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Abstract. Strictly competitive games are a class of 2-player games often
quoted in the literature to be a proper generalization of zero-sum games.
Other times it is claimed, e.g. by Aumann, that strictly competitive
games are only payoff transformations of zero-sum games. But to the
best of our knowledge there is no proof of such claim. We shed light
to this point of confusion in the literature, showing that any strictly
competitive game is indeed a payoff transformation of a zero sum-game;
in fact, an affine transformation. We offer two proofs of this fact, one
combinatorial and one algebraic.

1 Introduction

A two-person game is strictly competitive [1] if it has the following property: if
both players change their mixed strategies, then either there is no change in the
expected payoffs, or one of the two expected payoffs increases and the other de-
creases. That is, all pairs of mixed strategies are Pareto optimal. Mathematically,
a game (A,−B) is strictly competitive if for any two pairs of mixed strategies
(x, y) and (x′, y′), xTAy−x′TAy′ and xTBy−x′TBy′ have the same sign. 4 Ob-
viously, these games generalize zero-sum games (the case A = B). The question
is, how much more general than zero-sum games is this class?

There is much confusion in the literature about this question. Aumann writes
“Recall that a strictly competitive game is defined as a two-person game in which
if one outcome is preferred to another by one player, the preference is reversed
for the other. Since randomized strategies are admitted, this condition applies
also to mixed outcomes (probability mixtures of pure outcomes). From this it
may be seen that a two-person game is strictly competitive if and only if, for an
appropriate choice of utility functions, the utility payoffs of the players sum to
zero in each square of the matrix.”

Notice that “appropriate choice” is not defined, and no proof, or outline,
is given. Aumann’s insight above is mirrored elsewhere in the literature, e.g.
in the textbooks, [3, 4], also without proof. Elsewhere, in lieu of proof a rather
straightforward weaker fact is pointed out: Let a1, . . . , an be n events and let
u(ai), v(ai) be the utilities of players 1 and 2 respectively. Now suppose that for
any pair of probability vectors p, q we have

∑
piu(ai) ≥

∑
qiu(ai) iff

∑
piv(ai) ≤

4 For our purposes the sign function takes on three values, +, −, and 0.



∑
qiv(ai). Then it is easy to see that there exist affine transformations of u, v, call

them u′, v′, such that v′(ai) = −u′(ai) for all i. Aumann’s assertion is stronger:
Its hypothesis is that the inequalities hold for all distributions that are products
of mixed strategies. To increase the confusion, in [5], strictly competitive games
are defined with x, y, x′, y′ above restricted to pure strategies—this is a proper
generalization, albeit of no interest. And elsewhere, strictly competitive games
are treated as a proper generalization of zero-sum games.

In this note we prove Aumann’s assertion. In fact, we give two very different
proofs, one combinatorial and one algebraic (both are quite nontrivial). Let
A and B be m × n real matrices. By ∆n we denote all distributions (mixed
strategies) over [n]. We say that matrix B is an affine variant of matrix A if for
some λ > 0 and unrestricted µ, B = λ · A + µ · U , where U is m × n all-ones
matrix. Our main result is the following:

Theorem 1. If for all x, x′ ∈ ∆m and y, y′ ∈ ∆n, xTAy− x′TAy′ and xTBy −
x′TBy′ have the same sign, then B is an affine variant of A.

Note that the converse is trivial.

2 A Combinatorial Proof

Consider the strictly competitive game (A,−B) with at least two pure strategies
for each player. Let

amax = max
ij

Aij , amin = min
ij

Aij

and bmax = max
ij

Bij , bmin = min
ij

Bij .

Lemma 1. For all i, j:

aij = amax ⇐⇒ bij = bmax; (1)
aij = amin ⇐⇒ bij = bmin. (2)

Proof. We only show the first assertion. The other assertion can be shown simi-
larly. Suppose there exist i, j such that aij = amax, but bij < bmax. Let then k, `
be such that bk` = bmax. If x, x′ are the pure strategies i, k and y, y′ the pure
strategies j, `, then the pairs of strategies (x, y) and (x′, y′) violate the condition
of strict competitiveness. �

Corollary 1. amax = amin ⇔ bmax = bmin.

If amax = amin and bmax = bmin, then clearly B is an affine variant of A. If
amax > amin and bmax > bmin, we define the following affine variants of the
matrices A and B.

A
′

=
1

amax − amin
[A− aminU ],

B
′

=
1

bmax − bmin
[B − bminU ].



Observe that all entries of A′, B′ are in [0, 1]; in particular, both the value 0 and
the value 1 appear as entries in both A′ and B′. Moreover, (A′,−B′) is a strictly
competitive game. We show the following.

Lemma 2. A
′

= B
′
.

Proof. Suppose that A
′ 6= B

′
. By Lemma 1 and by rearranging the rows and

columns of A
′

and B
′
, we can assume without loss of generality that A

′

11 =
B

′

11 = 1 and either A
′

22 = B
′

22 = 0 (case 1) or A
′

12 = B
′

12 = 0 (case 2). Let
D = B

′ − A
′

and let |Drs| = maxij |Dij |. For 0 ≤ p ≤ 1, let x(p), y(p) be
probability vectors whose non-zero elements are:

– Case 1: x1(p) = y1(p) = p, x2(p) = y2(p) = 1− p;
– Case 2: x1(p) = 1, y1(p) = p, y2(p) = 1− p.

Since x(p)TA
′
y(p) = 0 for p = 0 and x(p)TA

′
y(p) = 1 for p = 1, there exists p̄

such that x(p̄)TA
′
y(p̄) = A

′

rs. Assuming Drs 6= 0, we have 0 < p̄ < 1. Since the
game is strictly competitive, we have that x(p̄)TB

′
y(p̄) = B

′

rs. If this weren’t
the case, then by taking x′ to be the pure strategy r and y′ the pure strategy
s we would obtain a contradiction to the strict competitiveness of the game by
considering the pairs of mixed strategies (x(p̄), y(p̄)) and (x′, y′).

Given the above we have x(p̄)T(A
′

+ D)y(p̄) = B
′

rs, which implies that
x(p̄)TDy(p̄) = B

′

rs − A
′

rs = Drs. Noting that D11 = 0, x1(p̄) · y1(p̄) > 0, |Drs|
= maxij |Dij |, and that x(p̄)TDy(p̄) is a weighted average of the elements in D,
we can’t have x(p̄)TDy(p̄) = Drs. Thus D = 0, implying A

′
= B

′
. �

Since A
′
, B

′
are affine variants of A, B, this completes the proof of Theorem 1.

3 An Algebraic Proof

For any matrix A we consider the polynomial pA(z) = xTAy−x′TAy′, where by
z we denote the vector of variables x, y, x′, y′. The hypothesis then states that
pA(z) and pB(z) always have the same sign.

First note that, as polynomials, pA and pB are irreducible (there is no way
to factor them without getting extra terms involving both primed and unprimed
variables). Consider now the polynomial pA+B , and consider a z∗ such that
pA+B(z∗) = 0. It is easy to see that such a z∗ exists. We claim that also pA(z∗) =
0 — otherwise, pA(z∗) and pB(z∗) = pA+B(z∗) − pA(z∗) would have opposite
signs.

We conclude that the roots of the irreducible polynomial pA+B(z) are a sub-
set of the roots of the irreducible polynomial pA(z). It follows from Hilbert’s
Nullstellensatz [2] that pA(z) is a multiple of pA+B(z) (where we used that pA is
irreducible); 5 since pA is irreducible, a constant multiple. Therefore, pA(z) and

5 Strictly speaking, the application of the Nullstellensatz requires that there is a non-
singular point for the two polynomials with neighborhoods isomorphic to balls, but
this is easy, if a little technical, to see—any point in the interior will do.



pB(z) are multiples of one another, and thus positive multiples.

Now, it is easy to see that pC(z) = pD(z) iff C and D differ by a multiple of
U (that is, the multiples of U comprise the kernel of the homomorphism from
matrices A to polynomials pA). We conclude that B is an affine variant of A,
completing the proof.
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