Price of Anarchy of Practical Auctions Mechanism Design for Simple Auctions

Éva Tardos, Cornell

Joint work with Vasilis Syrgkanis

Games and Quality of Solutions

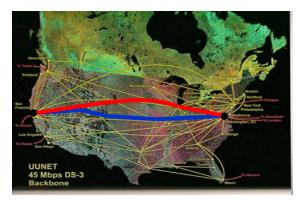
Tragedy of the Commons

 Rational selfish action can lead to outcome bad for everyone

> Question: How to design games that avoid such tragedies

Simple vs Optimal

- Simple practical mechanism, that lead to good outcome.
- optimal outcome is not practical



• Traffic subject to congestion delays Congestion game =cost (delay) depends only on congestion on edges

Simple vs Optimal

- Simple practical mechanism, that lead to good outcome.
- optimal outcome is not practical

Also true in many other applications:

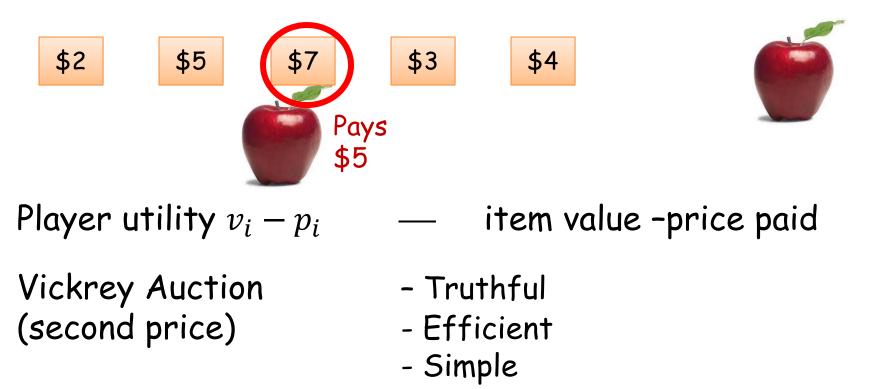
- Need distributed protocol that routers can implement
- Models a distributed process
- e.g. Bandwidth Sharing, Load Balancing,

Games with good Price of Anarchy

- Routing:
- Cars or packets though the Internet
- Bandwidth Sharing:
- routers share limited bandwidth between processes
- Facility Location:
- Decide where to host certain Web applications
- Load Balancing
- Balancing load on servers (e.g. Web servers)
- Network Design:
- Independent service providers building the Internet

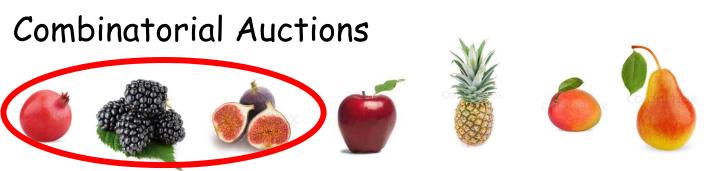
Today Auction "Games"

Basic Auction: single item Vickrey Auction



Extension VCG (truthful and efficient), but not so simple

Vickrey, Clarke, Groves



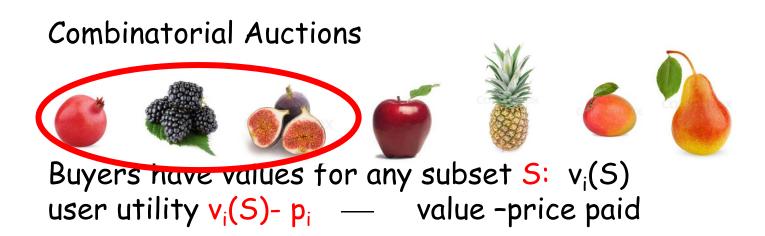
Buyers have values for any subset S: $v_i(S)$ user utility $v_i(S)$ - p_i — value -price paid

Efficient assignment:

 $\max \sum_{i} v_i(S^*{}_i) \\ \text{over partitions } S^*{}_i$

- May be hard to compute
- Needs central coordination

Vickrey, Clarke, Groves



Payment: welfare loss of others

$$p_{i} = \max \Sigma_{j \neq i} v_{j}(S_{j}) - \sum_{j \neq i} v_{j}(S^{*}_{j})$$

Truthful!

- Needs central coordination
- pricing unintuitive

Other games

We will assume quasi-linear utility for money, value outcome x and price p has utility $v_i(x)$ -p for user i.

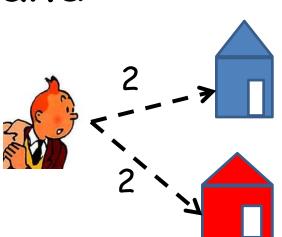
 $x_1 \longrightarrow x_2$ $x_2 \longrightarrow x_3$ $\vdots x_n \longrightarrow$ Shared Channel

Public projects

Bandwidth Sharing

Truthful Auctions and Composition?

 Second Price Auction truthful and simple



Two simultaneous second price auctions? No!

How about sequentially? No!

Auctions as Games

Simpler auction game are better in many settings.

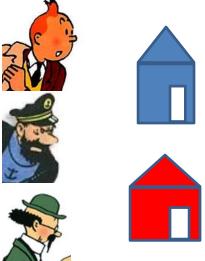
Questions:

- Quality of Outcomes in Auctions Which auctions have low Price of anarchy?
- What if stable solution is not found?
 Is such a bound possible outside of Nash?
- What if other player's values are not known
 Is such a bound possible for a Bayesian game?
- Each player plays in many games How do games interact?

Auctions as Games

- Simultaneous second price? Christodoulou, Kovacs, Schapira ICALP'08 Bhawalkar, Roughgarden SODA'10
- Greedy Algorithm as an Auction Game Lucier, Borodin, SODA'10
- AdAuctions (GSP)
 Paes-Leme, T FOCS'10, Lucier, Paes-Leme + CKKK EC'11
- First price? Hassidim, Kaplan, Mansour, Nisan EC'11
- Sequential auction? Paes Leme, Syrgkanis, T SODA'12, EC'12

Question: how good outcome to expect?

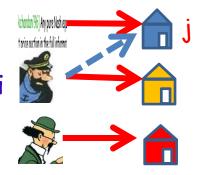


Simultaneous 1st price

Theorem [Bikchandani'96] Any pure Nash equilibrium of simultaneous first price auction in the full information game has optimal welfare OPT= $\max \sum_{i} v_i(S_i^*)$

Proof item j sold at a price p_j

Claim: Prices p_j are market clearing: If i gets some set S_i^* in optimum, i can take each item $j \in S_i^*$ at price p_j



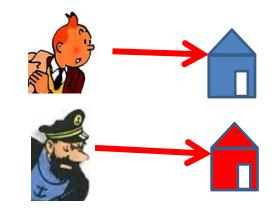
Market clearing prices imply max social welfare:

- Each player could claim her optimal set S_i^* to get value $v_i(S_i^*) \sum_{\{j \in S_i^*\}} p_j$
- Current solution is no worse at the same prices

Simultaneous 1st price

Example:

wants one house at value 1



values one house at value 1

- Unique pure Nash: each his own house
- I Mixed Nash: select house at random and bid in $[0,\frac{1}{2}]$ range. not optimal!
- Why? 🎡 won't know what to bid.

Smooth Auctions

Market clearing prices optimality proof: player i has a bid b'_i , such that if current bids are b_i and item prices are p_j we get

$$\sum_{i} u_i(b'_i, b_{-i}) \ge OPT - \sum_{j} p_j$$

(λ,μ)-smooth auction game

$$\sum_{i} u_i(b'_i, b_{-i}) \ge \lambda OPT - \mu \sum_{j} p_j$$

 b'_i may depend on valuations, b_i , but not on b_{-i}

Price of Anarchy

Theorem Auction game (λ,μ)-smooth game, then the price of anarchy is at most $\lambda/\max(1, \mu)$. Proof At Nash $u_i(b) \ge u_i(b'_i, b_{-i})$ summing and using smoothness $\sum_i u_i(b) \ge \sum_i u_i(b'_i, b_{-i}) \ge \lambda OPT - \mu \sum_i p_i$

- If μ <1, use $u_i(b) \ge v_i(b)$
- Else use total price paid $\leq v_i(b)$

Smooth Games of Roughgarden

(λ,μ)-smooth auction game

$$\sum_{i} u_{i}(b_{i}', b_{-i}) \geq \lambda OPT - \mu \sum_{i} p_{j}$$

 b'_i may depend on valuations, b_i , but not on b_{-i}

Roughgarden (λ , μ)-smooth game

$$\sum_{i} u_{i}(b'_{i}, b_{-i}) \geq \lambda OPT - \mu \sum_{j} v_{i}(b)$$

Connection:

- (λ,μ)-smooth auction ~ (λ,μ +1)-smooth game
- Add mechanism as a player

Examples of smooth auction games

- First price auction (1-1/e,1) smooth
 See also Hassidim et al EC'12, Syrkhanis'12
- All pay auction $(\frac{1}{2},1)$ -smooth
- First price greedy combinatorial auction based on a c-approx algorithm is (1-e^{-c},c)-smooth
 See also Lucier-Borodin SODA'10
- First position auction (GFP) is $(\frac{1}{2},1)$ -smooth Other applications include: public goods, bandwidth allocation (Joharu-Tsitsiklis), etc

Our questions

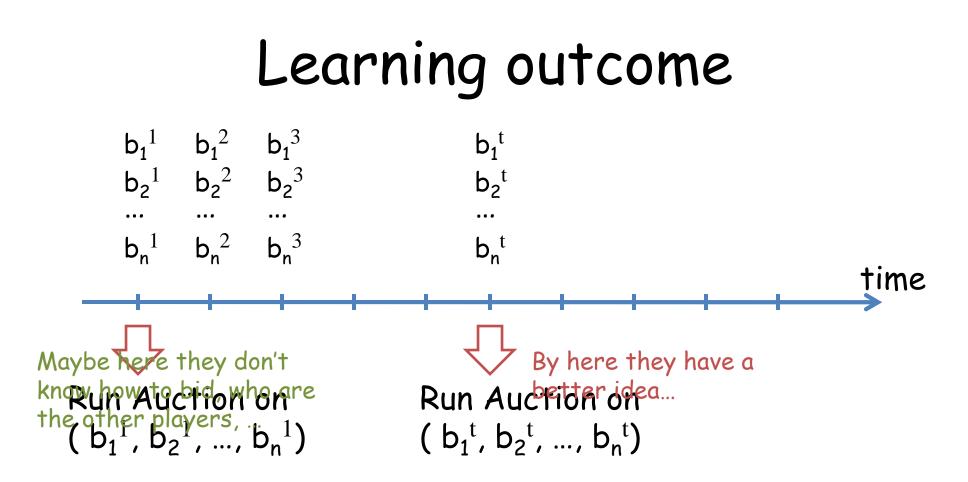
Simple Auctions as Games

- Quality of Outcomes in Auctions
 Which auctions have low Price of anarchy?
- What if stable solution is not found?
 Is such a bound possible outside of Nash?
- What if other player's values are not known
 Is such a bound possible for a Bayesian game?
- Each player plays in many games How do games interact?

Price of Anarchy

Theorem(Syrkganis-T'12) Auction game (λ,μ)-smooth game, then

- Price of anarchy is at most max(1, μ)/ λ
- Also true for correlated equilibria (learning outcomes)



Vanishingly small regret for any fixed strat x: $\sum_{t} u_i(b_i^t, b_{-i}^t) \ge \sum_{t} u_i(x, b_{-i}^t) - o(T)$ including regret about swapping strat y to x

Price of Anarchy

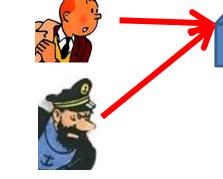
Theorem(Syrkganis-T'12) Auction game (λ,μ) -smooth game, then

- Price of anarchy is at most max(1, μ)/ λ
- Also true for correlated equilibria (learning outcomes)
- Also true for Bayesian game, assuming player types are independent
 - Roughgarden EC12 and Syrkganis'12 using universal smoothness

Bayesian game

Example:

wants house at value 1



values house at value [0,1] uniform

Nash isn't optimal!

Why? 🍻 won't know what to bid?

Bayesian extension theorem

Theorem(Syrkganis-T'12) Auction game (λ,μ)smooth game, then Bayesian Price of anarchy is at most $\lambda/max(1, \mu)$, assuming player types are independent

 Roughgarden EC12 and Syrkganis'12 using universal smoothness

Proof idea: consider random draw w, and take (λ,μ)-smooth deviation for valuations (v_i, w_{-i}) from strategy w_i . $b'_i((v_i, w_{-i}), w_i)$

- Bluffing technique: w_i

Our questions

Simple Auctions as Games

- Quality of Outcomes in Auctions
 Which auctions have low Price of anarchy?
- What if stable solution is not found?
 Is such a bound possible outside of Nash?
- What if other player's values are not known
 Is such a bound possible for a Bayesian game?
- Each player plays in many games How do games interact?

Simultaneous Composition

Multiple mechanisms M_j running independently

- Each one generates
 Outcomes x_{ij} and price p_{ij} for each player I
- Total payment $p_i = \sum_j p_{ij}$
- Value v_i(x_{i1}, x_{i1}, ..., x_{im}): value depends on all outcomes!

Utility: $v_i(x_{i1}, x_{i1}, ..., x_{im}) - \sum_j p_{ij}$

Simultaneous Composition

See

next

Theorem(Syrkganis-T'12) simultaneous mechanisms M_j each (λ,μ)-smooth and players have no complements across mechanisms, then composition is also (λ,μ)-smooth

Corollary: Simultaneous first price auction has price of anarchy of e/(e-1) if player values are fractionally subadditive

- Simultaneous all-pay auction: price anarchy 2
- Mix of first price and all pay, PoA at most 2

Valuations: no complements across mechanisms

Fractionally subadditive: for all y^k and α^k such that $\sum_k \alpha^k y^k \ge x$ implies that $v(x) \le \sum_k v(y^k)$.

Simult. mechanisms M_j outcome: $(x_1, x_2, ..., x_m)$ Fractionally subadditive, if for all x and all y^k and α^k such that $\sum_{\{k:y_j^k = x_j^k\}} \alpha^k \ge 1$ implies that $v(x) \le \sum_k \alpha^k v(y^k)$

no assumption within each mechanism

Valuations: no complements across mechanisms

Valuation XOS across mechanisms if

$$v(x) = \max_{k} \sum_{j} v_{j}^{k}(x_{j})$$

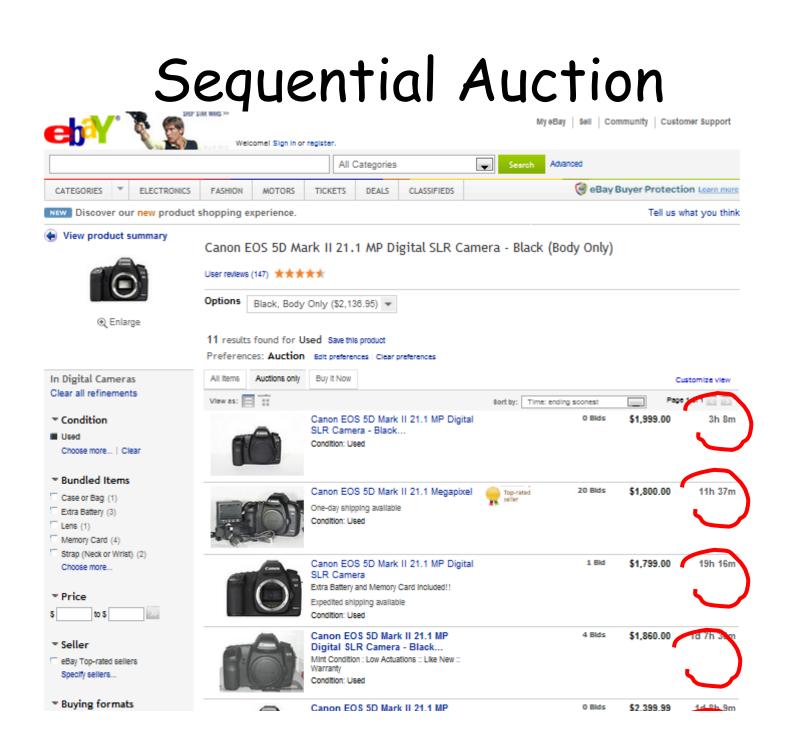
for some valuations v_{j}^{k}

Theorem (Syrgkanis-T'12) XOS = Fractionally subadditive.

- Extending Feige STOC'06

Fractionally Subadditive $\rightarrow XOS$

Theorem monotone valuation with diminishing marginal returns property \Rightarrow can be expressed as XOS by capped marginal valuations:

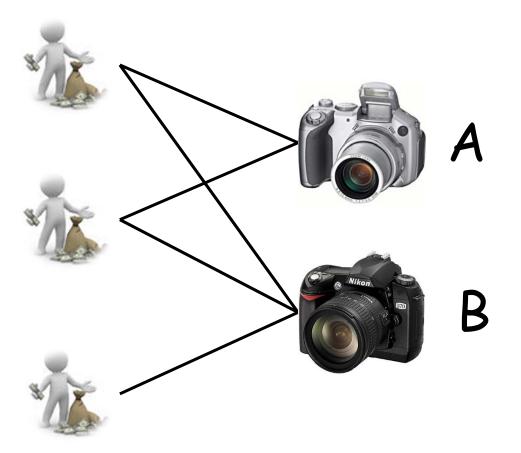


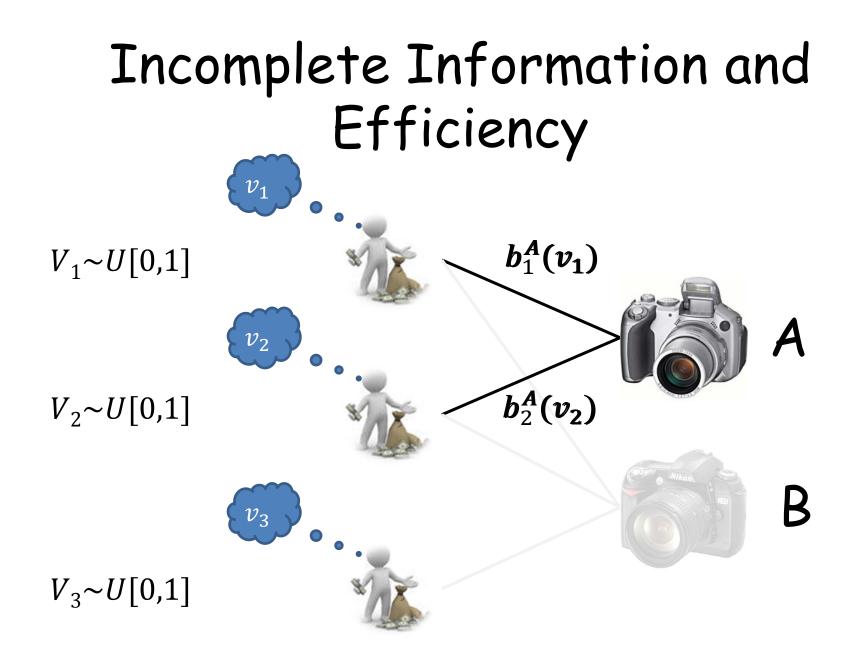
Incomplete Information and Efficiency

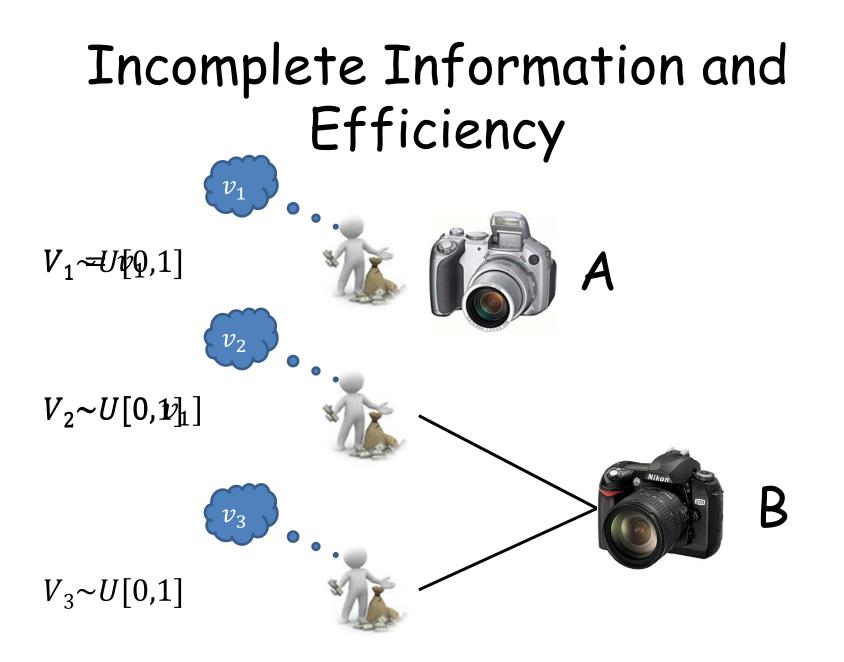
 $V_1 \sim U[0,1]$

 $V_2 \sim U[0,1]$

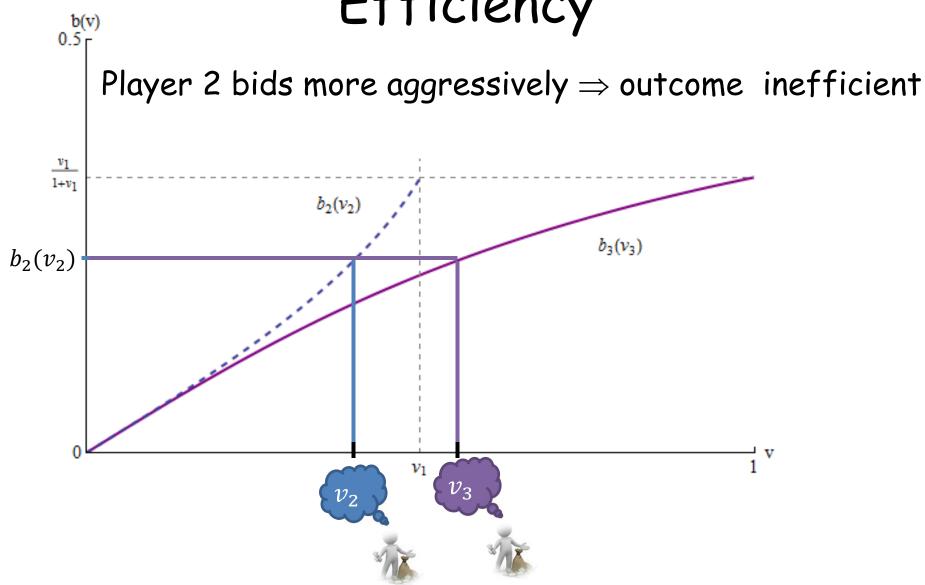
 $V_{3} \sim U[0,1]$

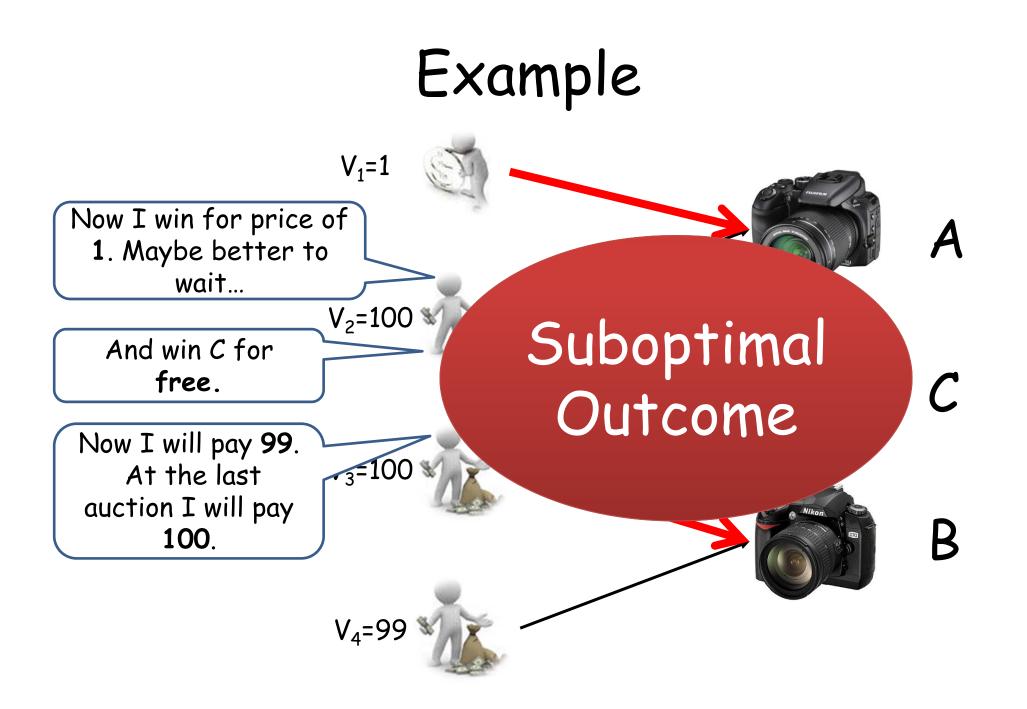






Incomplete Information and Efficiency





Sequential Composition

Theorem (Syrkganis-T'12) sequential mechanisms M_j each (λ,μ)-smooth and player's value comes from best mechanism's outcome $v_i(x) = \max_i v_{ij}(x_{ij})$

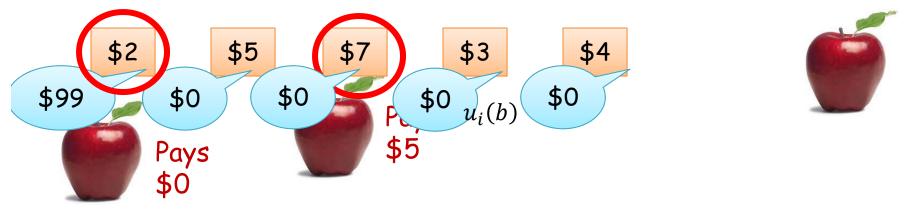
Then composition is ($\lambda,\mu+1$)-smooth

Corollary: Sequential first price auction has price of anarchy of 3.16 if player values comes from best mechanism outcome

- Simultaneous all-pay auction: price anarchy 4
- Mix of first price and all pay, PoA at most 4

Nash equilibria of bidding games

Vickrey Auction - Truthful, efficient, simple (second price)



but has many bad Nash equilibria

Assume bid ≤ value (higher bid is dominated) Theorem: all Nash equilibria efficient: highest value winning

Price of Anarchy

Theorem [Christodoulou, Kovacs, Schapira ICALP'08]

Total value $v(N)=\sum_{i} v_{ij_i}$ at a Nash equilibrium of simultaneous second price auction is at least $\frac{1}{2}$ of optimum OPT= $\max_{M^*} \sum_{i} v_{ij_i^*}$ (assuming $b_{ij} \leq v_{ij} \forall i \& j$).

Extension of smoothness to weakly (λ,μ_1,μ_2) -smooth Implies price of anarchy of $\lambda/(\max(1,\mu_1)+\mu_2)$, assuming no overbidding

Theorem(Syrkganis-T'12) simultaneous mechanisms M_j each (λ,μ_1 , μ_2)-smooth and players have no complements across mechanisms, then composition is also (λ,μ_1,μ_2)-smooth

Simple Auction Games

- Smooth mechanism: natural generalization of market clearing prices
- Many simple games are smooth
- Smooth mechanisms remain smooth when composed (assuming no complements across mechanism)
- Good outcome quality (Nash, Bayesian Nash, learning outcomes)