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Abstract

We propose a new no-regret learning algorithm. When used against an adversary, our algo-

rithm achieves average regret that scales optimally as O
(

1√
T

)
with the number T of rounds.

However, when our algorithm is used by both players of a zero-sum game, their average regret
scales as O

(
lnT
T

)
, guaranteeing a near-linear rate of convergence to the value of the game.

This represents an almost-quadratic improvement on the rate of convergence to the value of
a zero-sum game known to be achievable by any no-regret learning algorithm. Moreover, it
is essentially optimal as we also show a lower bound of Ω

(
1
T

)
for all distributed dynamics,

as long as the players do not know their payoff matrices in the beginning of the dynamics.
(If they did, they could privately compute minimax strategies and play them ad infinitum.)
JEL classification: C72, C73

1. Introduction

Von Neumann’s minimax theorem [24] lies at the origins of the fields of both algorithms
and game theory. Indeed, it was the first example of a static game-theoretic solution concept:
If the players of a zero-sum game arrive at a min-max pair of strategies, then no player
can improve his payoff by unilaterally deviating, resulting in an equilibrium state of the
game. The min-max equilibrium played a central role in von Neumann and Morgenstern’s
foundations of Game Theory [25], and inspired the discovery of the Nash equilibrium [21]
and the foundations of modern economic thought [20].

At the same time, the minimax theorem is tightly connected to the development of
mathematical programming, as linear programming itself reduces to the computation of a
min-max equilibrium, while strong linear programming duality is equivalent to the minimax
theorem. 4 Given the further developments in linear programming in the past century [16, 17],
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we now have efficient algorithms for computing equilibria in zero-sum games, even in very
large ones such as poker [10, 11].

On the other hand, the min-max equilibrium is a static notion of stability, leaving open the
possibility that there are no simple distributed dynamics via which stability comes about.
This turns out not to be the case, as many distributed protocols for this purpose have
been discovered. One of the first protocols suggested for this purpose is ficticious play,
whereby players switch rounds playing the pure strategy that optimizes their payoff against
the historical play of their opponent (viewed as a distribution over strategies). This simple
scheme, suggested by Brown in 1949 [5], was shown to converge to the min-max value of
the game by Robinson [26]. However, its convergence rate has recently been shown to be
exponentially slow in the number of strategies [3]. 5 Such poor convergence guarantees do not
offer much by way of justifying the plausibility of the min-max equilibrium in a distributed
setting, making the following questions rather important: Are there efficient and natural
distributed dynamics converging to min-max equilibrium/value? And what is the optimal
rate of convergence?

The answer to the first question is, by now, very well understood. A typical source of
efficient dynamics converging to min-max equilibria is online optimization. The results here
are very general: If both players of a game use a no-regret learning algorithm to adapt their
strategies to their opponent’s strategies, then the average payoffs of the players converge
to their min-max value, and their average strategies constitute an approximate min-max
equilibrium, with the approximation converging to 0 [6]. In particular, if a no-regret learning
algorithm guarantees average external regret g(T, n, u), as a function of the number T of
rounds, the number n of “experts”, and the magnitude u of the maximum in absolute value
payoff of an expert at each round, we can readily use this algorithm in a game setting to
approximate the min-max value of the game to within an additive O(g(T, n, u)) in T rounds,
where u is now the magnitude of the maximum in absolute value payoff in the game, and n
an upper bound on the players’ strategies.

For instance, if we use the multiplicative weights update algorithm [9, 19], we would

achieve approximation O
(
u
√

logn√
T

)
to the value of the game in T rounds. Given that the

dependence of O(
√

logn√
T

) in the number n of experts and the number T of rounds is optimal

for the regret bound of any no-regret learning algorithm [6], the convergence rate to the
value of the game achieved by the multiplicative weights update algorithm is the optimal
rate that can be achieved by a black-box reduction of a regret bound to a convergence rate
in a zero-sum game.

Nevertheless, a black-box reduction from the learning-with-expert-advice setting to the
game-theoretic setting may be lossy in terms of approximation. Indeed, no-regret bounds
apply even when playing against an adversary; it may be that, when two players of a zero-
sum game update their strategies following a no-regret learning algorithm, faster convergence

5Harris [13] has studied the convergence rate of a continuous-time analog of fictitious play. However,
convergence in the discrete-time setting is difficult to compare to the continuous-time setting.

2



to the min-max value of the game is possible. As concrete evidence of this possibility, take
fictitious play (a.k.a. the “follow-the-leader” algorithm in online optimization): against an
adversary, it may be forced not to converge to zero average regret; but if both players of a
zero-sum game use fictitious play, their average payoffs do converge to the min-max value of
the game, given Robinson’s proof.

Motivated by this observation, we investigate the following: Is there a no-regret learning
algorithm that, when used by both players of a zero-sum game, converges to the min-max

value of the game at a rate faster than O
(

1√
T

)
with the number T of rounds? We answer

this question in the affirmative, by providing a no-regret learning algorithm, called NoRe-

gretEgt, with asymptotically optimal regret behavior of O
(
u·
√

logn√
T

)
, and convergence rate

of O
(
u·logn·(log T+(logn)3/2)

T

)
to the min-max value of a game, where n is an upper bound on

the number of the players’ strategies. In particular,

Theorem 1. Let x1, x2, . . . , xt, . . . be a sequence of randomized strategies over a set of experts
[n] := {1, 2, . . . , n} produced by the NoRegretEgt algorithm under a sequence of payoffs
`1, `2, . . . , `t, . . . ∈ [−u, u]n observed for these experts, where `t is observed after xt is chosen.
Then for all T :

1

T

T∑
t=1

(xt)
T`t ≥ max

i∈[n]

1

T

T∑
t=1

(ei)
T`t −O

(
u ·
√

log n√
T

)
,

where ei is the ith unit basis vector.
Moreover, let x1, x2, . . . , xt, . . . be a sequence of randomized strategies over [n] and y1, y2, . . . ,

yt, . . . a sequence of randomized strategies over [m], and suppose that these sequences are
produced when both players of a zero-sum game (−A,A), A ∈ [−u, u]n×m, use the NoRe-
gretEgt algorithm to update their strategies under observation of the sequence of payoff
vectors (−Ayt)t and (ATxt)t, respectively. Then for all T :∣∣∣∣∣ 1

T

T∑
t=1

(xt)
T(−A)yt − v

∣∣∣∣∣ ≤ O

(
u · log k · (log T + (log k)3/2)

T

)
,

where v is the row player’s value in the game and k = max{m,n}. Moreover, for all T , the

pair
(

1
T

∑T
t=1 xt,

1
T

∑T
t=1 yt

)
is an (additive) O

(
u·log k·(log T+(log k)3/2)

T

)
-approximate min-max

equilibrium of the game.

In addition, our algorithm provides the first (to the best of our knowledge) example of
a strongly-uncoupled distributed protocol converging to the value of a zero-sum game at a
rate faster than O( 1√

T
). Strong-uncoupledness is the property of a distributed game-playing

protocol under which the players can observe the payoff vectors of their own strategies at
every round ( (−Ayt)t and (ATxt)t for the row and column players respectively), but:

• they do not know the payoff tables of the game, or even the number of strategies
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available to the other player; 6

• they can only use private storage to keep track of a constant number of observed
payoff vectors (or cumulative payoff vectors), a constant number of mixed strategies
(or possibly cumulative information thereof), and a constant number of state variables
such as the round number.

The precise details of our model and comparison to other models in the literature are given
in Section 2.2. Notice that, without the assumption of strong-uncoupledness, there can be
trivial solutions to the problem. Indeed, if the payoff tables of the game were known to
the players in advance, they could just privately compute their min-max strategies and use
these strategies ad infinitum. If the payoff tables were unknown but the type of information
the players could privately store were unconstrained, they could engage in a protocol for
recovering their payoff tables, followed by the computation of their min-max strategies. Even
if they also didn’t know each other’s number of strategies, they could interleave phases in
which they either recover pieces of their payoff matrices, or they compute min-max solutions
of recovered square submatrices of the game until convergence to an exact equilibrium is
detected. Arguably, such protocols are of limited interest in highly distributed game-playing
settings.

And what could be the optimal convergence rate of distributed protocols for zero-sum
games? We show that, insofar as convergence of the average payoffs of the players to their
values in the game is concerned, the convergence rate achieved by our protocol is essentially
optimal. Namely, we show the following: 7

Theorem 2. Assuming that the players of a zero-sum game (−A,A) do not know their
payoff matrices at the beginning of time, any distributed protocol producing sequences of
strategies (xt)t and (yt)t such that the average payoffs of the players, 1

T

∑
t(xt)

T(−A)yt and
1
T

∑
t(xt)

TAyt, converge to their corresponding value in the game, cannot do so at a con-
vergence rate faster than an additive Ω(1/T ) in the number T of rounds of the protocol.
The same is true of any distributed protocol whose average strategies converge to a min-max
equilibrium.

Future work. Our no-regret learning algorithm provides, to the best of our knowledge, the
first example of a strongly-uncoupled distributed protocol converging to the min-max equi-
librium of a zero-sum game at a rate faster than 1√

T
, and in fact at a nearly-optimal rate. The

strong-uncoupledness arguably adds to the naturalness of our protocol, since no funny bit
arithmetic, private computation of the min-max equilibrium, or anything of the similar flavor

6In view of this requirement, our notion of uncoupled dynamics is stronger than that of Hart and Mas-
Colell [15]. In particular, we do not allow a player to initially have full knowledge of his utility function,
since knowledge of one’s own utility function in a zero-sum game reveals the entire game matrix.

7In this paper, we are concerned with bounds on average regret and the corresponding convergence of
average strategy profiles. If we are concerned only with how close the final strategy profile is to an equilibrium,
then we suspect that similar techniques to those of our paper can be used to devise a distributed protocol
with even faster convergence of final strategy profiles, possibly by using techniques in [10].
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is allowed. Moreover, the strategies that the players use along the course of the dynamics are
fairly natural in that they constitute smoothened best responses to their opponent’s previous
strategies. Nevertheless, there is a certain degree of careful choreography and interleaving of
these strategies, turning our protocol less simple than, say, the multiplicative weights update
algorithm. So we view our contribution mostly as an existence proof, leaving the following
as an interesting future research direction: Is there a simple variant of the multiplicative
weights update method or Zinkevich’s algorithm [27] which, when used by the players of a
zero-sum game, converges to the min-max equilibrium of the game at the optimal rate of
1
T

? Another direction worth exploring is to shift away from our model, which allows players
to play mixed strategies xt and yt and observe whole payoff vectors (−A)yt and ATxt in
every round, and prove analogous results for the more restrictive multi-armed bandit setting
that only allows players to play pure strategies and observe realized payoffs in every round.
Finally, it would be interesting to prove formal lower bounds on the convergence rate of
standard learning algorithms, such as the multiplicative weights update method, when both
players use the same algorithm.

Structure. In Section 2 we provide more detail on the settings of online learning from ex-
pert advice and uncoupled dynamics in games, and proceed to the outline of our approach.
Sections 3 through 5 present the high-level proof of Theorem 1, while Sections 6 through 9
present the technical details of the proof. Finally, Section 10 presents the proof of Theorem 2.

2. Online Learning, Game Dynamics, and Outline of the Approach

2.1. Learning from Expert Advice.

In the setting of learning from expert advice, a learner has a set [n] := {1, . . . , n} of
experts to choose from at each round t = 1, 2, . . .. After committing to a distribution
xt ∈ ∆n over the experts,8 a vector `t ∈ [−u, u]n is revealed to the learner with the payoff
achieved by each expert at round t. He can then update his distribution over the experts for
the next round, and so forth. The goal of the learner is to minimize his average (external)
regret, measured by the following quantity at round T :

max
i

1

T

T∑
t=1

(ei)
T`t −

1

T

T∑
t=1

(xt)
T`t,

where ei is the standard unit vector along dimension i (representing the deterministic strategy
of choosing the i-th expert). A learning algorithm is called no-regret if the average regret
can be bounded by a function g(T ) which is o(T ), where the function g(T ) may depend on
the number of experts n and the maximum absolute payoff u.9

8We use the notation ∆n to represent the n-dimensional simplex.
9We are concerned only with minimizing external regret, as opposed to the Foster and Vohra’s stronger

concept of internal regret [7]. While Blum and Mansour [4] have a reduction from external regret minimizing
algorithms to internal regret minimizing algorithms, it is unclear whether their transformation preserves the
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The multiplicative weights update (MWU) algorithm is a simple no-regret learning algo-
rithm, whereby the learner maintains a “weight” for every expert, continually updates this
weight by a multiplicative factor based on how the expert would have performed in the most
recent round, and chooses a distribution proportionally to this weight vector at each round.
The performance of the algorithm is characterized by the following:

Lemma 3 ([6]). Let (xt)t be the sequence of distributions generated by the MWU algorithm
in response to the sequence of payoff vectors (`t)t for the n experts, where `t ∈ [−u, u]n. Then
for all T :

max
i∈[n]

1

T

T∑
t=1

(ei)
T`t −

1

T

T∑
t=1

(xt)
T`t ≤

2u√
2− 1

√
lnn

T
.

Remark 4. In this paper we do not consider online learning settings where the learner is
restricted to use a single expert in every round, i.e. to use a deterministic xt for every
t. Instead we assume that the learner can use any xt ∈ ∆n, realizing a payoff of (xt)

T`t.
Moreover, we assume that the learner can observe the whole payoff vector `t, as opposed to
his realized payoff only. In particular, our model is weaker than the partial monitoring and
the multi-armed bandit models. See [6] for more discussion on these models.

2.2. Strongly-Uncoupled Dynamics in Zero-Sum Games.

A zero-sum game is described by a pair (−A,A), where A is an n×m payoff matrix, whose
rows are indexed by the pure strategies of the “row” player and whose columns are indexed
by the pure strategies of the “column” player. If the row player chooses a randomized, or
mixed, strategy x ∈ ∆n and the column player a mixed strategy y ∈ ∆m, then the row player
receives payoff of −xTAy, and the column player payoff of xTAy. (Thus, the row player aims
to minimize the quantity xTAy, while the column player aims to maximize this quantity.)10

A min-max or Nash equilibrium of the game is then a pair of strategies (x, y) such that, for
all x′ ∈ ∆n, xTAy ≤ (x′)TAy, and for all y′ ∈ ∆m, xTAy ≥ xTAy′. If these conditions are
satisfied to within an additive ε, (x, y) is called an ε-approximate equilibrium. Von Neumann
showed that a min-max equilibrium exists in any zero-sum game; moreover, that there exists
a value v such that, for all Nash equilibria (x, y), xTAy = v [24]. Value v is called the value
of the column player in the game. Similarly, −v is called the value of the row player in the
game.

Now let us consider the repeated interaction between two players of a zero-sum game in
the framework of Robinson [26] and the basic framework of Freund and Schapire [9]. In each
round t = 1, 2, . . ., the players of the game (privately) choose mixed strategies xt and yt.
After the players commit to these strategies, they realize payoffs of (xt)

T(−A)yt and (xt)
TAyt

respectively, and observe payoff vectors −Ayt and ATxt respectively, which correspond to
the payoffs achieved by each of their pure strategies against the strategy of their opponent.

fast convergence when both players use the same learning algorithm in our setting.
10Throughout this paper, if we refer to “payoff” without specifying a player, we are referring to the xTAy,

the value received by the column player.
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We are interested in strongly-uncoupled efficient dynamics, placing the following additional
restrictions on the capability of players:

1. Unknown Game Matrix. We assume that the game matrix A ∈ Rn×m is unknown
to both players. In particular, the row player does not know the number of pure
strategies (m) available to the column player, and vice versa. (We obviously assume
that the row and column players know the numbers n and m respectively of their own
pure strategies.) To avoid degenerate cases in our analysis, we will assume that both
n and m are at least 2.

2. Limited Private Storage. The information that a player is allowed to record between
rounds of the game is limited to a constant number of payoff vectors observed in the
past, or cumulative information thereof, a constant number of mixed strategies played
in the past, or cumulative information thereof, and a constant number of registers
recording the round number and other state variables of the protocol. This is intended
to preclude a player from recording the whole history of play and the whole history of
observed payoff vectors, or using funny bit arithmetic that would allow him to keep all
the history of play in one huge real number, etc.

This restriction is quite natural and satisfied, e.g., by the multiplicative weights proto-
col, where the learner only needs to keep record of the previously used mixed strategy
and update using the newly observed payoff vector at every round.

As explained in the introduction, this restriction is important in disallowing obvious
protocols where the players attempt to reconstruct the entire game matrix A to pri-
vately compute a min-max equilibrium and then use it ad infinitum.

3. Efficient Computations. In each round, a player can do polynomial-time computa-
tion on his private information and the observed payoff vector.11

We note that our protocols do not abuse the framework to “cheat” (for example, by
abusing numerical precision to encode long messages in lower-order bits and locally recon-
structing the entire game matrix). We do not attempt to formally define what it means for
a learning algorithm to “cheat” in this manner, and we do not claim to have an information-
theoretic proof that such cheating is impossible in the computational model proposed above.
Rather, we point out that our computational assumptions are standard and are shared by
other learning algorithms, and that, to the best of our knowledge, there is no obvious natural
cheating algorithm in our setting.

We remark that we will only place the above computational restrictions to honest players.
In the case of a dishonest player (an adversary who deviates from the prescribed protocol in

11We will not address issues of numerical precision in this paper, assuming that the players can do unit-time
real arithmetic such as basic real operations, exponentiation, etc, as typically assumed in classical learning
protocols such as multiplicative weights updates.
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an attempt to gain additional payoff, for instance), we will make no assumptions about that
player’s computational abilities, private storage, or private information.

Finally, for our convenience, we make the following assumptions for all the game dynamics
described in this paper. We assume that both players know a value |A|max, which is an
upper bound on the largest absolute-value payoff in the matrix A. (We assume that both
the row and column player know the same value for |A|max.) This assumption is similar to a
typical bounded-payoff assumption made in the MWU protocol.12 We assume without loss
of generality that the players know the identity of the “row” player and of the “column”
player. We make this assumption to allow for protocols that are asymmetric in the order of
moves of the players.13

Comparison with dynamics in the literature: We have already explained that our
model of strongly-uncoupled dynamics is stronger than the Hart and Mas-Colell model of
uncoupled dynamics in that we do not allow players to initially have full knowledge of their
own utility functions [15]. On the other hand, our model bears a strong similarity to the
unknown payoff model of Hart and Mas-Colell [14], the radically uncoupled dynamics of
Foster and Young [8], and the completely uncoupled dynamics of Babichenko [2]. These
papers propose dynamics to be used by honest parties for convergence to different kinds of
equilibria than our paper (pure Nash equilibria, Nash equilibria or correlated equilibria in
general games). Despite our different goals, compared to those models our model is

• identical in the restriction that the players initially only know their own strategy set
and are oblivious to the numbers of strategies of their opponents and (hence) also their
own and their opponents’ payoff functions;

• weaker in that these dynamics only allow players to use pure strategies in every round
of the interaction and only observe their own realized payoffs, while we allow players
to use mixed strategies and observe the payoff that each of their pure strategies would
have achieved against the mixed strategies of their opponents (à la Robinson [26] and
the basic framework of Freund and Schapire [9]); 14 and

• stronger in that we assume more restrictive private storage, limiting the players to
remembering only a constant number of past played strategies and observed payoff

12We suspect that we can modify our protocol to work in the case where no upper bound is known, by
repeatedly guessing values for |A|max and thereby slowing the protocol’s convergence rate down by a factor
logarithmic in |A|max.

13We can always augment our protocols with initial rounds of interaction where both players select strate-
gies at random, or according to a simple no-regret protocol such as the MWU algorithm. As soon as a round
occurs with a non-zero payoff, the player who received the positive payoff designates himself the “row” player
while the opponent designates himself the “column” player. Barring degenerate cases where the payoffs are
always 0, we can show that this procedure is expected to terminate very quickly.

14In fact, most of the Hart and Mas-Colell paper [14] uses a model that allows players to observe non-
realized payoffs as in our model, but they provide a modification of their protocol in page 1142 extending
their result to the more stringent model.
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vectors or cumulative information of strategies and payoffs; indeed, in our two-player
zero-sum setting, players with unlimited storage capability (or able to do funny bit-
arithmetic storing the whole history of play in a single register) could engage in a
protocol that reconstructs sub-matrices of the game until a min-max equilibrium can be
identified, resulting into trivial dynamics; our storage and computational constraints,
along with the possibility that the game matrix may be highly skewed (say if m� n)
seem to rule out most of these trivial protocols.

We note that our storage constraints are different than the “finite memory” model of
Babichenko [2], which assumes that a player can select strategies using a finite automa-
ton that changes states depending on the played strategy and received payoff. We do not
assume such a stringent model of computation because we want to allow players to play
mixed strategies and do real operations with received payoffs (such as the exponentiation
needed for implementing the multiplicative-weights-update algorithm). But we only allow
players to store a constant number of played strategies and observed payoffs or cumula-
tive information thereof, in accordance with the informal definition of “simplicity” given by
Foster and Young [8].

Dynamics from Experts: A typical source of strongly-uncoupled dynamics converging
to min-max equilibria in zero-sum games are no-regret algorithms for learning from expert
advice. For example, if both players of a zero-sum game use the Multiplicative-Weights-
Update algorithm to choose strategies in repeated interaction, 15 we can bound their average
payoffs in terms of the value of the game as follows:

Proposition 5 ([9]). Let (xt)t and (yt)t be sequences of mixed strategies chosen by the
row and column players respectively of a zero sum game (−A,A)n×m when using the MWU
algorithm under observation of the sequence of payoff vectors (−Ayt)t and (ATxt)t. Then

v − C
√

lnm

T
≤ 1

T

T∑
t=1

(xt)
TAyt ≤ v + C

√
lnn

T
,

where v is the value of the column player in the game and C = 2u√
2−1

. Moreover, for all T ,

( 1
T

∑
t xt,

1
T

∑
t yt) is a

(
2u√
2−1

√
lnm+

√
lnn√

T

)
-approximate Nash equilibrium of the game.

2.3. Outline of our Approach.

Our no-regret learning algorithm is based on a gradient-descent algorithm for comput-
ing a Nash equilibrium in a zero-sum game. Our construction for converting this algorithm
into a no-regret protocol has several stages as outlined below. We start with the central-
ized algorithm for computing Nash equilibria in zero-sum games, disentangle the algorithm
into strongly-uncoupled game-dynamics, and proceed to make them robust to adversaries,
obtaining our general purpose no-regret algorithm.

15We have already argued that implementing MWU fits the constraints of strongly-uncoupled dynamics.
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To provide a unified description of the game-dynamics and no-regret learning algorithms
in this paper, we describe both in terms of the interaction of two players. Indeed, we can
reduce the learning-with-expert advice setting to the setting where a row (or a column)
player interacts with an adversarial (also called dishonest) column (respectively row) player
in a zero-sum game, viewing the payoff vectors that the row (resp. column) player receives
at every round as new columns (rows) of the payoff matrix of the game. The regret of the
row (respectively column) player is the difference between the round-average payoff that he
received and the best payoff he could have received against the round-average strategy of
the adversary.

In more detail, our approach is the following:

• In Section 3, we present Nesterov’s Excessive Gap Techinique (EGT) algorithm, a
gradient-based algorithm for computing an ε-approximate Nash equilibrium in O(1

ε
)

number of rounds.

• In Section 4, we “decouple” the EGT algorithm to construct the HonestEgtDynam-
ics protocol. This protocol has the property that, if both players honestly follow their
instructions, their actions will exactly simulate the EGT algorithm.

• In Section 5.2, we modify the HonestEgtDynamics protocol to have the property
that, in an honest execution, both players’ average payoffs are nearly best-possible
against the opponent’s historical average strategy.

• In Section 5.3, we construct BoundedEgtDynamics(b), a no-regret protocol. The
input b is a presumed upper bound on a game parameter (unknown by the players)
which dictates the convergence rate of the Egt algorithm. If b indeed upper bounds the
unknown parameter and if both players are honest, then an execution of this protocol
will be the same as an honest execution of HonestEgtDynamics, and the player
will detect low regret. If the player measures higher regret than expected, he detects a
“failure”, which may correspond to either b not upper bounding the game parameter,
or the other player significantly deviating from the protocol. However, the player is
unable to distinguish what went wrong, and this creates important challenges in using
this protocol as a building block for our no-regret protocol.

• In Section 5.4, we construct NoRegretEgt, a no-regret protocol. In this protocol,
the players repeatedly guess values of b and run BoundedEgtDynamics(b) until a
player detects a failure. Every time the players need to guess a new value of b, they
interlace a large number of rounds of the MWU algorithm. Note that detecting a
deviating player here can be very difficult, if not impossible, given that neither player
knows the details of the game (payoff matrix and dimensions) which come into the right
value of b to guarantee convergence. While we cannot always detect deviations, we can
still manage to obtain no-regret guarantees, via a careful design of the dynamics. The
NoRegretEgt protocol has the regret guarantees of Theorem 1.
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• Finally, Sections 6 through 9 contain the precise technical details of the aforementioned
steps, which are postponed to the end of the paper to help the flow of the high-level
description of our construction.

3. Nesterov’s Minimization Scheme

In this section, we introduce Nesterov’s Excessive Gap Technique (EGT) algorithm and
state the necessary convergence result. The EGT algorithm is a gradient-descent approach
for approximating the minimum of a convex function. In this paper, we apply the EGT
algorithm to appropriate best-response functions of a zero-sum game. For a more detailed
description of this algorithm, see Section 6. Let us define the functions f : ∆n → R and
φ : ∆m → R by

f(x) = max
v∈∆m

xTAv and φ(y) = min
u∈∆n

uTAy.

In the above definitions, f(x) is the payoff arising from the column player’s best response
to x ∈ ∆n, while φ(y) is the payoff arising from the row player’s best response to y ∈ ∆m.
Note that f(x) ≥ φ(y) for all x and y, and that f(x) − φ(y) ≤ ε implies that (x, y) is an
ε-approximate Nash equilibrium.

Nesterov’s algorithm constructs sequences of points x1, x2, . . . and y1, y2, . . . such that
f(xk) − φ(yk) becomes small, and therefore (xk, yk) becomes an approximate Nash equilib-
rium. In the EGT scheme, we will approximate f and φ by smooth functions, and then
simulate a gradient-based optimization algorithm on these smooth approximations. This
approach for minimization of non-smooth functions was introduced by Nesterov in [23], and
was further developed in [22]. Nesterov’s excessive gap technique (EGT) is a gradient algo-
rithm based on this idea. The EGT algorithm from [22] in the context of zero-sum games
(see [11], [12]) is presented in its entirety in Section 6.

The main result concerning this algorithm is the following theorem from [22]:

Theorem 6. The xk and yk generated by the EGT algorithm satisfy

f(xk)− φ(yk) ≤ 4||A||n,m
k + 1

√
DnDm

σnσm
,

where Dn, Dm, σn and σm are parameters which depend on the choice of norm and prox
function used for smoothing f and φ.

In our application of the above theorem, we will have ||A||n,m = |A|max and DnDm

σnσm
=

lnn lnm. Our first goal is to construct a protocol such that, if both players follow the
protocol, their moves simulate the EGT algorithm.

4. Honest Game Dynamics

In this section we use game dynamics to simulate the EGT algorithm, by “decoupling”
the operations of the algorithm, obtaining the HonestEgtDynamics protocol. Basically,
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the players help each other perform computations necessary in the EGT algorithm by playing
appropriate strategies at appropriate times. In this section, we assume that both players are
“honest,” meaning that they do not deviate from their prescribed protocols.

We recall that when the row and column players play x and y respectively, the row player
observes −Ay and the column player observes xTA. This enables the row and column players
to solve minimization problems involving Ay and xTA, respectively. The HonestEgtDy-
namics protocol is a direct decoupling of the EGT algorithm.

We illustrate this decoupling idea by an example. The EGT algorithm requires solving
the following optimization problem:

x̆ := arg max
x∈∆n

(−xTAyk − µkndn(x)),

where dn(·) is a function, µkn is a constant known by the row player, and yk is a strategy known
by the column player. We can implement this maximization distributedly by instructing the
row player to play xk (a strategy computed earlier) and the column player to play yk. The
row player observes the loss vector −Ayk, and he can then use local computation to compute
x̆.

The HonestEgtDynamics protocol decouples the EGT algorithm exploiting this idea.
We present the entire protocol in Section 7. In that section, we also prove that the average
payoffs of this protocol converge to the Nash equilibrium value with rate O( log T

T
).16

5. No-Regret Game Dynamics

We use the HonestEgtDynamics protocol as a starting block to design a no-regret
protocol.

5.1. The No-Regret Property in Game Dynamics.

We restate the no-regret property from Section 2.1 in the context of repeated zero-sum
player interactions and define the honest no-regret property, a restriction of the no-regret
property to the case where neither player is allowed to deviate from a prescribed protocol.

Definition 7. Fix a zero-sum game (−A,A)n×m and a distributed protocol, specifying di-
rections for the strategy that each player should choose at every time step given his observed
payoff vectors. We call the protocol honest no-regret if it satisfies the following property:
For all δ > 0, there exists a T such that for all T ′ > T and infinite sequences of strate-
gies (x1, x2, . . .) and (y1, y2, . . .) resulting when the row and column players both follow the

16The proof of this convergence is not necessary for the remainder of the paper, since our later protocols
will be simpler to analyze directly. We only provide it for completeness.
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protocol:

1

T ′

T ′∑
t=1

(−xT
t Ayt) ≥ max

i∈[n]

1

T ′

T ′∑
t=1

−(ei)
TAyt − δ (1)

1

T ′

T ′∑
t=1

(xT
t Ayt) ≥ max

i∈[m]

1

T ′

T ′∑
t=1

xT
t Aei − δ. (2)

We call the protocol no-regret for the column player if it satisfies the following property:
For all δ > 0, there exists a T such that for all T ′ > T and infinite sequences of moves
(x1, x2, . . .) and (y1, y2, . . .) resulting when the column player follows the protocol and the row
player behaves arbitrarily, (2) is satisfied. We define similarly what it means for a protocol
to be no-regret for the row player. We say that a protocol is no-regret if it is no-regret for
both players.

The no-regret properties state that by following the protocol, a player’s payoffs will not
be significantly worse than the payoff that any single deterministic strategy would have
achieved against the opponent’s sequence of strategies.

We already argued that the average payoffs in the HonestEgtDynamics converge
to the value of the game. However, this is not tantamount to the protocol being honest
no-regret.17 To exemplify what goes wrong in our setting, in Lines 18-19 of the protocol (Al-
gorithm 2), the column player plays the strategy obtained by solving the following program,
given the observed payoff vector x̂TA induced by the strategy x̂ of the other player.

ŷ := arg max
y

(x̂TAy − µkmdm(y)).

It is possible that the vector ŷ computed above differs significantly from an equilibrium
strategy y∗ of the column player, even if the row player has converged to an equilibrium
strategy x̂ = x∗. For example, suppose that x̂ = x∗, where x∗ is an equilibrium strategy
for the row player, and suppose that y∗ is an equilibrium strategy for the column player
that involves mixing between two pure strategies in a 99%-1% ratio. We know that any
combination of the two pure strategies supported by y∗ will be a “best response” to x∗.
Therefore, the minimizer of the above expression may involve mixing in, for example, a
50%-50% ratio of these strategies (given the canonization term −µkmdm(y) in the objective
function). Since ŷ differs significantly from y∗, there might be some best response x′ to ŷ
which performs significantly better than x∗ performs against ŷ, and thus the protocol may
end up not being honest no-regret for the row player. A similar argument shows that the
protocol is not necessarily honest no-regret for the column player.

17For an easy example of why these two are not equivalent, consider the rock-paper-scissors game. Let the
row player continuously play the uniform strategy over rock, paper, and scissors, and let the column player
continuously play rock. The average payoff of the players is 0, which is the value of the game, but the row
player always has average regret bounded away from 0.
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5.2. “Honest No-Regret” Protocols.

We perform a simple modification to the HonestEgtDynamics protocol to make it
honest no-regret. The idea is for the players to only ever play strategies which are very
close to the strategies xk and yk maintained by the EGT algorithm at round k, which—by
Theorem 6—constitute an approximate Nash equilibrium with the approximation going to
0 with k. Thus, for example, instead of playing ŷ in Line 19 of HonestEgtDynamics, the
column player will play (1− δk)yk + δkŷ, where δk is a very small fraction (say, δk = 1

(k+1)2
).

Since the row player has previously observed Ayk, and since δk is known to both players,
the row player can compute the value of Aŷ. Furthermore, we note that the payoff of the
best response to (1 − δk)yk + δkŷ is within 2|A|maxδk of the payoff of the best response to
yk. Hence, the extra regret introduced by the mixture goes down with the number of rounds
k. Indeed, the honest no-regret property resulting from this modification follows from this
observation and the fact that xk and yk converge to a Nash equilibrium in the EGT algorithm
(Theorem 6). (We do not give an explicit description of the modified HonestEgtDynamics
and the proof of its honest no-regret property, as we incorporate this modification to further
modifications that follow.)

5.3. Presumed Bound on
√

lnn lnm.

We now begin work towards designing a no-regret protocol. Recall from Theorem 6 that
the convergence rate of the EGT algorithm, and thus the rate of decrease of the average
regret of the protocol from Section 5.2, depends on the value of

√
lnn lnm. However, without

knowing the dimensions of the game (i.e. without knowledge of
√

lnn lnm), the players are
incapable of measuring if their regret is decreasing as it should be, were they playing against
an honest opponent. And if they have no ability to detect dishonest behavior and counteract,
they could potentially be tricked by an adversary and incur high regret. In an effort to make
our dynamics robust to adversaries and obtain the desired no-regret property, we design in
this section a protocol, BoundedEgtDynamics(b), which takes a presumed upper bound
b on

√
lnn lnm as an input. This protocol will be our building block towards obtaining a

no-regret protocol in the next section.
The idea for BoundedEgtDynamics(b) is straightforward: since a presumed upper

bound b on
√

lnn lnm is decided, the players can compute an upper bound on how much
their regret ought to be in each round of the Section 5.2 protocol, assuming that b was a
correct bound. If a player’s regret in a round is ever greater than this computed upper
bound, the player can conclude that either b <

√
lnn lnm, or that the opponent has not

honestly followed the protocol. In the BoundedEgtDynamics protocol, a participant can
detect two different types of failures, “YIELD” and “QUIT,” described below. Both of these
failures are internal state updates to a player’s private computations and are not directly
communicated to the other player. However, by the construction of our protocol, whenever
one player detects a failure the other player will have the information necessary to detect the
failure as well. The distinction between the types of detectable violations will be important
in Section 5.4.
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• YIELD(s)- A YIELD failure means that a violation of a convergence guarantee has been
detected. (In an honest execution, this will be due to b being smaller than

√
lnn lnm.)

Our protocol can be designed so that, whenever one player detects a YIELD failure,
the other player detects the same YIELD failure. A YIELD failure has an associated
value s, which is the smallest “presumed upper bound on

√
lnn lnm” which, had s

been given as the input to BoundedEgtDynamics instead of b, the failure would
not have been declared.18

• QUIT- A QUIT failure occurs when the opponent has been caught cheating. For
example, a QUIT failure occurs if the row player is supposed to play the same strategy
twice in a row but the column player observes different loss vectors. Unlike a YIELD
failure, which could be due to the presumed upper bound being incorrect, a QUIT
failure is a definitive proof that the opponent has deviated from the protocol.

For the moment, we can imagine a player switching to the MWU algorithm if he ever
detects a failure. Clearly, this is not the right thing to do as a failure is not always due to a
dishonest opponent, so this will jeopardize the fast convergence in the case of honest players.
To avoid this, we will specify the appropriate behavior more precisely in Section 5.4.

We explicitly state and analyze the BoundedEgtDynamics(b) protocol in detail in
Section 8. The main lemma that we show is the following regret bound:

Lemma 8. Let (x1, x2, . . .) and (y1, y2, . . .) be sequences of strategies played by the row and
column players respectively, where the column player used the BoundedEgtDynamics(b)
protocol to determine his moves at each step. (The row player may or may not have followed
the protocol.) If, after the first T rounds, the column player has not yet detected a YIELD
or QUIT failure, then

max
i∈[m]

1

T

T∑
t=1

xT
t Aei ≤

1

T

T∑
t=1

xT
t Ayt +

37|A|max
T

+
20|A|maxb ln (T + 2)

T
.

The analogous result holds for the row player.

Note that the value of b does not affect the strategies played in an execution of the
BoundedEgtDynamics(b) protocol where both players are honest, as long as b >

√
lnn lnm.

In this case, no failures will ever be detected.

5.4. The NoRegretEGT Protocol.

In this section, we design our final no-regret protocol, NoRegretEgt. The idea is to
use the BoundedEgtDynamics(b) protocol with successively larger values of b, which we
will guess as upper bounds on

√
lnn lnm. Notice that if we ever have a QUIT failure in the

BoundedEgtDynamics protocol, the failure is a definitive proof that one of the players

18The returned value s will not be important in this section, but will be used in Section 5.4.
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is dishonest. In this case, we instruct the player detecting the failure to simply perform the
MWU algorithm forever, obtaining low regret.

The main difficulty is how to deal with the YIELD failures. The naive approach of running
the BoundedEgtDynamics algorithm and doubling the value of b at every YIELD failure
is not sufficient; intuitively, because this approach is not taking extra care to account for the
possibility that either the guess on b is too low, or that the opponent is dishonest in a way
preventing the dynamics from converging. Our solution is this: every time we would double
the value of b, we first perform a number of rounds of the multiplicative weights update
method for a carefully chosen period length. In particular, we ensure that b is never greater
than 4

√
T (for reasons which become clear in the analysis).

Now we have the following: If both players are honest, then after finitely many YIELD
failures (at most blog2 (2

√
lnn lnm)c), b becomes larger than

√
lnn lnm. From that point on,

we observe a failure-free run of the BoundedEgtDynamics protocol. Since this execution
is failure-free, we argue that after the original finite prefix of rounds the regret can be bounded
by Lemma 8. The crucial observation is that, if one of the players is dishonest and repeatedly
causes YIELD failures of the BoundedEgtDynamics protocol, then the number of rounds
of the MWU algorithm will be overwhelmingly larger than the number of rounds of the
BoundedEgtDynamics (given our careful choice of the MWU period lengths), and the
no-regret guarantee will follow from the MWU algorithm’s no-regret guarantees.

We present the NoRegretEgt protocol in detail in Section 9. The key results are the
following two theorems, proved in Section 9. Together they imply Theorem 1.

Theorem 9. If the column player follows the NoRegretEgt protocol, his average regret

over the first T rounds is at most O
(
|A|max

√
lnm√

T

)
, regardless of the row player’s actions.

Similarly, if the row player follows the NoRegretEgt protocol, his average regret over the

first T rounds is at most O
(
|A|max

√
lnn√

T

)
, regardless of the column player’s actions.

Theorem 10. If both players honestly follow the NoRegretEgt protocol, then the column
player’s average regret over the first T rounds is at most

O

(
|A|max

√
lnn lnm lnT

T
+
|A|max(lnm)3/2 lnn

T

)

and the row player’s average regret over the first T rounds is at most

O

(
|A|max

√
lnn lnm lnT

T
+
|A|max(lnn)3/2 lnm

T

)
.

6. Detailed Description of Nesterov’s EGT Algorithm

In this section, we explain the ideas behind the Excessive Gap Technique (EGT) algorithm
and we show how this algorithm can be used to compute approximate Nash equilibria in two-
player zero-sum games. Before we discuss the algorithm itself, we introduce some necessary
background terminology.
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6.1. Choice of Norm.

When we perform Nesterov’s algorithm, we will use norms || · ||n and || · ||m on the spaces
∆n and ∆m, respectively.19 With respect to the norms || · ||n and || · ||m chosen above, we
define the norm of A to be

||A||n,m = max
x,y

{
xTAy : ||x||n = 1, ||y||m = 1

}
.

In this paper, we will choose to use `1 norms on ∆n and ∆m, in which case ||A||n,m = |A|max,
the largest absolute value of an entry of A.

6.2. Choice of Prox Function.

In addition to choosing norms on ∆n and ∆m, we also choose smooth prox-functions,
dn : ∆n → R and dm : ∆m → R which are strongly convex with convexity parameters σn > 0
and σm > 0, respectively.20 These prox functions will be used to construct the smooth
approximations of f and φ. Notice that the strong convexity of our prox functions depends
on our choice of norms || · ||n and || · ||m. Without loss of generality, we will assume that dn
and dm have minimum value 0.

Furthermore, we assume that the prox functions dn and dm are bounded on the simplex.
Thus, there exist Dn and Dm such that

max
x∈∆n

dn(x) ≤ Dn

and
max
y∈∆m

dm(y) ≤ Dm.

6.3. Approximating f and φ by Smooth Functions.

We will approximate f and φ by smooth functions fµm and φµn , where µm and µn are
smoothing parameters. (These parameters will change during the execution of the algo-
rithm.) Given our choice of norms and prox functions above, we define

fµm(x) = max
v∈∆m

xTAv − µmdm(v)

φµn(y) = min
u∈∆n

uTAy + µndn(u).

We see that for small values of µ, the functions will be a very close approximation to their
non-smooth counterparts. We observe that since dn and dm are strongly convex functions,
the optimizers of the above expressions are unique.

19We use the notation ∆n to represent the n-dimensional simplex.
20Recall that dm is strongly convex with parameter σm if, for all v and w ∈ ∆m,

(∇dm(v)−∇dm(w))T(v − w) ≥ σm||v − w||2m.
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As discussed above, for all x ∈ ∆n and y ∈ ∆m it is the case that φ(y) ≤ f(x). Since
fµm(x) ≤ f(x) and φµn(y) ≥ φ(y) for all x and y, it is possible that some choice of values
µn, µm, x and y may satisfy the excessive gap condition of fµm(x) ≤ φµn(y). The key point
behind the excessive gap condition is the following simple lemma from [22]:

Lemma 11. Suppose that
fµm(x) ≤ φµn(y).

Then
f(x)− φ(y) ≤ µnDn + µmDm.

Proof. For any x ∈ ∆n and y ∈ ∆m, we have fµm(x) ≥ f(x) − µmDm and φµn(y) ≤
φ(y) + µnDn. Therefore

f(x)− φ(y) ≤ fµm(x) + µmDm − φµn(y) + µnDn

and the lemma follows immediately.

In the algorithms which follow, we will attempt to find x and y such that fµn(x) ≤ φµn(y)
for µn, µm small.

6.4. Excessive Gap Technique (EGT) Algorithm.

We now present the gradient-based excessive gap technique from [22] in the context
of zero-sum games (see [11], [12]). The main idea behind the excessive gap technique is
to gradually lower µm and µn while updating values of x and y such that the invariant
fµm(x) ≤ φµn(y) holds. Algorithm 1 uses the techniques of [22], and is presented here in the
form from [12]. In Section 7 (Algorithm 2), we show how to implement this algorithm by
game dynamics.

In Algorithm 1, we frequently encounter terms of the form

dn(x)− xT∇dn(x̂).

We intuitively interpret these terms by noting that

ξn(x̂, x) = dn(x)− dn(x̂)− (x− x̂)T∇dn(x̂)

is the Bregman distance between x̂ and x. Thus, when x̂ is fixed, looking at an expression
such as

arg max
x∈∆n

−xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

should be interpreted as looking for x with small Bregman distance from x̂ which makes
−xTAy0 large. Loosely speaking, we may colloquially refer to the optimal x above as a
“smoothed best response” to Ay0.

The key point to this algorithm is the following theorem, from [22]:
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Algorithm 1 Nesterov’s Excessive Gap Algorithm

1: function EGT
2: µ0

n := µ0
m := ||A||n,m√

σnσm

3: x̂ := arg minx∈∆n dn(x)
4: y0 := arg maxy∈∆m x̂

TAy − µ0
mdm(y)

5: x0 := arg maxx∈∆n −xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

6:
7: for k = 0, 1, 2, . . . do
8: τ := 2

k+3

9:
10: if k is even then /* Shrink µn */
11: x̆ := arg maxx∈∆n −xTAyk − µkndn(x)
12: x̂ := (1− τ)xk + τ x̆
13: ŷ := arg maxy∈∆m x̂

TAy − µkmdm(y)
14: x̃ := arg maxx∈∆n − τ

1−τ x
TAŷ + µknx

T∇dn(x̆)− µkndn(x)

15: yk+1 := (1− τ)yk + τ ŷ
16: xk+1 := (1− τ)xk + τ x̃
17: µk+1

n := (1− τ)µkn
18: µk+1

m := µkm
19: end if
20:
21: if k is odd then /* Shrink µm */
22: y̆ := arg maxy∈∆m y

TATxk − µkmdm(y)
23: ŷ := (1− τ)yk + τ y̆
24: x̂ := arg maxx∈∆n −xTAŷ − µknd(x)
25: ỹ := arg maxy∈∆m

τ
1−τ y

TATx̂+ µkmy
T∇dm(y̆)− µkmdm(y)

26: xk+1 := (1− τ)xk + τ x̂
27: yk+1 := (1− τ)yk + τ ỹ
28: µk+1

m := (1− τ)µkm
29: µk+1

n := µkn
30: end if
31: end for
32: end function
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Theorem 6. The xk and yk generated by the EGT algorithm satisfy

f(xk)− φ(yk) ≤ 4||A||n,m
k + 1

√
DnDm

σnσm
,

where Dn, Dm, σn and σm are parameters which depend on the choice of norm and prox
function used for smoothing f and φ.

6.5. Entropy Prox Function and the `1 Norm.

When we simulate the EGT algorithm with game dynamics, we will choose to use the
`1 norm and the entropy prox function, as defined below. (This choice of norm and prox
function was mentioned in [23].)

dn(x) = lnn+
n∑
i=1

xi lnxi

dm(y) = lnm+
m∑
j=1

yj ln yj

||x||n =
n∑
i=1

|xi|

||y||m =
m∑
j=1

|yj|

From Lemma 4.3 of [23], we know that the above choice of norms and prox functions
satisfy:

σn = σm = 1

Dn = lnn

Dm = lnm

||A||n,m = |A|,

where |A| is the largest absolute value entry of A. (In the EGT algorithm, it suffices to
replace ||A||n,m with |A|max, an upper bound of |A|. When we make this change, we will
simply replace ||A||n,m with |A|max in the above theorem.)

There are three main benefits of choosing these prox functions. The first reason is that
this choice will make our convergence bounds depend on the same parameters as the MWU
convergence bounds, and thus it will be easy to compare the convergence rates of these
techniques.

The second reason is that in the first step of the EGT algorithm, we set µ0
n := µ0

m :=
||A||n,m√
σnσm

. Since σn = σm = 1 under our choice of prox functions and `1 norm, this step of the
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algorithm simply becomes
µ0
n := µ0

m := |A|max,

which is a known constant.
The third reason is that all of the required optimizations have simple closed-form solu-

tions. In particular, our algorithm requires us to solve optimization problems of the form

arg max
x∈∆n

xTs− µndn(x),

where s ∈ Rn is some fixed vector. In this case, the solution has a closed form (see [23]).
The solution is the vector x, with jth component

xj =
esj/µn∑n
i=1 e

si/µn
.

The analogous result holds for optimizations over y ∈ ∆m.

7. The Honest EGT Dynamics Protocol

In this section, we present the entirety of the HonestEGTDynamics protocol, in-
troduced in Section 4, and compute convergence bounds for the average payoffs. Note that
throughout the paper, we present the HonestEgtDynamics protocol, and protocols which
follow, as a single block of pseudocode containing instructions for both row and column play-
ers. However, this presentation is purely for notational convenience, and our pseudocode can
clearly be written as a protocol for the row player and a separate protocol for the column
player.

For notational purposes, most lines of our pseudocode begin with either a “R” or a “C”
marker. These symbols refer to instructions to the row and column players, respectively. A
line which begins with the “R,C” marker is a computation performed independently by both
players. An instruction such as “PLAY xTAy” is shorthand for an instruction of “PLAY x”
in the row player’s protocol, and “PLAY y” in the column player’s protocol.

We compute convergence bounds for the average payoff in the HonestEgtDynamics
protocol, assuming that both players honestly follow the protocol. These bounds are slightly
more difficult to compute than the bounds for the BoundedEgtDynamics(∞) protocol
(Algorithm 3), which also converges quickly when both players follow the protocol. We
analyze the less efficient HonestEgtDynamics protocol for the sake of completeness.

We will use Theorem 6 to bound the payoffs every time the players play a round of the
game. Our goal is to prove that the average payoffs in HonestEgtDynamics converge to
the Nash Equilibrium value quickly (with convergence rate O( lnT

T
)).

In what follows, we let P be the Nash equilibrium payoff (for the column player) of the
game. For ease of notation, in the analysis that follows we let

εk =
4|A|max

√
lnn lnm

k + 1
.
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Algorithm 2

1: function Honest EGT Dynamics
2: R : µ0

n := |A|max C: µ0
m := |A|max

3: R : x̂ := arg minx∈∆n dn(x)
4: C : Pick ȳ ∈ ∆m arbitrary
5: PLAY: x̂TAȳ
6: C : y0 := arg maxy∈∆m x̂

TAy − µ0
mdm(y)

7: PLAY: x̂TAy0

8: R : x0 := arg maxx∈∆n −xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

9:
10: for k = 0, 1, 2, . . . do
11: R, C: τ := 2

k+3

12: PLAY: (xk)TAyk

13:
14: if k is even then /* Shrink µn */
15: R: x̆ := arg maxx∈∆n −xTAyk − µkndn(x)
16: R: x̂ := (1− τ)xk + τ x̆
17: PLAY: x̂TAyk

18: C: ŷ := arg maxy∈∆m x̂
TAy − µkmdm(y)

19: PLAY: x̂TAŷ
20: R: xk+1 := (1− τ)xk + τ(arg maxx∈∆n{− τ

1−τ x
TAŷ + µkn(xT∇dn(x̆)− dn(x))})

21: C: yk+1 := (1− τ)yk + τ ŷ
22: R: µk+1

n := (1− τ)µkn
23: C: µk+1

m := µkm
24: end if
25:
26: if k is odd then /* Shrink µm */
27: C: y̆ := arg maxy∈∆m y

TATxk − µkmdm(y)
28: C: ŷ := (1− τ)yk + τ y̆
29: PLAY: (xk)TAŷ
30: R: x̂ := arg maxx∈∆n −xTAŷ − µkndn(x)
31: PLAY: x̂TAŷ
32: C: yk+1 := (1− τ)yk + τ(arg maxy∈∆m{ τ

1−τ y
TATx̂+µkm(yT∇dm(y̆)− dm(y))})

33: R: xk+1 := (1− τ)xk + τ x̂
34: C: µk+1

m := (1− τ)µkm
35: R: µk+1

n := µkn
36: end if
37: end for
38: end function
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We now have the following bounds on the payoffs, where we analyze each line of Hon-
estEgtDynamics separately:

• Lines 5 and 7- We simply bound each of these payoffs by

− |A|max ≤ x̂TAȳ ≤ |A|max, and

− |A|max ≤ x̂TAy0 ≤ |A|max.

• Line 12-

The row and column players are approximately best-responding to each other, by
Theorem 6. Therefore, the payoff received must be close to the Nash equilibrium value
of the game, and thus

P − εk ≤ (xk)TAyk ≤ P + εk.

• Line 17-

We notice that x̂TAyk ≤ (1 − τ)(xk)TAyk + τ |A|max. This will enable us to bound
x̂TAyk using Theorem 6. In particular,

x̂TAyk ≤ (1− τ)(P + εk) + τ |A|max
≤ P + τ |A|max + (1− τ)εk + τ |A|max

≤ P + εk +
4|A|max
k + 3

.

Therefore, we have the bounds

P − εk ≤ x̂TAyk ≤ P + εk +
4|A|max
k + 3

,

where for the first inequality we used that minx x
TAyk ≥ P − εk, which follows from

Theorem 6.

• Line 19- We notice that, since ŷ := arg maxy∈∆m x̂
TAy − µkmdm(y), we have

x̂TAŷ ≥ max
y∈∆m

{x̂TAy} − µkmDm.

Furthermore, since maxy∈∆m{x̂TAy} ≥ P , this gives us the bound

P − µkm lnm ≤ x̂TAŷ.
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Now we determine the value of µkm. Notice that k is even at Line 19, and therefore

µkm = µ0
m ·

∏
1≤i≤k−1
i odd

(
1− 2

i+ 3

)

= µ0
m ·

∏
1≤i≤k−1
i odd

i+ 1

i+ 3

=
2|A|max
k + 2

.

To obtain an upper bound, we notice that

x̂ := (1− τ)xk + τ(arg max
x∈∆n

{−xTAyk − µkndn(x)}).

Therefore,

x̂TAŷ ≤ (1− τ)(xk)TAŷ + τ |A|max
≤ P + εk + 2τ |A|max

= P + εk +
4|A|max
k + 3

,

where in the second inequality above we used the fact that maxy(x
k)TAy ≤ P + εk,

which is guaranteed by Theorem 6. Putting these bounds together, we have

P − 2|A|max lnm

k + 2
≤ x̂TAŷ ≤ P + εk +

4|A|max
k + 3

.

• Line 29-

By the same analysis as Line 17, we have

P − εk −
4|A|max
k + 3

≤ (xk)TAŷ ≤ P + εk.

• Line 31-

The analysis is nearly identical to the analysis from Line 19. The only difference is
that, since k is odd, we have

µkn = µ0
n ·

∏
0≤i≤k−1
i even

i+ 1

i+ 3
=
|A|max
k + 2

.
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Therefore, we have the bound

P − εk −
4|A|max
k + 3

≤ x̂TAŷ ≤ P +
|A|max lnn

k + 2
.

Using the above bounds, we obtain the following lemma, which we prove immediately
below:

Lemma 12. For all K ≥ 1, the average payoff (of the column player) resulting from the
HonestEgtDynamics for a total of 3K + 2 rounds is bounded by

P − 4|A|max
3K + 2

− 24|A|max ln (K + 1)

3K + 2
(
√

lnn lnm+ lnm+ 1)

≤ Average Payoff ≤

P +
4|A|max
3K + 2

+
24|A|max ln (K + 1)

3K + 2
(
√

lnn lnm+ lnn+ 1),

where P is the value of the column player.

Comparing this lemma to Proposition 5, we observe that the average payoffs of Hon-
estEgtDynamics have better asymptotic convergence (in the number of rounds played)
to a Nash equilibrium than the MWU algorithm.

Proof. We see that we can lower bound the sum of the three payoffs obtained for any fixed
value of k (the payoffs received in Lines 12, 17, and 19 if k is even, and in Lines 12, 29, and
31 if k is odd) by

3P − 3εk −
8|A|max
k + 3

− 2|A|max lnm

k + 2
.

Therefore, we can lower bound the average payoff by

1

3K + 2

(
−2|A|max +

K−1∑
k=0

(
3P − 3εk −

8|A|max
k + 3

− 2|A|max lnm

k + 2

))

≥ 1

3K + 2

(
−2|A|max + 3KP − 3

K−1∑
k=0

εk − |A|max(8 + 2 lnm)
K−1∑
k=0

1

k + 2

)

≥ 1

3K + 2

(
−2|A|max + 3KP − |A|max

(
12
√

lnn lnm+ 8 + 2 lnm
)K−1∑
k=0

1

k + 1

)
≥ 1

3K + 2

(
(−4|A|max + (3K + 2)P )− |A|max(1 + lnK)(12

√
lnn lnm+ 8 + 2 lnm)

)
≥ 1

3K + 2

(
− 4|A|max + (3K + 2)P − |A|max(2 ln (K + 1))(12

√
lnn lnm+ 8 + 2 lnm)

)
= P − 1

3K + 2

{
4|A|max +

(
24|A|max

√
lnn lnm+ 4|A|max lnm+ 16|A|max

)
ln (K + 1)

}
.
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Similarly, we can upper bound the sum of the three payoffs obtained for any fixed value
of k by

3P + 3εk +
8|A|max
k + 3

+
|A|max lnn

k + 2
.

Therefore, by similar calculations as to those above, we can upper bound the average payoff
received over the first 3K + 2 rounds by

P +
1

3K + 2

{
4|A|max +

(
24|A|max

√
lnn lnm+ 2|A|max lnn+ 16|A|max

)
ln (K + 1)

}
.

The statement of the lemma follows.

8. The BoundedEgtDynamics(b) Protocol

In this section, we describe and analyze the BoundedEgtDynamics protocol in detail.
For clarity, we break the algorithm apart into subroutines. The overall structure is very sim-
ilar to the HonestEgtDynamics protocol, but the players continually check for evidence
that the opponent might have deviated from his instructions. We emphasize that if a YIELD
failure occurs during an honest execution of BoundedEgtDynamics, both players detect
the YIELD failure in the same step.

8.1. The Initialization Routine

We first describe the Initialization routine. This routine sets the values of x0, y0, µ0
n,

and µ0
m. It is identical to Lines 2 through 8 of the HonestEgtDynamics protocol.

1: function Initialization /* R sets x0 and µ0
n. C sets y0 and µ0

m */
2: R : µ0

n := |A|max C: µ0
m := |A|max

3: R : x̂ := arg minx∈∆n dn(x)
4: C : Pick ȳ ∈ ∆m arbitrary
5: PLAY: x̂TAȳ
6: C : y0 := arg maxy∈∆m x̂

TAy − µ0
mdm(y)

7: PLAY: x̂TAy0

8: R : x0 := arg maxx∈∆n −xTAy0 + µ0
n(xT∇dn(x̂)− dn(x))

9: end function

8.2. The CheckConv Routine

We now describe the CheckConv routine. The goal of this routine is to verify if (xk, yk)
is indeed an (additive) εk-approximate Nash equilibrium.21 In this routine, the row player is

21More precisely, the row player verifies that his best response to yk gives him no more than εk additional
payoff over −(xk)TAyk. The column player then checks an analogous property.
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given an opportunity to play a move which gives him more than εk payoff against yk than
he would obtain by playing xk. If he cannot find such a move, then the column player is
given a chance. If (xk, yk) is indeed an εk-approximate Nash equilibrium and both players
are honest, then this routine will simply consist of three rounds of (xk)TAyk. Otherwise a
YIELD or QUIT failure may be declared, whose semantics are as explained in Section 5.3.

1: function CheckConv(xk, yk, εk) /* Check if (xk, yk) is εk-Nash.*/
2: /* If no failures occur, returns the value of (xk)TAyk */
3: PLAY: (xk)TAyk

4:
5: R: ẋ := arg maxx∈∆n −xTAyk

6: R: If (−ẋTAyk) > (−(xk)TAyk) + εk, ẍ := ẋ. Else ẍ := xk

7:
8: PLAY: ẍTAyk

9:
10: R: If the observed loss vectors Ayk in Lines 3 and 8 differ, QUIT.

11: R, C: If ẍTAyk < ((xk)TAyk)− εk, YIELD( ((xk)TAyk−ẍTAyk)(k+1)
4|A|max

).

12: C: If ẍTAyk 6= ((xk)TAyk) and ẍTAyk ≥ ((xk)TAyk)− εk, QUIT.
13:
14: C: ẏ := arg maxy∈∆y((xk)TAy)
15: C: If (xk)TAẏ > ((xk)TAyk) + εk, ÿ := ẏ. Else ÿ := yk

16:
17: PLAY: (xk)TAÿ
18:
19: C: If the observed loss vectors (xk)TA in Lines 3 and 17 differ, QUIT.

20: R, C: If (xk)TAÿ > ((xk)TAyk) + εk, YIELD( ((xk)TAÿ−(xk)TAyk)(k+1)
4|A|max

).

21: R: If (xk)TAÿ 6= ((xk)TAyk) and (xk)TAÿ ≤ ((xk)TAyk) + εk, QUIT.
22: return (xk)TAyk

23: end function

8.3. The SafePlay Routines

The key to making our protocol no-regret is the SafePlay routines. These routines
are used to replace instructions such as “PLAY x̂TAyk” from the HonestEgtDynamics
protocol to ensure that the average regret of the players goes down. (See Section 5.1 for
a discussion of why vanilla HonestEgtDynamics may fail to be no-regret even if both
players are honest.) Besides playing conservatively, in the SafePlay routines the players
also verify several properties of their observed payoff vectors.

Before running the SafePlay routines, we assume that (xk)TAyk has already been
played at some point in the protocol, so that the row player knows the loss vector Ayk and
the column player knows the loss vector (xk)TA. Both players know a value εk, and they
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currently believe (xk, yk) to be an εk-approximate Nash equilibrium.22 In particular, they
use P̂ , the value of (xk)TAyk, as an estimate of the Nash equilibrium value.

The idea of the routines is that instead of playing x̂, the row player will play δkx̂+ (1−
δk)x

k, where δk is some (small) value known to both players. Since the column player will
have already observed the loss vector (xk)TA, he will be able to determine the vector x̂TA.

We now define the SafePlayRow routine (for the row player to convey a loss vector to
the column player) and the SafePlayCol routine (for the column player to convey a loss
vector to the row player).

1: function SafePlayRow(x, P̂ , εk, δk, (xk)TA, Ayk)
2: /* Protocol for the row player to convey xTA to the column player */
3: /* (xk)TA is a loss vector previously observed by the column player */
4: /* Ayk is a loss vector previously observed by the row player */
5: /* P̂ := (xk)TAyk, εk, δk known by both players */

6:
PLAY: (δkx+ (1− δk)xk)TAyk. Call this value p. Let uT be the loss vector observed
by the column player, and let v be the loss vector observed by the row player.

7: C: Set ans = uT−(1−δk)(xk)TA
δk

8: C: If any entry of ans has absolute value greater than |A|max, QUIT.
9: R: If v 6= Ayk, QUIT.

10: R, C: If |P̂ − p| > εk + 2|A|maxδk, YIELD( (|P̂−p|−2|A|maxδk)(k+1)
4|A|max

).

11: C: Conclude that xTA = ans
12: end function

Notice that the check on Line 8 of the SafePlayRow routine ensures that the loss
vector uT is very close to (xk)TA. This is a key property for showing that the protocol is
no-regret (since it ensures that the payoff of a best response to the loss vector uT and the
payoff of a best response to the loss vector (xk)TA differ by no more than 2δk|A|max.) In
particular, it means that yk is very close to a best response to the loss vector uT.

8.4. The BoundedEgtDynamics(b) Protocol

We now describe the BoundedEgtDynamics protocol using the above subroutines.
This protocol is nearly identical in structure to the HonestEgtDynamics protocol. If
a YIELD or QUIT failure is detected by a player, the player immediately switches to the
MWU algorithm.

8.5. Bounding the Regret

We will show Lemma 8, i.e. that the protocol is no-regret for the column player as long
as no YIELD or QUIT failures have been declared. We will also establish that the average
regret of the column player goes down as O( lnT

T
). The analysis for the row player will be

nearly identical.

22These beliefs have been established by the CheckConv routine.
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1: function SafePlayCol(y, P̂ , εk, δk, (xk)TA, Ayk)
2: /* Protocol for the column player to convey Ay to the row player */
3: /* (xk)TA is a loss vector previously observed by the column player */
4: /* Ayk is a loss vector previously observed by the row player */
5: /* P̂ := (xk)TAyk, εk, δk known by both players */

6:
PLAY: (xk)TA(δky+(1−δk)yk). Call this value p. Let uT be the loss vector observed
by the column player, and let v be the loss vector observed by the row player.

7: R: Set ans = v−(1−δk)A(yk)
δk

8: R: If any entry of ans has absolute value greater than |A|max, QUIT.
9: C: If uT 6= (xk)TA, QUIT.

10: R, C: If |P̂ − p| > εk + 2|A|maxδk, YIELD( (|P̂−p|−2|A|maxδk)(k+1)
4|A|max

).
11: R: Conclude that Ay = ans
12: end function

Let us consider some execution of the protocol in which the column player never detects
a failure and look at all sections of the BoundedEgtDynamics protocol where the game
was played. In this analysis, we will prove a stronger claim than the no-regret property.
Instead of showing that the column player has no single strategy which would have performed
significantly better against the opponent’s historical average, we show that the column player
has no sequence of strategies which would have performed significantly better against the
opponent’s history. (Thus, if we were to tell the column player in advance all opponent’s
strategies in order, and allowed the column player to change his strategy from round to
round, he would still not be able to perform significantly better.)

• Line 2 -The Initialization routine is only played once during the entire execution. We
can lower bound the total payoff received in the two plays of this round by −2|A|max.
By deviating in both plays, it is possible that the column player could have changed
his payoff to no more than 2|A|max, and therefore the column player could have gained
at most 4|A|max by deviating.

• Line 11 - Since the protocol never failed, it must be the case that every time Line 11
of BoundedEgtDynamics is reached, the moves (xk)TAyk are played three times
in succession. Furthermore, since the column player always sets ÿ := yk in Line 15 of
the CheckConv protocol, it must be the case that, by deviating, the column player
could have improved his payoff by no more than εk in each of the three rounds.

• Line 16 - This is a SafePlayRow routine. Notice that, in Line 8 of the Safe-
PlayRow routine, the column player ensures that each entry in the vector |uT −
(1 − δk)(x

k)TA| has absolute value no more than δk|A|max. In particular, for all
j ∈ {1, 2, . . . ,m}, we have

|uT − (xk)TA|j ≤ |uT − (1− δk)(xk)TA|j + |δk(xk)TA|j
≤ 2δk|A|max.
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Algorithm 3

1: function BoundedEgtDynamics(b) /* b is a presumed upper bound on
√

lnn lnm */
2: Run Initialization
3:
4: while No YIELD or QUIT failures have occurred do

5:
/* Remark: It is meant that if a YIELD or QUIT failure occurs anywhere within
the while-loop, the while-loop breaks.*/

6:
7: for k = 0, 1, 2, . . . do
8: R, C: τk := 2

k+3

9: R, C: εk := 4|A|maxb
k+1

10: R, C: δk := 1
(k+1)2

11: Run CheckConv(xk, yk, εk). R and C set P̂ := (xk)TAyk

12:
13: if k is even then /* Shrink µn */
14: R: x̆ := arg maxx∈∆n −xTAyk − µkndn(x)
15: R: x̂ := (1− τk)xk + τkx̆
16: SafePlayRow(x̂, P̂ , εk, δk, (x

k)TA,Ayk)
17: C: ŷ := arg maxy∈∆m x̂

TAy − µkmdm(y)

18: SafePlayCol(ŷ, P̂ , εk, δk, (x
k)TA,Ayk)

19: R: xk+1 := (1 − τk)x
k + τk(arg maxx∈∆n{− τk

1−τk
xTAŷ + µkn(xT∇dn(x̆) −

dn(x))})
20: C: yk+1 := (1− τk)yk + τkŷ
21: R: µk+1

n := (1− τk)µkn
22: C: µk+1

m := µkm
23: end if
24:
25: if k is odd then /* Shrink µm */
26: C: y̆ := arg maxy∈∆m y

TATxk − µkmdm(y)
27: C: ŷ := (1− τk)yk + τky̆
28: SafePlayCol(ŷ, P̂ , εk, δk, (x

k)TA,Ayk)
29: R: x̂ := arg maxx∈∆n −xTAŷ − µkndn(x)
30: SafePlayRow(x̂, P̂ , εk, δk, (x

k)TA,Ayk)
31: C: yk+1 := (1 − τk)y

k + τk(arg maxy∈∆m{ τk
1−τk

yTATx̂ + µkm(yT∇dm(y̆) −
dm(y))})

32: R: xk+1 := (1− τk)xk + τkx̂
33: C: µk+1

m := (1− τk)µkm
34: R: µk+1

n := µkn
35: end if
36: end for
37: end while
38: Use the multiplicative weights update algorithm in all subsequent rounds.
39: end function
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Therefore, we know that the payoff of the column player’s best response against the
loss vector uT he observes in this round differs from the payoff of the best response
to the loss vector (xk)TA (observed previously) by no more than 2δk|A|max. Since the
column player has already verified that his strategy yk is within εk of a best response
to the loss vector (xk)TA, and since the payoff of playing any strategy against (xk)TA
differs from the payoff of playing the same strategy against uT by at most 2δkAmax, we
conclude that by deviating in this round the column player could have improved his
payoff by at most 4δk|A|max + εk.

• Line 18- In this line, the players perform a SafePlayCol routine. In this routine, the
column player plays the strategy δky+ (1− δk)yk. We know that the payoff of playing
δky + (1− δk)yk against any move x is within 2δk|A|max of playing yk against x. Since
the payoff of yk is within εk of the maximum possible payoff against xk, we conclude
that the payoff received by the column player in this round is within 2δk|A|max + εk of
his best response to the opponent’s move.

• Line 28- The analysis of this round is identical to the analysis of Line 18. Therefore,
we conclude that by deviating the column player could have improved his payoff in
this round by no more than 2δk|A|max + εk.

• Line 30- The analysis is identical to Line 16. By deviating, the column player could
have improved his payoff by no more than 4δk|A|max + εk.

This analysis gives us Lemma 8, which we formally prove below.

Proof of Lemma 8. We obviously have the inequality

max
y∈∆m

T∑
t=1

(xt)TAy ≤
T∑
t=1

max
y∈∆m

(xt)TAy.

We now upper bound the right hand side of the above expression.23 From above, we
know that the column player could gain at most 4|A|max total utility by deviating in the two
plays in the initialization subroutine. For all t ≥ 3, we have

max
y∈∆m

(xt)TAy ≤ (xt)TA(yt) + 4δk|A|max + εk,

where k = b t−3
5
c. (Note that there are 5 rounds played for each value of k.) Therefore, we

23In general, maxy

∑
xT

t Ay may be significantly smaller than
∑

maxy x
T
t Ay. In our case, however, the

expressions will be very close to each other. The reason is that, since no failures have been detected, the xt

will be very close to Nash equilibrium strategies, for large enough t.
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can bound

T∑
t=1

max
y∈∆m

(xt)TAy ≤
T∑
t=1

(xt)TAyt + 4|A|max + 5

bT−3
5
c∑

k=0

(4δk|A|max + εk)

=
T∑
t=1

(xt)TAyt + 4|A|max + 20|A|max
bT−3

5
c∑

k=0

1

(k + 1)2
+ 5

bT−3
5
c∑

k=0

4|A|maxb
k + 1

.

We now use the bound

20|A|max
bT−3

5
c∑

k=0

1

(k + 1)2
≤ 20|A|max

∞∑
k=0

1

(k + 1)2
=

20|A|maxπ2

6
< 33|A|max

and the bound

5

bT−3
5
c∑

k=0

4|A|maxb
k + 1

= 20|A|maxb
bT−3

5
c+1∑

s=1

1

s
≤ 20|A|maxb

(
1 + ln

(
T + 2

5

))
.

Note that
1 + ln ((T + 2)/5) = ln e+ ln ((T + 2)/5) ≤ ln (T + 2).

The result of the lemma now follows.

9. The NoRegretEgt Protocol

Our final NoRegretEgt protocol is presented as Algorithm 4. Note that the state vari-
ables for MWU are completely separate from the BoundedEgtDynamics state variables
of k, xk, and yk. Whenever instructed to run additional rounds of the MWU algorithm, the
players work with these MWU-only state variables. We proceed to analyze its performance
establishing Theorems 9 and 10.

9.1. Bounding the Regret

Let us look at some execution of the NoRegretEgt algorithm where the column player
plays honestly (we make no assumptions about the row player at the moment), and suppose
that T total rounds of the game have been played thus far. We will now formally bound
the column player’s total regret. (His total regret is the difference between the payoff of his
optimal single strategy against the opponent’s history and his payoff actually received.) We
can write T = TEGT + TMW , where TEGT is the number of rounds of the game which have
been played when the column player was in Line 10 of the NoRegretEgt protocol, and
TMW is the number of rounds which have been played during Lines 11 or 14 of the protocol.

Let b be the largest (most recent) value which has been used as the input to Bound-
edEgtDynamics(b) on Line 10 of NoRegretEgt. Notice that, if we ignore the rounds
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Algorithm 4

1: function NoRegretEGT
2: Run Initialization
3: R,C: b := 1, k := 0
4:

5:
Initialize MWU-only state variables for the MWU algorithm. In particular, we use
a separate round counter for the MWU executions, initialized to 0.

6:
7: while no QUIT errors have occurred do

8:
/* Remark: It is meant that if a QUIT failure occurs anywhere within the while-loop
or within a subroutine that has been called from within the while-loop, the while-loop
breaks.*/

9:

10:
Run BoundedEgtDynamics(b), starting from Line 8 of that protocol, using the
most recent values of k, xk, yk. If a YIELD(s) failure occurs while running Bound-
edEgtDynamics(b), go immediately to Line 11.

11: R, C: Run an additional d(max(2b, s))4e rounds of the MWU algorithm.
12: R, C: Set b := max(2b, s).
13: end while
14: R, C: Run the MWU algorithm forever
15: end function

of the game which occurred closely before YIELD failures, then the remaining rounds from
Line 10 constitute a failure-free execution of BoundedEgtDynamics(b).24

There have been at most blog2 b + 1c total YIELD failures thus far, since we at least
double the value of b in Line 12 of NoRegretEgt. Since we restart from Line 8 of the
BoundedEgtDynamics protocol every time there is a YIELD failure (regardless of the
particular line of BoundedEgtDynamics on which the failure occurred), it is possible that
at most the 5 rounds prior to the failure will be “redone” when we restart after the failure.25

For simplicity, we will (unnecessarily loosely) upper bound the regret during each of these
“redone” rounds as 2|A|max. Let the total number of “redone” rounds be Tredone.

From Lemma 8, we can upper bound the column player’s total regret during the TEGT
rounds from Line 10 by

37|A|max + 20|A|maxb ln
(
(TEGT − Tredone) + 2

)
+ 2|A|maxTredone.

24The key point is that these rounds constitute a failure-free execution of BoundedEgtDynamics(b) even
if, when they were played, the “presumed upper bound” input to BoundedEgtDynamics was something
other than b. This is because the value of b only impacts the execution of BoundedEgtDynamics in the
case that a YIELD error occurs.

25Since we restart from Line 8 of BoundedEgtDynamics, it is possible that we will redo at most 5
rounds of the game after we readjust the b value. Also, note that, for example, the row player’s move on
Line 8 of the CheckConv routine differs depending on whether or not a YIELD failure will be declared
after the next round. This is one of the lines which will be “redone.”
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Notice that Tredone ≤ 5log2 b, since at most 5 rounds are “redone” after a YIELD failure, but
these happen after b is increased. Hence, we can upper bound the total regret by

37|A|max + 20|A|maxb ln (TEGT + 2) + 10|A|max log2 b.

During the TMW rounds of the game for which the column player was on Lines 11 or 14
of NoRegretEgt, we can upper bound the total regret using Lemma 3 by

2|A|max
√
TMW lnm√

2− 1
≤ 5|A|max

√
TMW lnm.

Therefore, the column player’s average regret over the T rounds is upper bounded by

1

T

(
37|A|max + 20|A|maxb ln (TEGT + 2) + 10|A|max log2 b+ 5|A|max

√
TMW lnm

)
and hence is upper bounded by

1

T

(
37|A|max + 20|A|maxb ln (T + 2) + 10|A|max log2 b+ 5|A|max

√
T lnm

)
.

The key observation is that we will always have b ≤ 4
√
T . Indeed, immediately before setting

the current value of b in Line 12, the algorithm runs at least (2 ∗ (b/2))4 = b4 rounds of
MWU in Line 11. Therefore the total number of rounds played thus far must be at least b4,
and hence b ≤ 4

√
T . Therefore, we can upper bound the average regret by

37|A|max
T

+
20|A|max 4

√
T ln (T + 2)

T
+

10|A|max log2 ( 4
√
T )

T
+

5|A|max
√

lnm√
T

≤ 37|A|max
T

+
20|A|max 4

√
T ln (T + 2)

T
+

4|A|max ln (T )

T
+

5|A|max
√

lnm√
T

.

We can use a nearly identical argument to upper bound the row player’s average regret in
the case that the row player is honest, regardless of the actions of the column player.

This yields Theorem 9.

9.2. Convergence with Honest Players

We now consider an execution of the NoRegretEgt protocol in which both the row
and column players honestly follow the prescribed protocol. The key observation is that once
b becomes greater than

√
lnn lnm, there will never be any YIELD failures. Therefore, the

total number of YIELD failures will be at most blog2 (2
√

lnn lnm)c. Furthermore, the total
number of rounds with the players in the MWU phase (Line 11 of NoRegretEgt) is at
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most

blog2 (2
√

lnn lnm)c+1∑
l=1

(2l)4 ≤ 2(4
√

lnn lnm)4 = 512(lnn)2(lnm)2.

Furthermore, in this honest execution of the NoRegretEgt protocol, at most 5blog2 (2
√

lnn lnm)c
rounds of BoundedEgtDynamics will be “redone” following YIELD errors (see Sec-
tion 9.1). Therefore, using Lemmas 3 and 8, (and bounding the regret by 2|A|max during
each “redone” round) we can upper bound the column player’s total regret over T rounds
by

10|A|max log2 (2
√

lnn lnm) + 5|A|max
√

512(lnn)2(lnm)2
√

lnm

+ 37|A|max + 20|A|max
√

lnn lnm ln (T + 2).

This yields the final theorem of the paper, Theorem 10.

10. Lower Bounds on Optimal Convergence Rate

In this section, we prove Theorem 2. The main idea is that since the players do not know
the payoff matrix A of the zero-sum game, it is unlikely that their historical average strategies
will converge to a Nash equilibrium very fast. In particular, the players are unlikely to play
a Nash equilibrium in the first round and the error from that round can only be eliminated
at a rate of Ω(1/T ), forcing the Ω(1/T ) convergence rate for the average payoffs and average
strategies to the min-max solution.

Proof of Theorem 2. We show that there exists a set of zero-sum games such that when a
zero-sum game is selected randomly from the set, any distributed protocol’s convergence
to the corresponding value of the game is Ω(1/T ) with high probability. We assume that
n and m are at least 2 to avoid degenerate cases. For i = 1, . . . , n, let Ai be the all-ones
matrix except for its i-th row which is the all-zero vector. Note that the Nash equilibrium
value of the game (−Ai, Ai) is 0 for both players, and that all Nash equilibria are of the
form (ei, y), where ei is the deterministic strategy of the row player choosing the i-th row
and y ∈ ∆m. Given any distributed protocol, consider choosing a game (−A,A) uniformly
at random from the set A = {(−A1, A1), . . . , (−An, An)}. Since the players do not know A
before the protocol begins, the strategies x1 and y1 played in the first round of the protocol
will have expected payoff of E[(x1)T (−A)y1] = −1 + 1/n for the row player. Thus, with
probability at least 1− 3

2n
≥ 1/4, the first-round payoff is at most −1/3. Suppose that this

event happens. Since the row player’s payoffs are never strictly positive, the average payoff
1
T

∑
t x

T
t (−A)yt may not converge to 0 (the value of the row player) at an expected rate

faster than Ω(1/T ) in the number T of rounds. A similar argument can be applied to bound
the rate at which the average strategies converge to min-max equilibrium strategies.
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