOfSquareRoots-hard
(and therefore, as far as we know, may well be outside
of NP).

Remark 5.3. Given two functions f , p : [0, 1] → [0, 1]
that are not continuous, there may not be a point x
such that p(f(x)) ≥ p(x). To see this, consider these
functions: (f, p : [0, 1] 7→ [0, 1] with f(x) = p(x) = x

2 if
x = 2−i, i = 0, 1, 2, . . . and f(x) = p(x) = 1 otherwise.
Note however that these functions cannot be computed
by an arithmetic circuit (a loop is needed); it is an
interesting question whether an example of this sort
exists that is so computable.

6 Conclusions and Open Problems

Two decades ago, the definition of PPAD was an invita-
tion to study fixpoint problems from the point of view of
Complexity; its true dividend came fifteen years later,
with the proof that Brouwer and Nash are the same
problem. Here we have pointed out that there are rich
Complexity considerations in a realm with many impor-
tant and fascinating problems, that seems to lie intrigu-
ingly close to P.

There is a plethora of open problems left by the
ideas introduced in this paper, of which the most
obvious:

• It would be very interesting to identify natural CLS-
complete problems. ContractionMap, P-LCP
and KKT are prime suspects.

• Is CCLS ⊆ CLS? We conjecture that this is the case.

• Separate by oracles PPAD ∩ PLS from CLS, and CLS
from CCLS (one or both ways).

• Are there PTAS’s for problems in CLS beyond
ContractionMap? It would be fascinating if
there is a general-purpose PTAS. Indeed, there is a
PTAS for certain special cases of KKT [26].

Acknowledgment. We are grateful to Nimrod
Megiddo, Rahul Savani, Steve Vavasis, and Yinyu Ye
for several illuminating discussions on these problems.

References

[1] S. Banach. Sur Les Opérations Dans Les Ensem-
bles Abstraits et Leur Application aux Équations
Intégrales. Fund. Math. 3: 133–181, 1922.

[2] J.-B. Baillon, R. E. Bruck. The Rate of Asymptotic
Regularity is O(1/

√
n). Theory and Applications of

Nonlinear Operators of Accretive and Monotone Types,
Lecture Notes in Pure and App. Math., 178:51–81,
Dekker, New York, 1996.

[3] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo and
T. Pitassi. The Relative Complexity of NP Search
Problems. Journal of Computer and System Sciences,
57(1):13–19, 1998.

[4] Y. Cai and C. Daskalakis. On Minmax Theorems for
Multiplayer Games. In the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011.

[5] A. Condon. The Complexity of Stochastic Games.
Information and Computation, 96(2): 203–224, 1992.

[6] X. Chen and X. Deng. Settling the Complexity of 2-
Player Nash-Equilibrium. In the 47th Annual IEEE
Symposium on Foundations of Computer Science,
FOCS 2006.

[7] C. Daskalakis, P. W. Goldberg and C. H. Papadim-
itriou. The Complexity of Computing a Nash Equilib-
rium. In the 38th ACM Symposium on Theory of Com-
puting, STOC 2006.

[8] K. Etessami and M. Yannakakis. On the Complexity
of Nash Equilibria and Other Fixed Points. In the 48th
Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2007.

[9] A. Fabrikant, C.H. Papadimitriou and K. Talwar. The
Complexity of Pure Nash Equilibria. In the 36th ACM
Symposium on Theory of Computing, STOC 2004.

[10] M. R. Garey, R. L. Graham and D. S. Johnson.
Some NP-complete Geometric Problems. In 8th ACM
Symposium on Theory of Computing, STOC 1976.

[11] D. S. Johnson, C. H. Papadimitriou and M. Yan-
nakakis. How Easy is Local Search? Journal of Com-
puter and System Sciences, 37(1): 79–100, 1988.

[12] B. Juba. On the Hardness of Simple Stochastic Games.
Master’s thesis, CMU, 2005.

[13] M. Kojima, N. Megiddo and Y. Ye. An Interior Point
Potential Reduction Algorithm for the Linear Comple-
mentarity Problem. Mathematical Programming, 1992.

[14] M. Kojima, N. Megiddo, T. Noma, A. Yoshise. A
Unified Approach to Interior Point Algorithms for
Linear Complementarity Problems. Lecture Notes in
Computer Science 538, Springer-Verlag, 1991.

[15] N. Megiddo. A Note on the Complexity of P-matrix
LCP and Computing an Equilibrium. Research Report
RJ 6439, IBM Almaden Research Center, 1988.

[16] K. G. Murty and S. N. Kabadi. Some NP Complete
Problems in Quadratic and Nonlinear Programming.
Mathematical Programming, 39:117–129, 1987.

[17] J. Nash. Non-cooperative games. Annals of mathemat-
ics, 1951.

[18] C. H. Papadimitriou. Computational Complexity, Ad-
dison Wesley, 1994.

[19] C. H. Papadimitriou. On the Complexity of the Parity
Argument and Other Inefficient Proofs of Existence.
Journal of Computer and System Sciences, 48(3): 498–
532, 1994.

[20] C. H. Papadimitriou. The Euclidean Traveling Sales-
man Problem is NP-Complete. Theor. Comp. Sci.,
4:237–244, 1977.

[21] R. W. Rosenthal. A Class of Games Possessing Pure-
Strategy Nash Equilibria. International Journal of
Game Theory, 2:6567, 1973.

[22] A. A. Schäffer and M. Yannakakis. Simple Local Search
Problems that are Hard to Solve. SIAM J. Comput.,
20(1): 56–87, 1991.

[23] L. S. Shapley. Stochastic Games. In Proceedings of the
National Academy of Sciences, 39:1095–1100, 1953.

[24] D. Solow, R. Stone and C. A. Tovey. Solving LCP on
P-matrices is probably not NP-hard. Unpublished Note,
November 1987.

[25] P. Tiwari. A Problem that is Easier to Solve on
the Unit-Cost Algebraic RAM. Journal of Complexity,
393–397, 1992.

[26] Y. Ye. On the Complexity of Approximating a KKT
Point of Quadratic Programming. Mathematical Pro-
gramming, 80:195–212 1998.

A Omitted Details from Section 4

For reasons related to our proof techniques, it is more
convenient to think in terms of (componentwise) con-
cavity and (componentwise) local maxima, instead of
convexity and local minima. The corresponding opti-
mization problem is called ComponentwiseConcave
LocalMax. Clearly, ComponentwiseConvex Lo-
calMin and ComponentwiseConcave LocalMax
are equivalent, so this change is without loss of general-
ity.

A.1 Some Notation.

Definition A.1. (Simplex) For an integer k > 0, we
define the k-simplex ∆k as follows

∆k :=

{
(x1, . . . , xk+1) ∈ Rk+1

+

k+1∑
i=1

xi = 1

}
.

Definition A.2. (Indexing, Distances) We repre-
sent an element x ∈

∏n
i=1 Si, where Si ⊆ Rni , as

x = (x1, x2, . . . , xn) where, for all i ∈ [n], xi ∈ Si. We
call xi the i-the component of x. The value of the j-th
coordinate of xi is denoted by xi(j). Moreover, for all
i ∈ [n], we denote by x−i the vector comprising of all but
the i-th component of x, and we also use the convenient
notation (xi ; x−i) ≡ x. Finally, for x, y ∈

∏n
i=1 Si, we

define
|x− y|∞ = max

i∈[n]
{|xi − yi|∞}.

Definition A.3. (Component-wise Local Maxi-
mum) Given a function f :

∏
i∈[n] Si −→ R, where

Si := ∆ni−1, a point x is called a component-wise (δ, ε)-

local maximum of f iff, for all i ∈ [n], j ∈ [ni]:

f((1− δ)xi + δej ; x−i)− f(xi ; x−i) ≤ ε.(1.7)

In other words, a point x is a component-wise approx-
imate local maximum of f , if mixing any single com-
ponent of x with a unit vector using mixing weight δ,
increases the value of f by at most ε.

Definition A.4. (Component-wise Concavity)
A function f :

∏
i∈[n] Si −→ R, where Si is a convex

set, is called component-wise concave iff for all i ∈ [n],
x−i ∈

∏
j 6=i Sj, xi, x

′
i ∈ Si and α ∈ [0, 1]:

f(αxi + (1− α)x′i ; x−i) ≥
αf(xi ; x−i) + (1− α)f(x′i ; x−i).

A.2 Smoothened Nash Function. As a basic tool
to reduce local optimization to fixed point computation,
we employ the following construction inspired by Nash’s
theorem [17].

Definition A.5. (Smoothened Nash Function)
Let f : S → R, where S =

∏n
i=1 Si, Si = ∆ni−1. For

δ > 0, we define the function gδ : S → S based on f
as follows: For x ∈ S, the function gδ maps x 7→gδ y,
where for all i ∈ [n] and j ∈ [ni]:

yi(j) =
xi(j) + max{0, Iδij}
1 +

∑
k max{0, Iδik}

.

where Iδij represents the improvement on the value of
f(x) by mixing xi with ej while keeping the other
components of x fixed, i.e.,

Iδij := f((1− δ)xi + δej ; x−i)− f(xi ; x−i).

We show that the smoothened Nash function corre-
sponding to some function f inherits Lipschitzness prop-
erties from f . The proof of the following is omitted.

Lemma A.1. Suppose that f : S → R, where S =∏n
i=1 Si, Si = ∆ni−1, is c-Lipschitz with respect to the

`∞ norm on S, i.e., for all x, y ∈ S, |f(x) − f(y)| ≤
c · |x − y|∞. Then, for all δ > 0, there exists c′ =
c′(n,max{ni}, c, δ) > 0, such that the smoothened Nash
function corresponding to f (see Defintion A.5) is c′-
Lipschitz, i.e., for all x, y ∈ S:

|gδ(x)− gδ(y)|∞ ≤ c′ · |x− y|∞.

Moreover, the description complexity of c′ is polynomial
in the description complexity of n, max{ni}, c, and δ.

A.3 Proof of CCLS ⊆ PPAD ∩ PLS. The central
element of our proof is the following result, establishing
that the fixed points of the smoothened Nash function
corresponding to a componentwise concave function, are
componentwise local maxima.

Theorem A.1. Let f : S → [0, fmax], where S =∏n
i=1 Si and Si ≡ ∆ni−1, for all i, be continuous and

component-wise convave. For all δ ∈ (0, 1), ε > 0,
there exists some ζ = ζ(ε, fmax,max{ni}) > 0 such
that if |gδ(x) − x|∞ ≤ ζ, where gδ is the smoothened
Nash function corresponding to f (see Definition A.5),
then x is a component-wise (δ, ε)-local maximum of f .
Moreover, the description complexity of ζ is polynomial
in the description complexity of ε, fmax and max{ni}.

Proof of Theorem A.1: Suppose that x satisfies |gδ(x)−
x|∞ ≤ ζ for some ζ ∈ (0, 1). Let us fix some i ∈ [n] and
assume, without loss of generality, that

fδi1(x) ≥ . . . ≥ fδik(x) > f(x) ≥ fδik+1(x) ≥ . . . ≥ fδini(x),
(1.8)

where fδij(x) := f((1−δ)xi+δej ; x−i). For all j ∈ [ni],
observe that |gδ(x)i − xi|∞ ≤ ζ implies

xi(j)
∑
k∈[ni]

max{0, Iδik}

≤ max{0, Iδij}+ ζ

1 +
∑
k∈[ni]

max{0, Iδik}

 .

Setting ζ ′′ := ζ(1+nifmax), the above inequality implies

xi(j)
∑
k∈[ni]

max{0, Iδik} ≤ max{0, Iδij}+ ζ ′′.(1.9)

Let us then define t := xi(k + 1)+xi(k + 2)+. . .+xi(ni)
and distinguish the following cases

1. If t ≥
√
ζ′′

fmax
, then summing Equation (1.9) over

j = k + 1, . . . , ni implies

t
∑
k∈[ni]

max{0, Iδik} ≤ (ni − k)ζ ′′,

which gives

max
k
{max{0, Iδik}} ≤

∑
k∈[ni]

max{0, Iδik} ≤ ni
√
ζ ′′fmax.

(1.10)

2. If 0 < t <
√
ζ′′

fmax
, then multiplying Equation (1.9) by

xi(j) and summing over j = 1, . . . , ni gives∑
j∈[ni]

xi(j)2
∑
k∈[ni]

max{0, Iδik}(1.11)

≤
∑
j∈[ni]

xi(j) max{0, Iδij}+ ζ ′′.

Now observe that for any setting of xi(j), j ∈ [ni],
it holds that ∑

j∈[ni]

xi(j)2 ≥
1
ni
.(1.12)

Moreover, observe that,

xi =
∑
j∈[ni]

xi(j) ((1− δ)xi + δej) .

Hence, by component-wise concavity it holds that

f(x) ≥
∑
j∈[ni]

xi(j) · f ((1− δ)xi + δej ; x−i) .
(1.13)

Equivalently:∑
j∈[ni]

xi(j) · f(x)

≥
∑
j∈[ni]

xi(j) · f ((1− δ)xi + δej ; x−i)⇐⇒

∑
j>k

xi(j) · (f(x)− f ((1− δ)xi + δej ; x−i)) ≥
(1.14)

∑
j≤k

xi(j) · (f ((1− δ)xi + δej ; x−i)− f(x))

Using (1.8) and applying (1.14) and (1.12) to (1.11)
we obtain

1
ni

∑
k∈[ni]

max{0, Iδik}

≤
∑
j>k

xi(j) · (f(x)− f ((1− δ)xi + δej)) + ζ ′′

≤ t · fmax + ζ ′′,

which implies

max
k
{max{0, Iδik}}(1.15)

≤
∑
k∈[ni]

max{0, Iδik}

≤ ni(t · fmax + ζ ′′)

≤ ni(
√
ζ ′′ + ζ ′′) ≤ 2ni

√
ζ ′′,

assuming ζ ′′ < 1.

Combining (1.10) and (1.15), we have the following
uniform bound

max
k
{max{0, Iδik}} ≤ 2ni

√
ζ ′′max{fmax, 1}

= 2ni
√
ζ(1 + nifmax) max{fmax, 1}.

To conclude the proof of the theorem notice first that,
if for all i ∈ [n]:

max
j∈[ni]

{max{0, Iδij}} ≤ 2ni
√
ζ(1 + nifmax) max{fmax, 1},

then x is a component-wise

(δ, 2ñ
√
ζ(1 + ñfmax) max{fmax, 1})-local

maximum of f , where ñ = max{ni}. To make
2ñ
√
ζ(1 + ñfmax) max{fmax, 1} ≤ ε is is sufficient to

choose:

ζ ≤ ε2 · 1
4ñ2(1 + ñfmax) max{fmax, 1}2

,

where ñ = max{ni}. �

Using Theorem A.1 we can establish our result.

Theorem A.2. ComponentwiseConcave Local-
Max ∈ PPAD.

Proof. To argue that ComponentwiseConcave Lo-
calMax ∈ PPAD, we use the smoothened Nash function
gδ corresponding to f (see Definition A.5). It follows
from Lemma A.1 that, assuming that f is c-Lipschitz,
we can efficiently compute some c′ of description com-
plexity polynomial in c, n, max{ni}, and δ such that
gδ is c′-Lipschitz. Now let us choose ζ as required by
Theorem A.1. With a PPAD computation, we can find
an approximate fixed point of gδ, i.e. some x such that

|gδ(x)− x|∞ < ζ,(1.16)

or a pair of points x, y that violate the c′-Lipschitzness
of gδ, i.e.

|gδ(x)− gδ(y)|∞ > c′ · |x− y|∞.

In the latter case, using x, y we can efficiently compute
a pair of points x′ and y′ violating the c-Lipschitzness of
f (we omit the details). In the former case, we can check
if x is a component-wise (δ, ε)-local maximum of f . If
it is not, then some component xi of x violates (1.7)
despite the fact that x is an approximate fixed point.
It follows from the proof of Theorem A.1 that for this
to happen we must fall into Case 2 of the proof of
Theorem A.1. And in this situation in order for (1.16)
to fail to imply (1.7) it must be that the concavity
condition (1.13) is violated at x by some component
xi. Hence, in this case we can provide a certificate that
the concavity condition is violated by f .

Roundi: Given z = (z1, z2, . . . , zni) ∈ ∆ni−1 define
z′ = (z′1, z

′
2, . . . , z

′
ni) ∈ ∆ni−1(k) as follows:

i. ε1 := 0;

ii. for j := 1 to ni − 1

(a) If εj < 1
k : z′j = bkzjc · 1

k ;

(b) If εj ≥ 1
k : z′j = dkzje · 1

k ;

(c) εj+1 := εj + (zj − z′j);

1. z′ni = zni + εni .

Figure 3: Procedure Roundi.

Theorem A.3. ComponentwiseConcave Local-
Max ∈ PLS.

Proof. Let us consider the discretization of ∆ni−1 in-
duced by the regular grid of size k ∈ N+ for some k to
be decided later:

∆ni−1(k) =
{
x ∈ ∆ni−1 x =

(
y1
k ,

y2
k , . . . ,

yni
k

)
,

yj ∈ N0 and
∑
j yj = k

}
.

Similarly, let us consider the discretization of S :=∏
i∈[n] ∆ni−1 defined by

S(k) :=
∏
i∈[n]

∆ni−1(k).

Finally, let us impose the following neighborhood rela-
tion on the points of S(k). Two points x, x′ ∈ S(k) are
neighbors iff there exists i ∈ [n] such that xj = x′j , for
all j 6= i, and ∃q ∈ [ni] such that

x′i = Roundi((1− δ)xi + δeq)

or
xi = Roundi((1− δ)x′i + δeq),

where Roundi is the poly-time deterministic procedure
described in Figure 3, which rounds a point in ∆ni−1

to a point in ∆ni−1(k) that lies within `∞ distance at
most 2

k .2

Given S(k) and its poly-time computable neighborhood
relation, we can perform a PLS computation to locate a
local maximum x∗ of f .3 The resulting point x∗ satisfies

2To see this observe the following: clearly, for all j < ni,

|zj − z′j | < 1/k; moreover, 0 ≤ εj <
2
k

, for j = 1, . . . , ni, hence
|zni − z′ni | < 2/k.

3Notice that, unlike the definition of PLS provided in Section 1,
where the neighborhood of every candidate solution comprised
of a single neighbor, in the definition used here every candidate

solution has many (although a polynomially-bounded number of)
neighbors. The two definitions of PLS are equivalent.

the following: for all i ∈ [n], q ∈ [ni]:

f(x∗) ≥ f(Roundi((1− δ)x∗i + δeq) ; x∗−i).

Hence, if f is c-Lipschitz then x∗ satisfies the following:
for all i ∈ [n], q ∈ [ni]:

f(x∗) ≥ f((1− δ)x∗i + δeq ; x∗−i)− c
2
k
.

So a choice of k ≥ 2c
ε guarantees that x∗ is a component-

wise (δ, ε)-local maximum of f . If x∗ fails to be a (δ, ε)-
local maximum of f this is due to an easily detectable
violation of the c-Lipshitzness of f . Indeed, there must
be some i ∈ [n] and q ∈ [ni] such that∣∣∣f(Roundi((1− δ)x∗i + δeq) ; x∗−i)

− f((1− δ)x∗i + δeq ; x∗−i)
∣∣∣

> c
2
k

≥ d∞
(

Roundi((1− δ)x∗i + δeq ; x∗−i),

((1− δ)x∗i + δeq ; x∗−i)
)
.

Corollary A.1. ComponentwiseConcave Local-
Max ∈ PPAD∩PLS.

A.4 An Extension to Quasi-Concave Functions.
Let us define a weaker notion of component-wise con-
cavity, called component-wise quasi-concavity.

Definition A.6. (Component-wise Quasi-Conca-
vity) A function f :

∏
i∈[n] Si −→ R, where Si is a

convex set, is called component-wise quasi-concave iff
for all i ∈ [n], x−i ∈

∏
j 6=i Sj, xi, x

′
i ∈ Si and α ∈ [0, 1]:

f(αxi + (1− α)x′i ; x−i)
≥ min(f(xi ; x−i) , f(x′i ; x−i)).

How hard is the componentwise local maximization
problem for componentwise quasi-concave functions,
called ComponentwiseQuasiConcave LocalMax?
We show that, as long as, each component of the
function lives in fixed dimension the problem is still in
PPAD∩PLS. Our basic tool to establish the theorem is the
following generalization of Theorem A.1, whose proof
provided here is much more intricate. Further details
of the inclusion of ComponentwiseQuasiConcave
LocalMax inside PPAD ∩ PLS are omitted.

Theorem A.4. Let f : S → [0, fmax], where S =∏n
i=1 Si and Si ≡ ∆ni−1, for all i, be c-Lipschitz

continuous with respect to the `∞ norm on S and

component-wise quasi-convave. For all δ ∈ (0, 1), ε > 0,
there exists some ζ = ζ(ε, fmax,max{ni}, c, n) > 0 such
that, if |gδ(x) − x|∞ ≤ ζ where gδ is the smoothened
Nash function corresponding to f (see Definition A.5),
then x is a component-wise (δ, ε)-local maximum of f .
Moreover, the description complexity of ζ is polynomial
in the description complexity of ε, fmax, c and n (but not
necessarily in the description complexity of max{ni}).

Proof. Invoking Lemma A.1 let us call c′ the Lipschitz
constant of gδ with respect to the `∞ norm on S. Let us
then fix some i ∈ [n] and throughout the argument that
follows keep x−i fixed. Using induction on the value
of |j | xi(j) > 0| =: `(xi), we will show that, for all

µ ∈ (0, 1) with µ
(

1 + (c′ + 1)
√

1+nifmax
fmax

)2

< 1:

|gδ(x)i − xi|∞ ≤ µ =⇒(1.17)

max
j∈[ni]

{max{0, Iδij}} ≤ υ(`(xi), µ),

for the function υ(`, µ) defined as follows, for ` ∈ N:

υ(`, µ) := (µΦ)
1

2`−1 · (1 + nifmax + `∆) +
√
µ∆,

where

Φ :=
(

1 + (c′ + 1)
√

1 + nifmax

fmax

)2

and

∆ :=
√

1 + nifmax

(
2c
fmax

+ nifmax

)
.

Indeed, if `(xi) = 1, say xi(1) = 1, we have:

|gδ(x)i(1)− xi(1)| ≤ µ

⇒
∑
k∈[ni]

max{0, Iδik} ≤ µ

1 +
∑
k∈[ni]

max{0, Iδik}

≤ µ(1 + nifmax).

(In the above we used that Iδi1 = 0.) Hence:

max
j∈[ni]

{max{0, Iδij}} ≤ µ(1 + nifmax) ≤ υ(1, µ).

Assuming now that the implication (1.17) holds for all
values of `(xi) < ` we show that (1.17) also holds for
`(xi) = `. To show this, assume first, without loss of
generality, that

fδi1(x) ≥ . . . ≥ fδik(x) > f(x) ≥ fδik+1(x) ≥ . . . ≥ fδini(x),
(1.18)

where fδij(x) := f((1− δ)xi + δej ; x−i). Observe that,
for all j ∈ [ni], |gδ(x)i − xi|∞ ≤ µ implies

xi(j)
∑
k∈[ni]

max{0, Iδik}

≤ max{0, Iδij}+ µ

1 +
∑
k∈[ni]

max{0, Iδik}

 .

Setting µ′′ := µ(1 + nifmax), the above inequality
implies

xi(j)
∑
k∈[ni]

max{0, Iδik} ≤ max{0, Iδij}+ µ′′.(1.19)

Let us then define t := xi(k + 1)+xi(k + 2)+. . .+xi(ni)
and distinguish the following cases:

• If t ≥
√
µ′′

fmax
, then summing Equation (1.19) over

j = k + 1, . . . , ni implies

t
∑
k∈[ni]

max{0, Iδik} ≤ (ni − k)µ′′,

which gives

max
k
{max{0, Iδik}} ≤

∑
k∈[ni]

max{0, Iδik}

≤ ni
√
µ′′fmax ≤ υ(`, µ).(1.20)

• If 0 < t <
√
µ′′

fmax
, we use the following procedure to

modify xi. We set for all j ∈ [ni]:

x̂i(j) =

{
0, if j ≥ k + 1
xi(j)/(1− t), otherwise

The following is immediate:

Claim A.1. The x̂i resulting from the above pro-
cedure satisfies:

|xi − x̂i|∞ ≤ t.

Now let us define x′ as follows: x′j = xj , for all
j 6= i, and x′i = x̂i. Using Claim A.1 and that gδ is
c′-Lipschitz it follows that

|gδ(x′)i − x′i|∞ ≤ c′t+ µ+ t.

Notice that `(x′i) < `. Hence the induction
hypothesis implies that

max
j∈[ni]

{max{0, f((1− δ)x′i + δej ;x−i)− f(x′i;x−i)}}

≤ υ(`− 1, µ+ (c′ + 1)t).

Using then that f is c-Lipschitz it follows that

max
j∈[ni]

{max{0, f((1− δ)xi + δej ;x−i)− f(xi;x−i)}}

≤ υ(`− 1, µ+ (c′ + 1)t) + 2ct
≤ υ(`, µ).

• Finally, we argue that the case t = 0 cannot
happen. Indeed, observe that

xi =
∑
j∈[ni]

xi(j) ((1− δ)xi + δej) .

Since t = 0 we have that:

xi =
k∑
j=1

xi(j) ((1− δ)xi + δej) .

But f is component-wise quasi-concave, so that

f(xi ; x−i) ≥ min
1≤j≤k

{f((1− δ)xi + δej ; x−i)}.

This contradicts (1.18), showing that the case t = 0
is impossible.

This completes the proof of the induction step,
establishing (1.17).

To conclude the proof of the theorem notice first that,
if for all i ∈ [n]:

max
j∈[ni]

{max{0, Iδij}} ≤ υ(ni, µ),

then x is a component-wise (δ,maxi{υ(ni, µ)})-local
maximum of f . Moreover, notice that for all `,
limµ→0 υ(`, µ) = 0. In particular, to make υ(`, µ) ≤ ε it
is sufficient to choose:

µ ≤ ε2
`−1
· 1(

Φ1/2`−1(1 + nifmax + `∆) + ∆
)2`−1 .

