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We consider the problem of a revenue-maximizing seller withm items for sale to n additive bidders with hard
budget constraints, assuming that the seller has some prior distribution over bidder values and budgets. The
prior may be correlated across items and budgets of the same bidder, but is assumed independent across bid-
ders. We target mechanisms that are Bayesian incentive compatible, but that are ex-post individually rational
and ex-post budget respecting. Virtually no such mechanisms are known that satisfy all these conditions and
guarantee any revenue approximation, even with just a single item. We provide a computationally efficient
mechanism that is a 3-approximation with respect to all BIC, ex-post IR, and ex-post budget respecting mech-
anisms. Note that the problem is NP-hard to approximate better than a factor of 16/15, even in the case where
the prior is a point mass. We further characterize the optimal mechanism in this setting, showing that it can
be interpreted as a distribution over virtual welfare maximizers.

We prove our results by making use of a black-box reduction from mechanism to algorithm design devel-
oped by Cai et al. Our main technical contribution is a computationally efficient 3-approximation algorithm
for the algorithmic problem that results from an application of their framework to this problem. The al-
gorithmic problem has a mixed-sign objective and is NP-hard to optimize exactly, so it is surprising that a
computationally efficient approximation is possible at all. In the case of a single item (m = 1), the algorithmic
problem can be solved exactly via exhaustive search, leading to a computationally efficient exact algorithm
and a stronger characterization of the optimal mechanism as a distribution over virtual value maximizers.
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20:2 C. Daskalakis et al.

1 INTRODUCTION

Most of auction theory crucially depends on the assumption of quasi-linear utilities, that the utility
is equal to valuation minus payments. This assumption fails when bidders are budget constrained.1

Auctions with budget-constrained bidders are commonplace, and prominent examples of this are
ad auctions and auctions for government licensing such as the FCC spectrum auction. An inter-
esting example of budget constraint occurs in the auction for professional cricket players in the
Indian Premier League: the league imposes a budget constraint on all the teams as a means of en-
suring well balanced teams.2 Another source of budget constraints is what Che and Gale (1998) call
the moral hazard problem: procurement is often delegated and budget constraints are imposed as
a means of controlling spending. A budget represents the bidder’s ability to pay, in contrast to the
valuation, which represents his willingness to pay. For this reason, budgets may be more tangible
and easier to estimate than valuations. It is therefore important to understand how budget con-
straints impact the design of auctions; this has been well established by now (Che and Gale 1998;
Pai and Vohra 2014; Benoit and Krishna 2001; Laffont and Robert 1996; Maskin 2000; Malakhov
and Vohra 2005; Che and Gale 2000; Bhattacharya et al. 2010).

The theory of auctions in the presence of budget constraints on bidders lags far behind the
theory of auctions without budgets. For instance, consider the design of optimal (revenue max-
imizing) auctions that are Bayesian incentive compatible (BIC) and ex-post individually rational
(IR). While Myerson (1981) gives a beautiful theory characterizing the optimal auction for any sin-
gle parameter domain, no such characterization is known in the presence of private budgets (that
could be correlated with the valuation). As a way to deal with this difficulty, previous papers have
considered special cases and auctions with a subset of the desired properties. (See Section 1.2 for
details.) We adopt the computer science approach of approximation, while incorporating all the
desired properties. The main result of this article is a 3-approximation to the optimal auction in the

class of auctions that are

—BIC,

—ex-post IR, and

—ex-post budget respecting, with private budgets that could be correlated with the valuations,

for multiple heterogenous items and additive valuations. This is the first constant factor approxi-
mation for this class of auctions. Moreover, the computational problem, even without any incen-
tive constraints is already NP-hard to approximate within a ratio of 16/15 (Chakrabarty and Goel
2010). This too suggests that an approximation is necessary. We provide a computationally effi-
cient algorithm to find such an approximately optimal auction, which itself can be implemented
computationally efficiently as well.

1.1 Overview of Techniques

We prove our main result by making use of an algorithmic framework developed in Cai et al. (2013).
The computational aspect of their framework provides a black-box reduction from a wide class of
Bayesian mechanism design problems to problems of purely algorithm design. More specifically,
they show that any α-approximation algorithm for a certain incentive-free algorithmic problem
(induced by the mechanism design problem at hand) can be leveraged to find a BIC, IR mechanism
that is also an α-approximation (to the optimal BIC, IR mechanism) in polynomial time. Signif-
icant further details on their reduction and how to employ it can be found in Section 3.1. After

1The terms financially constrained bidders or bidders with liquidity constraints are used synonymously.
2Such salary caps in fact exist in many professional sports, although in most leagues teams are built indirectly through
negotiations rather than directly via an auction.
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Revenue Maximization and Ex-Post Budget Constraints 20:3

applying their framework to our problem, there is still the issue of solving the algorithmic prob-
lem that pops out of the reduction. This turns out to be essentially a (virtual) welfare maximization
problem (without budgets), but where the bidder types are somewhat involved. The optimization
involves a mixed sign objective (i.e., the objective is a sum of several terms, each of which can
be positive or negative). Such optimization problems are typically solvable exactly in polynomial
time or computationally hard to approximate within any finite factor, but rarely in between (due
to the mixed signs in the objective). Interestingly, we obtain a 3-approximation for our mixed-sign
objective problem despite the fact that it is NP-hard to optimize exactly. The design and analysis
of our algorithm can be found in Section 4.

Cai et al.’s framework also contains a structural result. We use it to show that the optimal auction
in our setting is a distribution over virtual welfare maximizers. By this, we mean that the optimal
mechanism maintains a distribution over n mappings, one mapping per bidder that maps types to
virtual types, and, given a vector of reported types, it samples n mappings from this distribution,
uses them to map the reported types to virtual types, and proceeds to choose an allocation that
optimizes virtual welfare. Note that by virtual types in the previous sentence, we do not mean the
specific virtual types as computed by Myerson’s virtual transformation, which aren’t even defined
for multi-dimensional types, but just some virtual types that may or may not be the same as the true
types. In particular, each mapping in the support of the mechanism’s distribution will take as input
a type (which is an additive function with non-negative item values, together with a non-negative
budget), and output a virtual type without a budget constraint and whose valuation function is
the sum of a budgeted-additive function3 with non-negative item values (which depends on the
input type in a very structured way) plus an additive function with possibly negative item values
(which may be unstructured with respect to the input type). We provide a formal statement of this
structural claim in Section 4 as well. Note that for the special case of a single item auction, this
gives a particularly simple structure: the virtual types are now just a single (possibly negative) real
number, which could be interpreted as a virtual value. The optimal auction simply maps reported
types to virtual values and assigns the item to the bidder with the highest virtual value.

Theorem 4.6 describes the format of the optimal mechanism more formally, which can be de-
rived from Cai et al.’s framework. Theorem 4.8 describes the format of an approximately opti-
mal mechanism, which we show can be found computationally efficiently (also using Cai et al.’s
framework).

1.2 Related Work

The result that comes closest to characterizing the optimal auction for budgeted bidders is that
of Pai and Vohra (2014): they characterize the optimal ex-post budget respecting, BIC, interim IR
auction for a single item. They make the assumptions that the budgets are drawn independently
of the values, and that the marginal distribution over the values satisfies the monotone hazard rate
and has weakly decreasing density. They show that the optimal auction takes on a form similar
to Myerson’s, but with additional pooling to enforce that no bidder is asked to pay more than
her budget, while also maintaining that no bidder has incentive to underreport her budget. Their
auction is implemented as an all-pay auction and is therefore not ex-post IR. Earlier, Laffont and
Robert (1996) and Maskin (2000) considered the case where valuations are private information but
budgets are common knowledge and identical, for the objectives of revenue and social welfare
respectively. Malakhov and Vohra (2005) study the setting where there are two bidders, one has a

3A function v ( ·) is budgeted-additive if there exists a b such that v (S ) = min{b, ∑i∈S v ( {i }) } for all S . Note that a buyer
with a budgeted-additive valuation behaves differently than an additive buyer with a budget, and that a budgeted-additive
buyer indeed has quasi-linear utilities.
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20:4 C. Daskalakis et al.

known budget constraint while the other does not. Che and Gale (2000) characterize the optimal
pricing scheme for a single item with a single bidder, with a private valuation and a budget which
may be correlated with each other. The limited special cases considered by these article point
to the difficulty of characterizing the optimal auction, which motivates the search for efficient
approximations.

Another line of work ranks different auction formats by the revenue generated in the presence of
budgets. Che and Gale (1998) compare first price, second price, and all-pay auctions, while Benoit
and Krishna (2001) compare sequential and simultaneous auctions.

In the computer science tradition, Bhattacharya et al. (2010) give a 4-approximation for multiple
items with additive valuations, but they assume that the budgets are publicly known, and the auc-
tion is not ex-post IR. Chawla et al. (2011) give a 2-approximation in a single parameter domain,
but assume that the budgets are public. They also consider private budgets, where budgets and val-
ues are independently distributed, in single parameter matroid domains, and MHR Distributions,
and give a 3(1 + e )-approximation. Finally, Cai et al. (2012), provide exactly optimal mechanisms
for multiple items, additive valuations and private budgets, but their auctions are interim-IR. Once
again, all these auctions make additional assumptions when compared to us.

Cai et al. (2013) give a general reduction from mechanism design to algorithm design, which we
use for our results. Without concern for computation, we use their framework to obtain a struc-
tural characterization of the optimal mechanism for our setting in Theorem 4.8. With concern for
computation, we show that for the special case of a single item, the algorithmic problem obtained
through this reduction is quite easy to solve optimally, resulting in computationally efficient and
exactly optimal single-item auctions with budgets. However, when there are multiple items the
resulting algorithmic problem becomes NP-hard (Chakrabarty and Goel 2010). We give a (com-
putationally efficient) 3-approximation to this algorithmic problem, which through the reduction
yields a (computationally efficient) 3-approximately optimal multi-item auction with budgets. Re-
cently, Bhalgat et al. (2013) showed that (a weaker form of) the reduction of Cai et al. (2013) could
be obtained using the simpler multiplicative weight update method instead of the ellipsoid algo-
rithm used originally, and consider the variant of our setting where the items are divisible. The
algorithmic problem in this case is once again easy. Daskalakis and Weinberg (2015) also use the
reduction in Cai et al. (2013) to design an auction for a non-linear objective, namely the makespan

of an assigment of jobs to machines.
The auction design problem has also been considered in a worst-case model, as opposed to a

Bayesian model. A standard framework is that of competitive auctions, where a bound is shown on
the ratio of the revenue of an optimal auction to the revenue of the given auction on any instan-
tiation of valuations and budgets. Borgs et al. (2005) and Abrams (2006) give constant competitive
auctions for multi-unit auctions, under an assumption of bidder dominance, that the contribution
of a single bidder to the total revenue is sufficiently small. (Devanur et al. 2013) give constant
competitive auctions for single parameter downward-closed domains with a public, common bud-
get constraint. Since the worst-case setting is decidedly more difficult than the Bayesian setting,
these results are not comparable to ours. Another line of work considers the design of Pareto-

optimal auctions: Dobzinski et al. (2008) characterize single item auctions that are Pareto-optimal,
with public budgets and show an impossibility of a similar auction for private budgets. Goel et al.
(2012) extend this auction to a more general poly-matroidal setting.

1.3 Contributions

The goals of revenue-optimality, ex-post individual rationality, and ex-post budget feasibility seem
to be at odds with one another. This is highlighted by the fact that, prior to our work, no known
auctions even approximately satisfied all three conditions, even with just a single item and private
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budgets that are independent of values. We provide a computationally efficient 3-approximation
for the significantly more general case of auctions for multiple heterogeneous goods and additive
bidders with private budgets that can be correlated with their values.

2 AN INTRODUCTORY EXAMPLE

Before getting into the full details of our model and results, we analyze a quick example. The
purpose of this example is just to show what the input might possibly look like, and what format
optimal mechanisms might possibly take. It is not meant to illustrate any computational aspects
of our result.

Consider a setting with two bidders and two items. Each bidder’s (value, value, budget) triplet
is drawn independently from the same distribution D, where D samples the triplets (2, 0, 1),
(0, 2, 1), (2, 2, 2) each with probability 1/3 (the first number refers to the bidder’s value for item
one, the second for item two, and the third is their private budget).

If there were no budget constraints (i.e., the third number were ∞ with probability one), then
the optimal mechanism would simply sell each item separately using a second-price auction with
reserve two. This auction in fact generates expected revenue equal to expected welfare and is
therefore optimal. However, the budget constraints would often be violated, so it is infeasible when
taking those into consideration. The expected revenue of this mechanism is 32/9.

If we were interested in the optimal interim IR, budget-respecting mechanism, we would instead
do the following. We could offer to each bidder the option to receive any number of items, each
independently with probability 1/2, and pay 1 per item. That is, each bidder could pay 1 to receive
item 1 w.p. 1/2, pay 1 to receive item 2 w.p. 1/2, or pay 2 to receive both items (independently) w.p.
1/2 (or nothing to receive no items). Clearly, this allocation rule is feasible, as it never promises
any item to any bidder with probability > 1/2. Moreover, each bidder will elect to pay their full
budget no matter their type: if the bidder has type (2, 0, 1) or (0, 2, 1), they will elect to purchase a
single item. If the bidder has type (2, 2, 2), they will elect to purchase both. As clearly the expected
revenue cannot exceed the expected sum of budgets, this mechanism is optimal. The expected
revenue of this mechanism is 8/3 < 32/9.

In this article, we are interested in the optimal ex-post IR, budget-respecting mechanism. Because
the previous mechanism sometimes charges a bidder a non-zero amount and gives them no items,
it is not ex-post IR. The optimal mechanism here is more complex, and doesn’t have a short proof
of optimality. The optimal mechanism is the following:

—If one bidder reports (2, 0, 1) and the other reports (0, 2, 1), the bidders each pay 1 and receive
the item they value. It is clear that no ex-post IR mechanism can generate more revenue on
these profiles, as each bidder pays their budget.

—If both bidders report (2, 0, 1), they each receive item one with probability 1/2, and pay 1
only in the event that they receive it. The (0, 2, 1) case is symmetric. It is clear that no ex-
post IR mechanism can generate more revenue on these profiles, as only one bidder can get
non-zero value, and this bidder pays their budget.

—If both bidders report (2, 2, 2), they each receive a uniformly random item and pay 2. It is
again clear that no ex-post IR mechanism can generate more revenue on these profiles, as
each bidder pays their budget.

—If one bidder reports (2, 0, 1) and the other reports (2, 2, 2), the (2, 2, 2) bidder receives item
two with probability one, item one with probability 1/2 and pays 2. The (2, 0, 1) bidder
receives item one with probability 1/2 and pays 1 in the event that they receive item one.
The (0, 2, 1) vs. (2, 2, 2) case is symmetric. It’s not obvious that no ex-post IR mechanism can
generate more revenue on these profiles, as it’s a priori not clear why we can’t instead give
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item one to the (2, 0, 1) bidder and charge her her budget, while still charging the (2, 2, 2)
bidder her budget to receive only item two. Indeed, however, this is the case as implied by
BIC constraints (but this is not at all obvious without writing down the full optimization
problem and verifying).

This mechanism generates expected revenue 20/9 < 8/3. Note that when the bidder has type
(2, 0, 1), they receive item one with probability 1/3 + 1/6 + 1/6 = 2/3 and pay 2/3 in expectation
(they never receive item two), enjoying an expected utility of 2/3. Similarly, when the bidder has
type (0, 2, 1), they receive item two with probability 2/3 and pay 2/3 in expectation (never receiving
item one), again enjoying an expected utility of 2/3. When the bidder has type (2, 2, 2), they receive
each item with probability 2/3 and pay 2 deterministically, again enjoying an expected utility of
2/3. Note that the type (2, 2, 2) would also enjoy expected utility 2/3 for reporting (2, 0, 1) or (0, 2, 1)
instead.

Proving the optimality of the above scheme is outside the scope of this article, but for the reader
familiar with techniques of Cai et al. (2016), one can start from the LP formulation in the following
section and put a Lagrangian multiplier of 1/5 on each of the two BIC constraints, guaranteeing
that the (2, 2, 2) type prefers to tell the truth rather than report (2, 0, 1) or (0, 2, 1). We won’t go
into further detail why the above proposed mechanism satisfies complementary slackness with
this proposed “partial dual,” but one key factor is that the choice to use probability 1/2 in the last
bullet above makes the (2, 2, 2) type enjoy the same utility regardless of the type they report.

Again, this example is just meant to give a sample of what format the problem input and op-
timal mechanism might take. It also illustrates some complexities of the problem we consider (as
compared to budget-less or interim IR) and motivates taking an algorithmic rather than analytic
approach.

3 PRELIMINARIES

We begin with formal definitions of the mechanism design problem we study. We then outline
the reduction of Cai et al. (2013) (Section 3.1) and its implications (Section 3.2) for our problem.
Finally,we state a related problem (Section 3.3), the generalized assignment problem, which we use
in the design of our algorithm.

Bidders. There are n bidders, each with additive valuations over m items and a hard budget
constraint. Specifically, bidder i has value vi j for item j, value

∑
j ∈S vi j for set S , and hard budget

bi . We denote by �vi the vector of bidder i’s values for all m items. We denote by Di the joint
distribution of (�vi ,bi ). We denote by D = ×iDi the joint distribution of all bidders’ valuations
and budgets.

Types and Virtual Types. We will use the following notation when referring to a bidder’s “type”
and “virtual type.”

—Valuation function: A bidder’s valuation function takes as input a set of items and outputs
their value for that set (maps 2[m] to R+).

—Value: We will use the term value to refer to a bidder’s valuation function evaluated on a
singleton set.

—Type: A bidder’s type is a function that determines their utility for every possible outcome.
For instance, if bidders are additive and quasi-linear, then their type can be represented as
a vector �v , with the convention that the bidder’s utility for receiving set S and paying p is
∑

i ∈S vi − p. Similarly, if bidders are additive with a hard budget constraint, then their type
can be represented as (�v,b), with the convention that the bidder’s utility for receiving set
S and paying p is −∞ if p > b, or

∑
i ∈S vi − p otherwise.
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—Welfare: Sums over all bidders their value for items received.
—Virtual valuation function: A bidder’s virtual valuation function is a function that maps 2[m]

to R, which may or may not be their actual valuation function.
—Virtual value: We will use the term virtual value to refer to a bidder’s virtual valuation

function evaluated on a singleton set.
—Virtual type: A bidder’s virtual type is a utility function associated to that bidder, which

may or may not be their actual type.
—Virtual welfare: Sums over all bidders their virtual value for items received.
—Virtual transformation: A (possibly randomized) mapping from valuation functions/types to

virtual valuation functions/types. We will use ϕ (often with super- and subscripts) to denote
this mapping. Note that ϕ (t ) (X ) first maps valuation function/type t to virtual valuation
function/type ϕ (t ), and then evaluates outcome X .

Mechanisms. Our goal is to design BIC mechanisms that are IR and that respect budgets ex-

post. Formally, for a (randomized) mechanism M , we can denote by xM
ij (�v, �b, r ) to be 1 if bidder

i receives item j when the profile of values/budgets reported to M is (�v, �b) and the random seed

used by M is r , or 0 otherwise. Similarly, we denote the price paid by bidder i as qM
i (�v, �b, r ) under

the same conditions. We can then define the interim allocation probability πM
ij (�vi ,bi ) to be the

probability that bidder i receives item j when reporting (�vi ,bi ) over the randomness of other

agent’s valuations and budgets, (�v−i , �b−i ), as drawn fromD−i , and the randomness in M captured
by r . We can similarly define the interim price pM

i (�vi ,bi ) to be the expected payment made by

bidder i over the same randomness. Formally, πM
ij (�vi ,bi ) = E

(�v−i ,�b−i )←D−i ,r
[xM

ij (�vi ; �v−i ,bi ; �b−i , r )]

and pM
ij (�vi ,bi ) = E

(�v−i ,�b−i )←D−i ,r
[qM

ij (�vi ; �v−i ,bi ; �b−i , r )]. Formal definitions of BIC, IR, and ex-post

budgets are below.

Definition 3.1 (Bayesian Incentive Compatible). A mechanism M is BIC if for all bidders i , and
types (�vi ,bi ), (�v ′i ,b

′
i ) the following holds:4

�vi · �πM
i (�vi ,bi ) − pM

i (�vi ,bi ) ≥ �vi · �πM
i (�v ′i ,b

′
i ) − pM

i (�v ′i ,b
′
i ).

A mechanism is said to be ϵ-BIC if for all bidders i , and types (�vi ,bi ), (�v ′i ,b
′
i ) the following holds:

�vi · �πM
i (�vi ,bi ) − pM

i (�vi ,bi ) ≥ �vi · �πM
i (�v ′i ,b

′
i ) − pM

i (�v ′i ,b
′
i ) − ϵ .

Definition 3.2 (Interim/Ex-Post Individually Rational). A mechanism M is interim IR if for all
bidders i , and types (�vi ,bi ) the following holds:

�vi · �πM
i (�vi ,bi ) ≥ pM

i (�vi ,bi ).

Further, it is ex-post IR if for all bidders i , all profiles (�v, �b), and random seeds r , we have

�vi · �xM
i (�v, �b, r ) ≥ qM

i (�v, �b, r ).

Definition 3.3 (Ex-Post Budget Respecting). A mechanism M respects budgets ex-post if for all

type profiles (�v, �b), all random seeds r , and all bidders i we have

qM
i (�v, �b, r ) ≤ bi .

4Note that bidders with budgets are often modeled as being able only to under-report their budget (but not over-report).
This could be enforced, for instance, by asking each bidder to front their budget as a refundable deposit. For a mechanism
to be BIC in such a setting, we would only require that the following holds for all types (�vi , bi ), (�v ′, b′i ) with b′i ≤ bi .
The Cai et al. framework (and therefore our results) apply in such settings, as well as when bidders can both over- and
under-report their budget (for which BIC mechanisms require the inequality to hold for all (�vi , bi ), (�v ′i , b′i )).
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20:8 C. Daskalakis et al.

Definition 3.4 (No Positive Transfers). A mechanism M has no positive transfers if for all type

profiles (�v, �b), all random seeds r , and all bidders i we have

qM
i (�v, �b, r ) ≥ 0.

3.1 Reduction from Mechanism to Algorithm Design

In recent work, (Cai et al. 2013) provide an algorithmic framework for mechanism design, showing
how to design mechanisms by solving purely algorithmic problems. We use this construction to re-
duce our mechanism design problem to an algorithm design problem and show a 3-approximation
to this algorithmic problem. In the rest of this section, we state the general formulations of the
mechanism design and the corresponding algorithm design problems considered by Cai et al.
(2013). Then we give the precise statement of their reduction, and a structural characterization
of the optimal mechanism obtained as a byproduct of their reduction. Finally, we instantiate these
to state the corresponding problems in our setting, and massage the resulting problems to simplify
them. We will provide some very high-level intuition for their reduction when appropriate, and
refer the reader to Cai et al. (2013) for further detail.

Cai et al. (2013) call the mechanism design problems of study BMeD(F ,V,O),5 where feasibility
constraints F , possible valuations V , and optimization objective O parameterize the problem.
Formally, this problem is defined as

BMeD(F ,V,O):
Input: For each bidder i ∈ [n], a finite set Ti ⊆ V , and a distribution Di over Ti , presented by
explicitly listing all types in Ti and their corresponding probability.
Output: A feasible (selects an allocation in F with probability 1), BIC, (interim) IR mechanism
for bidders drawn from D = ×iDi .
Goal: Find the mechanism that optimizes O in expectation, with respect to all BIC, IR mechanisms
(when bidders with types drawn from D play truthfully).
Approximation: An algorithm is said to be an (ϵ,α )-approximation if it finds an ϵ-BIC mechanism
whose expected value of O (when bidders drawn from D report truthfully) is at least α · OPT − ϵ .

In our problem, the feasible allocations are those that award each item to at most one bidder. So
we can denote the index set of feasible allocations as [m + 1]n (with the convention that selecting
the allocation �a awards item j to bidder aj if aj > 0, or no one if aj = 0). The possible bidder types
are all additive functions over items (with non-negative multipliers), and non-negative budgets,
which we can denote as Rm+1

+ . Our objective is revenue. To ensure that all feasible mechanisms
are ex-post IR (note that their reduction only guarantees interim IR without extra work) and ex-
post budget respecting, we will define the objective function Revenue as follows. Revenue takes

as input a valuation profile (�v, �b), an allocation �x (where xi j = 1 iff bidder i is awarded item j),

and a price vector �p. We define Revenue(�v, �b, �x , �p) =
∑

i pi , if 0 ≤ pi ≤ min{bi , �vi · �xi } for all i , or

Revenue(�v, �b, �x , �p) = −∞ otherwise. Note that when we refer to the optimal mechanism, we mean
the solution to BMeD.

Informally, the main result of Cai et al. (2013) states that, for all F ,V,O, the problem
BMeD(F ,V,O) can be solved in polynomial time with black-box access to a poly-time algorithm
for a purely algorithmic problem that they call GOOP(F ,V,O).6 Below, V× denotes the closure
ofV under addition and (possibly negative) scalar multiplications (so for instance, (Rm

+ )× = Rm ).

5BMeD stands for Bayesian Mechanism Design.
6GOOP stands for Generalized Objective Optimization Problem.
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GOOP(F ,V,O):
Input: A type ti ∈ V , multipliermi ∈ R, and virtual type дi ∈ V× for each i ∈ [n].7

Output: An allocation x ∈ F and price vector �p ∈ Rn
+.

Goal: Find arg maxx ∈F ,�p {O (�t ,x , �p) +
∑

i mipi +
∑

i дi (x )}.
Approximation: (x∗, �p∗) is said to be an α-approximation if O (�t ,x∗, �p∗) +

∑
i mip

∗
i +
∑

i дi (x∗) ≥
α · arg maxx ∈F ,�p {O (�t ,x , �p) +

∑
i mipi +

∑
i дi (x )}.

Further below, we provide much more detail on the structure of the algorithmic focus of this
article, GOOP([n + 1]m ,Rm+1

+ ,Revenue), but we first conclude our discussion of the reduction
we employ. The main result of Cai et al. (2013) states that for all ϵ > 0, an (ϵ,α )-approximation
for BMeD(F ,V,O) can be obtained from a poly-time α-approximation for GOOP(F ,V,O). The
additive error (and failure probability in the theorem statement) is due to a sampling procedure in
the execution of the reduction. We provide a full statement of their main result below.8

Theorem 3.5 (Theorem 4 of (Cai et al. 2013)). For all F ,V,O, and ϵ > 0, if there is a poly-

time α-approximation algorithm, G, for GOOP(F ,V,O), there is a poly-time (ϵ,α )-approximation

algorithm for BMeD(F ,V,O) as well. Specifically, if � denotes the input length of a BMeD(F ,V,O)

instance, the algorithm runs in time poly(�, 1/ϵ ), makes poly(�, 1/ϵ ) black box calls toG on inputs of

size poly(�, 1/ϵ ), and succeeds with probability 1 − exp(−poly(�, 1/ϵ )).

Cai et al. (2013) prove Theorem 3.5 above by considering a linear program that optimizes over the
space of interim forms that are both truthful (that satisfy the linear constraints in Definitions 3.1
and 3.2), and feasible (those that correspond to an actual mechanism that selects an outcome x ∈ F
on every profile with probability 1).9 Linear constraints enforcing that an interim form is BIC and
interim IR can be written explicitly, but a computationally efficient separation oracle for the space
of feasible interim forms is still required to solve the linear program. They show how to obtain such
a separation oracle with black-box access to an algorithm that solves GOOP, and that this entire
process preserves approximation as well. So, an execution of the ellipsoid algorithm to solve this
LP will make many queries to such a separation oracle. The separation oracle will make many
queries to an algorithm that solves GOOP. The input on which the GOOP algorithm is queried
loosely corresponds to dual variables/Lagrangian multipliers for the incentive constraints.

Cai et al. (2013) further provide a structural characterization of the space of all feasible mecha-
nisms (truthful or not), leading to a structured implementation of whatever interim form is output
by the LP. Specifically, they show that the extreme points of the space of feasible interim forms
correspond to mechanisms that associate a virtual type дi (ti ) (·) and price multipliermi (ti ) to each
type ti ∈ Ti , and then selects on profile (t1, . . . , tn ) the allocation and price vector that solves GOOP
on input t1, . . . , tn ,m1 (t1), . . . ,mn (tn ),

∑
i дi (ti ) (·). They show further that solving the linear pro-

gram explicitly finds a list of virtual types and multipliers whose resulting interim forms contain
the optimal (truthful) interim form in their convex hull. Theorem 3.6 below captures the structural
aspect of their result.

Theorem 3.6 (Implicit in Cai et al. (2013)). For all BMeD instances, the optimal mechanism

can be implemented as a distribution over generalized objective optimizers. Specifically, there exists a

distribution Δ over mappings ( f δ
1 , . . . , f

δ
n ). Each mapping f δ

i takes types ti inTi to price multipliers

7For other applications, the inputs дi ( ·) are instead sometimes called cost functions.
8The theorem statement is identical in content, but reworded for clarity and cleanliness.
9In fact, they need to work with a generalization of interim forms, called implicit forms, to accommodate non-additive
valuations. But we describe their proof for additive valuations for clarity of exposition, and because it is relevant for our
setting.
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mδ
i (ti ) ∈ R and virtual typesдδ

i (ti ) (·) ∈ V×. The optimal mechanism first samples ( f δ
1 , . . . , f

δ
n ) from

Δ, and on profile �t , selects the outcome and price vector arg maxx ∈F ,�p {O (�t ,x , �p) +
∑

i m
δ
i (ti ) · pi +

∑
i д

δ
i (ti ) (x )}.

In the section below, we provide further details surrounding instantiations of Theorems 3.5
and 3.6 as they pertain to the problem at hand.

3.2 Instantiations

The goal of this section is to provide more details of the instantiation of Theorems 3.5 and 3.6
to our setting, but not to provide proofs (for which we refer the reader to Cai et al. (2013)). We
begin by describing the linear program that the reduction of Cai et al. (2013) would solve for our
setting. Below, F ([n + 1]m ,Rm+1

+ ,Revenue) denotes the space of interim forms of all feasible (not
necessarily truthful) mechanisms. Specifically, (O, �π , �p) ∈ F ([n + 1]m ,Rm+1

+ ,Revenue) if and only
if there is a mechanism M that awards each item at most once on every profile, is ex-post IR and
ex-post budget respecting, awards bidder i item j when she reports type ti with probability exactly
πi j (ti ) (w.r.t. all other bidders’ types and the randomness in the mechanism) and chargers bidder
i price pi (ti ) in expectation (over all other bidders’ types and the randomness in the mechanism),
and whose expected revenue is exactly O . With this definition in mind, the linear program they
solve is stated below.

Variables:

—O , denoting the expected revenue of the interim form found.
—πi j (ti ) for all bidders i , items j, types ti , denoting the probability that bidder i receives item
j when reporting type ti .

—pi (ti ) for all bidders i and types ti , denoting the expected price paid by bidder i when
reporting type ti .

Constraints:

(1)
∑

j πi j (ti ) · vi j (ti ) − pi (ti ) ≥ ∑j πi j (t ′i ) · vi j (ti ) − pi (t ′i ), for all bidders i and types ti , t
′
i ,

guaranteeing that the interim form corresponds to a BIC mechanism.
(2)
∑

j πi j (ti ) · vi j (ti ) − pi (ti ) ≥ 0, for all bidders i and types ti , guaranteeing that the interim
form corresponds to an interim IR mechanism.10

(3) (O, �π , �p) ∈ F ([n + 1]m ,Rm+1
+ ,Revenue), guaranteeing that the interim form corresponds

to a feasible mechanism.

Maximizing:

—O , the expected revenue.

The solution to this LP is the interim form of the optimal mechanism. The LP can be solved
in polynomial time, so long as we have a poly-time separation oracle for the space F ([n + 1]m ,
R

m+1
+ ,Revenue). Cai et al. (2013) shows that this can be obtained via an algorithm for the related

GOOP problem, which we instantiate in our setting below.

Budgeted-Additive Virtual Welfare Maximization. As discussed above, to find (approximately)
optimal mechanisms for our setting, we need to study the purely algorithmic problem GOOP([n +
1]m ,Rm+1

+ ,Revenue), so we instantiate it below. Recall that when we write “virtual value,” we
mean the evaluation of a virtual valuation function on a singleton set. We use this language below

10Actually, this constraint is redundant as we will also enforce that the mechanism be ex-post IR to be considered feasible.
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to emphasize the specific format of the input to GOOP([n + 1]m ,Rm+1
+ ,Revenue), but also to make

the connection to the input format posed earlier.

GOOP([n + 1]m,Rm+1
+

, Revenue):
Input: Values vi j ≥ 0 and virtual values wi j ∈ R for all i, j. Budget bi ∈ R+ and price multiplier
mi ∈ R for all i .
Output: An allocation �x ∈ {0, 1}mn and prices �p such that

∑
i xi j ≤ 1 for all j (each item awarded at

most once),
∑

j xi jvi j ≥ pi (ex-post IR), pi ≤ bi (ex-post budget respecting), and pi ≥ 0 (no positive
transfers).
Goal: Find arg max�x,�p {

∑
i (mi + 1)pi +

∑
i j xi jwi j }.

Note that in the above formulation, we have folded cases where Revenue evaluates to −∞ into
feasibility constraints on the output. We make two quick further observations about the structure
of GOOP([n + 1]m ,Rm+1

+ ,Revenue), and call the reformulation Budgeted-Additive Virtual Welfare
Maximization (BAVWM). Also, for cleanliness, we will replace the input price multipliers mi by
mi − 1 so that the term in the objective will be

∑
i mipi . This is without loss of generality as each

mi could be any real number.

Observation 1. If mi > 0, the optimal choice for pi is always min{bi ,
∑

j xi jvi j }. If mi ≤ 0, the

best choice for pi is 0.

Observation 2. For all possible solutions (�x , �p), the quality of (�x , �p) for the input instance

(�v, �w, �b, �m) is the same as for the instance (�v ′, �w, �b, �m) where v ′i j = min{vi j ,bi }, for all i, j.

In light of these, we may set all negativemi to 0, and allvi j to min{vi j ,bi } without changing the
problem, leading to the following reformulation.

Budgeted-Additive Virtual Welfare Maximization:
Input: Budget bi for all agents. Valuesvi j ∈ [0,bi ] for all agents and items. Price multipliermi ≥ 0
for all agents, and virtual value wi j ∈ R for all agents and items.
Output: An allocation �x ∈ {0, 1}mn such that

∑
i xi j ≤ 1 for all j (each item awarded at most once).

Goal: Find arg max�x {
∑

i (mi min{bi ,
∑

j xi jvi j } +
∑

j xi jwi j )}.
Note that in the above formulation, we no longer need to optimize over the price vector, due to

Observation 1. The problem can now be interpreted as just a welfare maximization problem, where
bidder i’s valuation function is the sum of a budgeted-additive function (with non-negative item
values) and an additive function (with possibly negative item values). Finally, note that we can
re-formulate the above problem to remove the multipliers (mi )i from the input and the objective
by incorporating them in the bi ’s and the vi j ’s. We choose to leave them in so that it is more
transparent how the inputs to BAVWM are related to the types reported by the bidders of the
mechanism output by the Cai et al. (2013) reduction.

3.2.1 A Remark about Welfare Optimization. It is also previously unknown how to design the
welfare-optimal BIC, ex-post IR mechanism for additive bidders that respects budget constraints
ex-post (because VCG might charge payments that exceed budgets). Our same approach for rev-
enue, almost word-for-word, can be used to find (approximately) welfare-optimal mechanisms as
well. In this section, we’ll formally explain why - this will also give the reader another example
instantiating GOOP.

Define the objective function Welfare to take as input a valuation profile (�v, �b), an allocation

�x (where xi j = 1 iff bidder i is awarded item j), and a price vector �p. Define Welfare(�v, �b, �x , �p) =
∑

i xi · vi , if 0 ≤ pi ≤ min{bi , �vi · �xi } for all i , or Welfare(�v, �b, �x , �p) = −∞ otherwise. Then the
problem GOOP([n + 1]m ,Rm+1

+ ,Welfare) is defined as follows:
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GOOP([n + 1]m,Rm+1
+

, Welfare):
Input: Values vi j ≥ 0 and virtual values wi j ∈ R for all i, j. Budget bi ∈ R+ and price multiplier
mi ∈ R for all i .
Output: An allocation �x ∈ {0, 1}mn and prices �p such that

∑
i xi j ≤ 1 for all j (each item awarded at

most once),
∑

j xi jvi j ≥ pi (ex-post IR), pi ≤ bi (ex-post budget respecting), and pi ≥ 0 (no positive
transfers).

Goal: Find arg max�x,�p {
∑

i mi · pi +
∑

i j xi j (wi j +vi j )}.

Again, as each wi j can be arbitrary, we can replace (wi j +vi j ) in the objective with wi j . From
here, Observations 1 and 2 hold again, and we see that GOOP([n + 1]m ,Rm+1

+ ,Welfare) is also
equivalent to BAVWM (and therefore GOOP([n + 1]m ,Rm+1

+ ,Revenue) as well). By Theorem 3.5,
this means that BMeD([n + 1]m ,Rm+1

+ ,Welfare) can also be (approximately) solved by design-
ing (approximation) algorithms for BAVWM. As our theorem statements are already somewhat
lengthy, we will state our results in terms of Revenue, and only note here that all theorem state-
ments and proofs hold as-is after replacing Revenue with Welfare as well.

3.3 The Generalized Assignment Problem

Our main technical result will make use of a rounding algorithm for the generalized assignment

problem. We give here a statement of the problem and a rounding theorem due to Shmoys and
Tardos (1993).

Generalized Assignment Problem:
Input: Processing times pi j ∈ R+ and costs ci j ∈ R for all machines i and jobs j, capacities Ti for
all machines i .11

Output: An allocation �x ∈ {0, 1}mn of jobs to machines such that
∑

i xi j = 1 for all j (each job is
assigned) and

∑
j xi jpi j ≤ Ti (each machine processes at most its capacity).

Goal: Find arg max�x {
∑

i, j xi jci j } (total cost).12

Now, we provide an LP due to Shmoys and Tardos that outputs a fractional solution at least as
good as OPT.

Variables:

—xi j , for all machines i and jobs j, denoting the fraction of job j assigned to machine i .

Constraints:

(1)
∑

i xi j = 1, for all j, guaranteeing that every job is processed exactly once.
(2)
∑

j xi j ≤ Ti , for all i , guaranteeing that no machine’s capacity is violated.
(3) xi j = 0 if pi j > Ti .

Maximizing:

—
∑

i, j xi jci j , the total cost.

Theorem 3.7 ((Shmoys and Tardos 1993)). The optimal fractional solution to the above LP can

be rounded in polynomial time to an integral solution such that:

(1)
∑

i xi j = 1, for all j.
(2)
∑

j xi j ≤ 2Ti , for all i .
(3)
∑

j xi jci j ≥ OPT.

11Traditionally, some consider only costs ci j ∈ R+, but the result we cite applies for negative costs as well.
12Traditionally, it makes sense to minimize total cost. As costs are possibly negative, the use of max or min is irrelevant.
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4 MAIN RESULTS

In Section 4.1 below, we provide our main computational result: a poly-time approximation al-
gorithm for BAVWM, which implies a poly-time truthful mechanism for revenue maximization
that respects ex-post IR and ex-post budget constraints. In Section 4.2, we detail the structure of
the optimal mechanism in this setting, as well as our computationally efficient mechanism from
Section 4.1.

4.1 Computational Results

In this section, we provide a poly-time 3-approximation for BAVWM. We begin by writing an LP
relaxation, allowing the designer to award fractions of items as long as the total fraction awarded
doesn’t exceed 1. We split the fraction of item j awarded to bidder i into two parts, x̄i j and x̂i j .
Let x̄i j denote the fraction of item j assigned to agent i before exceeding bi . And let x̂i j denote the
fraction of item j assigned after. In other words, if xi j is the fraction of item j assigned to agent
i , we have x̄i j + x̂i j = xi j ,

∑
j x̄i jvi j ≤ bi , and

∑
j x̄i jvi j = bi if for any j, x̂i j > 0. The idea is that

assigning more of item j to agent i before exceeding his budget increases both terms in the “goal”
above, but assigning more after exceeding the budget only affects the second term. Note that there
may be numerous ways to split a fractional allocation x into “valid” x̂ , x̄ as defined above. The
following LP relaxation provides a specific construction of such x̂ , x̄ .:

Variables:

—x̄i j , for all agents i and items j, denoting the fraction of item j assigned to agent i , contribut-
ing to both the budgeted-additive and additive terms in bidder i’s (virtual) valuation.

—x̂i j , for all agents i and items j, denoting the fraction of item j assigned to agent i , contribut-
ing to just the additive term in bidder i’s (virtual) valuation.

Constraints:

(1)
∑

i (x̄i j + x̂i j ) ≤ 1, for all j, guaranteeing that no item is allocated more than once.
(2)
∑

j x̄i jvi j ≤ bi , for all i , guaranteeing that contributions to the budgeted-additive term are
not overcounted.

Maximizing:

—
∑

i j mi x̄i jvi j +
∑

i j wi j (x̄i j + x̂i j ), the virtual welfare. Note that as each mi ≥ 0 and vi j ≥ 0,
the optimal solution will never have x̂i j > 0 unless

∑
j x̄i j = bi .

It is clear that any solution to BAVWM has a corresponding fractional solution to this LP. So the
goal is to solve this LP and round the fractional solution to an integral one without too much loss.
The idea is that the feasible region now looks pretty similar to that of the generalized assignment
problem, asking for an assignment of jobs to machines such that the capacity of machine i is
at most bi . We first prove the following rounding theorem, which is a near-direct application of
Theorem 3.7.

Theorem 4.1. The optimal fractional solution to the above LP can be rounded in polynomial time

to an integral assignment such that:

(1)
∑

i (x̄i j + x̂i j ) ≤ 1 for all j.
(2)
∑

j x̄i jvi j ≤ 2bi for all i .
(3)
∑

i j mi x̄i jvi j +
∑

i j wi j (x̄i j + x̂i j ) ≥ OPT , where OPT is the value of the LP.

Proof. We show how to interpret our LP as an instantiation of a fractional LP for the gener-
alized assignment problem, and then directly apply Theorem 3.7. We use pi j to denote processing
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times, ci j to denote costs, andTi to denote capacities in the created generalized assignment problem
instance.

—Machines:
(1) A dummy machine, 0.
(2) For all bidders i , a hat machine î (corresponding to the hat variables in our LP).
(3) For all bidders i , a bar machine ī (corresponding to the bar variables in our LP).

—Jobs: A job j for all items j.
—Processing times and costs:

(1) p0j = c0j = 0 for all j. T0 = 0.
(2) p̂i j = 0 for all j. ĉi j = wi j for all j. T̂i = 0.
(3) p̄i j = vi j . c̄i j =mivi j +wi j . T̄i = bi .

The fractional LP referenced in Theorem 3.7 on this instance would then be (note that the ca-
pacity constraints for machines 0 and all î are vacuously satisfied, and that there do not exist any
i, j for which pi j > Ti by Observation 2):

Variables:

—x0j , for all jobs j, denoting the fraction of job j assigned to machine 0.
—x̄i j , for all machines i and jobs j, denoting the fraction of job j assigned to machine ī .
—x̂i j , for all machines i and jobs j, denoting the fraction of job j assigned to machine î .

Constraints:

(1) x0j +
∑

i (x̄i j + x̂i j ) = 1, for all j, guaranteeing that every job is allocated exactly once.
(2)
∑

j x̄i jvi j ≤ bi , for all i , guaranteeing that the total processing time on machine ī is at
most bi .

Maximizing:

—
∑

i j mi x̄i jvi j +
∑

i j wi j (x̄i j + x̂i j ), the cost.

It’s clear that this LP is exactly the same as our LP, just with an additional dummy bidder 0 who
collects all unallocated fractions of items. By Theorem 3.7, the optimal fractional solution to this
LP can be rounded in polynomial time to an integral solution whose total cost is at least as large,
but where the capacity of machine ī could be as large as 2bi , which is exactly an integral allocation
of items to bidders with the desired properties. �

After applying Theorem 4.1, we now have an integral solution that is at least as good as the
optimum, except our solution is infeasible. It’s infeasible because it’s “getting credit” for (virtual)
welfare in the budgeted-additive term that is perhaps up to twice the budget (i.e., up to 2bi ). An “ob-
vious” fix to this problem might be to take this integral solution and only take credit for budgeted-
additive values up to bi , thereby making the solution feasible again. Unfortunately, because the
objective is mixed sign, the resulting solution doesn’t provide any approximation guarantee.13 In-
stead, we provide a simple procedure to select a feasible suballocation of this infeasible one that
loses a factor of 3.

13Consider, for example, the following instance: there is one buyer and two items. v11 = v12 = 3, b1 = 3, w11 = w12 = −2.
Then the allocation that awards both items and “gets credit” for up to 2bi is believed to have virtual welfare 2. However, the
correctly computed virtual welfare of this allocation is actually −1, which clearly provides no meaningful approximation.
Instead we must develop a procedure that, on this instance, would allocate just one of the items.

ACM Transactions on Economics and Computation, Vol. 6, No. 3–4, Article 20. Publication date: October 2018.



Revenue Maximization and Ex-Post Budget Constraints 20:15

Theorem 4.2. Given an integral allocation �x satisfying
∑

i x̄i j + x̂i j ≤ 1 for all j,
∑

j x̄i jvi j ≤ 2bi

for all i , and
∑

i j mi x̄i jvi j +
∑

i j wi j (x̄i j + x̂i j ) = C , one can find in poly-time an integral allocation �y
such that:

(1)
∑

i (ȳi j + ŷi j ) ≤ 1 for all j.
(2)
∑

j ȳi jvi j ≤ bi for all i .
(3)
∑

i j miȳi jvi j +
∑

i j wi j (ȳi j + ŷi j ) ≥ C/3.

Proof. For each i , we wish to partition the set of items assigned to i via x̄i j (of the infeasible
integral solution), S , into three disjoint sets S1

i , S
2
i , S

3
i such that

∑
j ∈Sk

i
vi j ≤ bi for all k . This is

always possible: consider sorting the elements in decreasing order ofvi j and greedily adding them
one at a time to the Sk

i with minimal weight so far. Assume for contradiction that some item j∗,
when added, pushes some Sk

i from below bi to above bi . Then, without j∗, each of S1
i , S

2
i , S

3
i must

have had weight strictly larger than bi −vi j∗ . As the total weight in all three (without j∗) is at most
2bi −vi j∗ , this means that 2bi −vi j∗ > 3(bi −vi j∗ ) ⇒ vi j∗ > bi/2. But as we processed elements in
decreasing order ofvi j , this would imply that j∗ was the third (or earlier) item processed, meaning
that some set must have been empty, and j∗ couldn’t have possibly pushed it over the limit (as
vi j ≤ bi for all j). Therefore, at termination we must have

∑
j ∈Sk

i
vi j ≤ bi for all k . Now, define

k∗ = arg maxk {
∑

j ∈Sk
i
mivi j +wi j }. Let ȳi j = 1 iff j ∈ Sk∗

i , and ŷi j = x̂i j for all j.

It’s clear that
∑

j ȳi jvi j ≤ bi for all i . As ȳi j ≤ x̄i j for all i, j, it’s also clear that
∑

i ȳi j + ŷi j ≤ 1 for
all j. Finally, by choice of k∗ it’s also clear that

∑
i j (mivi j +wi j )ȳi j ≥

∑
i j (mivi j +wi j )x̄i j/3, and

therefore
∑

i j miȳi jvi j +
∑

i j wi j (ȳi j + ŷi j ) ≥ C/3, as desired. �

Combining Theorems 4.1 and 4.2 yields a feasible, integral allocation that is a 3-approximation
by rounding the fractional solution output by our LP, and it is easy to see that the entire procedure
runs in polynomial time.

Theorem 4.3. There is a poly-time 3-approximation algorithm for Budgeted-Additive Virtual

Welfare Maximization, which is a reformulation of GOOP([n + 1]m ,Rm+1
+ ,Revenue). Therefore, for

all ϵ > 0, there is a poly-time (ϵ, 3)-approximation algorithm for BMeD([n + 1]m ,Rm+1
+ ,Revenue).

Specifically, if � is the input length to an instance of BMeD([n + 1]m ,Rm+1
+ ,Revenue), the algorithm

terminates in time poly(�, 1/ϵ ) and succeeds with probability 1 − exp(−poly(�, 1/ϵ )).

We conclude this section with a remark about the special case of a single (or small constant)
number of items. Notice that BAVWM can be solved exactly by exhaustive search in time poly(nm ).
If m is a small constant, exhaustive search may be computationally feasible, resulting in an exact
algorithm (instead of a 3-approximation).

Remark 4.4. BAVWM can be solved exactly in time poly(nm ) by exhaustive search. There-
fore, for all ϵ > 0, there is an (ϵ, 1)-approximation algorithm for BMeD([n + 1]m ,Rm+1

+ ,Revenue).
Specifically, if � is the input length to an instance of BMeD([n + 1]m ,Rm+1

+ ,Revenue), the algo-
rithm terminates in time poly(�,nm , 1/ϵ ) and succeeds with probability 1 − exp(−poly(�, 1/ϵ )).

Finally, we remark that the single-item case is especially simpler than even the two item case.
We refer the reader to Cai et al. (2012, 2013) for complete details, but essentially the sampling
procedure that results in the ϵ error of Theorem 3.5 can be replaced by an exact computation only

in the single item case (and not even in the two item case), and ϵ can be set to exactly 0.

Remark 4.5. BAVWM with m = 1 can be solved exactly in time poly(n) by exhaustive search:
there are only n possible outcomes, corresponding to assigning the item to exactly one of
the agents. Therefore, there is a (0, 1)-approximation algorithm (i.e., an exact algorithm) for
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BMeD([n + 1],R2
+,Revenue) (i.e., the single item case). Specifically, if � is the input length to an

instance of BMeD([n + 1],R2
+,Revenue), the algorithm terminates in time poly(�), and succeeds

with probability 1.

4.2 Structural Results

In this section, we discuss the structure of the optimal mechanism, and of the computationally
efficient mechanism from Section 4.1. We begin by characterizing the optimal mechanism by com-
bining Theorem 3.6 with Observation 1.

Theorem 4.6. In any BMeD([n + 1]m ,Rm+1
+ , Revenue) instance, the optimal mechanism can be

implemented as a distribution over virtual welfare maximizers. Specifically, there exists a distri-

bution Δ over mappings ( f δ
1 , . . . , f

δ
n ). Each mapping f δ

i maps types (�vi ,bi ) ∈ Rm+1
+ to a multi-

plier mδ
i (�vi ,bi ) ∈ R+ and a vector �wδ (�v,bi ) ∈ Rm . Define ϕδ

i to be the mapping that takes as input

types (�vi ,bi ) ∈ Rm+1
+ and outputs a valuation function ϕδ

i (�vi ,bi ) (·) with ϕδ
i (�vi ,bi ) (S ) =mδ

i (�vi ,bi ) ·
min{bi ,

∑
j ∈S vi j } +

∑
j ∈S w

δ
i j (�vi ,bi ). The allocation rule of the optimal mechanism first samples

( f δ
1 , . . . , f

δ
n ) from Δ, and on profile (�v, �b), allocates the items according to arg maxS1�...�Sn ⊆[m]

{∑i ϕ
δ
i (�vi ,bi ) (Si )}. Furthermore, if mδ

i (�vi ,bi ) > 0, bidder i is charged min{bi ,
∑

j ∈Si
vi j }. If

mδ
i (�vi ,bi ) = 0, then bidder i is charged 0.

Proof. The proof starts with an application of Theorem 3.6 to the problem BMeD([n +
1]m ,Rm+1

+ ,Revenue). By Observation 1, the joint optimization over allocations x and price vectors
�p can be accomplished by transforming the optimization into one that depends only on the alloca-
tion. Once the allocation is found, optimization of the price vector follows as in Observation 1. �

We remark that the virtual types involved in Theorem 4.6 have valuation functions that are the
sum of a budgeted-additive function, and an additive function (the latter may have negative item
values). We also note that the budgeted-additive component depends in a very structured way on
the input type (�vi ,bi ). Specifically, bi is turned into a hard cap on the bidder’s maximum valuation
instead of a hard budget on her ability to pay, and the additive valuation �vi is kept the same, forming
a budgeted-additive function that is scaled by a positive multipliermi . The multipliermi and addi-
tional values �wi may show little structure with respect to the input types (or perhaps none at all).

We also remark that the structure is especially simple in the case of a single item, because a
budgeted-additive function for a single item is just a typical valuation function (where the bid-
der’s value for the item is the minimum of her value and her budget). Specifically, the virtual
type parameterized bymδ

i (vi ,bi ) and wi (vi ,bi ) values the item atmi min{vi ,bi } +wi (vi ,bi ). This
observation leads to the following simplification:

Remark 4.7. In any BMeD([n + 1],R2
+,Revenue) instance (i.e., the single item case), the optimal

mechanism can be implemented as a distribution over virtual value maximizers. Specifically, there
exists a distribution Δ over mappings ( f δ

1 , . . . , f
δ

n ). Each mapping f δ
i maps types (vi ,bi ) ∈ R2

+ to
an indicator bit mδ

i (vi ,bi ) ∈ {0, 1} and a virtual value ϕδ
i (vi ,bi ). The allocation rule of the opti-

mal mechanism first samples ( f δ
1 , . . . , f

δ
n ) from Δ, and on profile (�v, �b), allocates the item to any

bidder i∗ ∈ arg maxi {ϕδ
i (vi ,bi )} if her virtual value is non-negative, and doesn’t allocate the item

otherwise. Furthermore, if mδ
i∗ (vi∗ ,bi∗ ) = 1, bidder i∗ is charged min{bi∗ ,vi∗ }. If mδ

i∗ (vi∗ ,bi∗ ) = 0,
then bidder i∗ is charged 0.

We conclude with a statement regarding the format of our computationally efficient mechanisms
from Section 4.1 (which Theorem 4.3 states can be found computationally efficiently). This is an
instantiation of Algorithm 2 in Cai et al. (2013), which is used to prove Theorem 3.5.
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Theorem 4.8. The mechanism providing the guarantee of Theorem 4.3 has the following format:

Phase One, Find the Mechanism:

(1) Write a linear program that optimizes revenue over the space of truthful, feasible interim forms

(Section 3.2).

(2) Pick an ϵ > 0. Using the algorithm developed in Section 4.1, and the reduction of (Cai et al.

2013), solve this linear program approximately.

(3) This yields an interim form corresponding to a mechanism that is an (ϵ, 3)-approximation.

(4) The linear program also outputs auxiliary information in the form of a distribution Δ over

mappings ( f δ
1 , . . . , f

δ
n ) of the same format from Theorem 4.6.

Phase Two, Run the Mechanism:

(1) Sample a mapping from Δ (provided in Phase One).

(2) On profile (�v,b), run the approximation algorithm of Section 4.1 for BAVWM, with input bud-

gets bi , input valuesvi j , input price multipliersmδ
i (�vi ,bi ), and input virtual valueswδ

i j (�vi ,bi ).

Select this allocation.

(3) If mδ
i (�vi ,bi ) > 0, charge bidder i the minimum of their budget and their value for the items

they receive. Otherwise, charge them nothing.

Note that this mechanism has basically the same structure as the optimal mechanism, except
that on every profile it only approximately maximizes virtual welfare (and we also first have to
find the mechanism, which is completely described by the distribution Δ). In the special case of a
single item, the structure can again be simplified.

Remark 4.9. In the special case of a single item, the following algorithm finds the optimal mech-
anism in polynomial time:

Phase One, Find the Mechanism:

(1) Write a linear program that optimizes revenue over the space of truthful, feasible interim
forms (Section 3.2).

(2) Using the reduction of Cai et al. (2013) and the observation in Remark 4.5 that BAVWM
with m = 1 can be solved exactly, solve this linear program exactly. This yields an interim
form corresponding to the optimal mechanism.

(3) The linear program also outputs auxiliary information in the form of a distribution Δ over
mappings ( f δ

1 , . . . , f
δ

n ) of the same format from Remark 4.7.

Phase Two, Run the Mechanism:

(1) Sample a mapping from Δ (provided in Phase One).
(2) On profile (�v,b), award item j to any bidder i∗ ∈ arg maxi {ϕδ

i (vi ,bi )} if her virtual value is
non-negative. Don’t allocate item j otherwise.

(3) Ifmδ
i (�vi ,bi ) = 1, charge bidder i the minimum of their budget and their value for the items

they receive. Otherwise, charge them nothing.

5 CONCLUSION

In this article, we consider revenue maximizing auctions in the presence of budgets that could be
correlated with values. We want the auctions to be BIC, ex-post IR, and ex-post budget respecting.
No nice characterization of the optimal auction is known in this setting, even when there is a
single item, and when the budgets and values are drawn independently. Prior to our work, no
auction that achieves a constant factor of the optimal revenue was known for this special case
either. In this article, we provide a polynomial time algorithm that achieves a 3-approximation for
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this problem, with multiple items and additive valuations, while allowing the values and budgets
to be arbitrarily correlated for a given bidder. The types of different bidders are assumed to be
independently drawn. We note that even the algorithmic version of our problem, and, in particular,
the case where the prior is a point mass, is NP-hard to approximate within a factor of 16/15. The
technical core of the result is to design an approximation algorithm for an allocation problem with
a mixed-sign objective. The result then follows from the mechanism design to algorithm design
reduction of Cai et al. (2013).

While budget constraints occur fairly often, especially when the sums involved are huge such as
in spectrum auctions, much of the recent research into budget constraints in auctions is motivated
by ad auctions. Our results represent a step toward a principled approach to handling budgets
for this application. A natural next step would be to generalize our results to handle the more
complicated structure of allocation constraints in these auctions. Here we highlight this and other
questions for future research that our work raises.

(1) Generalize our results to the more general allocation constraints involved in ad auctions.
(2) Find similar guarantees for other classes of valuations, such as unit-demand, submodular,

weak gross substitutes, XOS, and subadditive valuations. (All of these, except unit-demand
are generalizations of additive valuations.)

(3) Extend the recent spate of simple vs. optimal auction results (Hart and Nisan 2012; Babaioff
et al. 2014; Rubinstein and Weinberg 2015; Yao 2015; Bateni et al. 2015; Goldner and Karlin
2016; Cai et al. 2016) to incorporate budgets.

(4) In the other direction, for the special case of a single item, the problem of characterizing
the optimal BIC and IIR auction, when budgets and values are correlated, has resisted all
efforts so far. In fact, even when the budgets and values are independent, characterizing
the optimal auction for all (i.e., possibly irregular) distributions is open. Very recent work
has only just now resolved this question for the case of a single bidder (Devanur and
Weinberg 2017), using techniques related to the so-called FedEx Problem (Fiat et al. 2016).
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