
Message Passing Algorithms and Improved LP
Decoding

Sanjeev Arora1

CS, Princeton Universty

and

Constantinos Daskalakis2

EECS and CSAIL, MIT

and

David Steurer

CS, Cornell University3

abstract
Linear programming decoding for low-density parity check codes (and related

domains such as compressed sensing) has received increased attention over recent
years because of its practical performance —coming close to that of iterative decod-
ing algorithms— and its amenability to finite-blocklength analysis. Several works
starting with the work of Feldman et al. showed how to analyze LP decoding us-
ing properties of expander graphs. This line of analysis works for only low error
rates, about a couple of orders of magnitude lower than the empirically observed
performance. It is possible to do better for the case of random noise, as shown by
Daskalakis et al. and Koetter and Vontobel.

Building on work of Koetter and Vontobel, we obtain a novel understanding of
LP decoding, which allows us to establish a 0.05-fraction of correctable errors for
rate-1/2 codes; this comes very close to the performance of iterative decoders and is
significantly higher than the best previously noted correctable bit error rate for LP
decoding. Our analysis exploits an explicit connection between LP decoding and
message passing algorithms and, unlike other techniques, directly works with the
primal linear program.

An interesting byproduct of our method is a notion of a “locally optimal” solution
that we show to always be globally optimal (i.e., it is the nearest codeword). Such
a solution can in fact be found in near-linear time by a “re-weighted” version of
the min-sum algorithm, obviating the need for linear programming. Our analysis
implies, in particular, that this re-weighted version of the min-sum decoder corrects
up to a 0.05-fraction of errors.

1Supported by NSF CCF-0832797, 0830673, and 0528414.
2Supported by NSF CCF-0953960 (CAREER), NSF CCF-1101491 and a Sloan Research Fellow-
ship. Part of this work was done while the author was a postdoctoral researcher at Microsoft

Research, New England.
3Part of this work was done while the author was at Princeton University, supported by NSF
CCF-0832797, 0830673, and 0528414, and a postdoctoral researcher at Microsoft Research, New

England.

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·

1. INTRODUCTION

Low density parity-check (LDPC) codes are linear codes over F2 (or its extensions)
whose constraint graph is sparse. They were introduced and analyzed by Gal-
lager [1963] in a paper that was forgotten for several decades and recalled again
only in the 1990s. Sipser and Spielman [1996] studied a subclass of these codes
in which the constraint graph has good expansion properties. For these expander
codes, they showed that a very simple bit-flipping strategy, originally suggested by
Gallager, corrects efficiently an Ω(1) fraction of (worst-case) errors, though the ac-
tual constants were quite weak. (Myriad extensions of expander codes have been
studied but will not be discussed here.)

Meanwhile, researchers in information theory rediscovered Gallager’s ideas and
began to view the decoding problem for LDPC codes as an example of Maximum a
posteriori (MAP) estimation in factor graphs (a notion that also became popular in
machine learning). Various iterative message-passing algorithms—two popular ones
being belief propagation (BP) and the min-sum algorithm—were found to empiri-
cally yield excellent decoding performance. A survey of LDPC codes and decoding
algorithms appears in [Shokrollahi 2004; Richardson and Urbanke 2001].

In a seminal paper, Richardson and Urbanke [2001], aided with some computer
calculations, were able to establish that a BP-like algorithm can decode with high
probability a (3, 6)-regular LDPC code on a binary symmetric channel with error
rate up to 0.084. This is the best bound known for any decoding algorithm, and
is not far from the empirically observed performance of BP, and the information
theoretic limit of roughly 0.11.

Our paper concerns the linear programming (LP) decoding method. This method
was introduced by Feldman, Wainwright and Karger [2005], in a paper that only
establishes a sub-linear number of correctable errors, but also notes that the empir-
ical performance of LP decoding is similar to that of message-passing algorithms.
A subsequent paper of Feldman et al. [2007] showed that the method corrects
Ω(1)-fraction of (worst-case) errors for expander codes. The proof consists of con-
structing a dual solution, inspired by Sipser and Spielman’s analysis, and yields
similar bounds: a tolerance of adversarial error rate up to 0.00017. Note that the
advantage of LP decoding over message-passing decoders is that in the case of de-
coding success, the linear program provides a certificate that the output is indeed
the nearest codeword.

Unfortunately, it has remained difficult to improve the analysis of LP decoding
to establish bounds closer to the empirically observed performance. Daskalakis et
al. [2008] were able to show a tolerance to error rate up to 0.002 —an order of mag-
nitude better than the bounds of Feldman et al. [2007] but still more than 40 times
lower than the Richardson–Urbanke [2001] bound of 0.084 for belief propagation.
Their proof constructs a more intricate dual LP solution than Feldman et al.’s, but
it is still based on expansion arguments. (Note: All the bounds in this paper are
quoted for (regular) rate 1/2 codes and the Binary Symmetric Channel.)

Intuitively, the main reason for the small bit error rates in the above analyses of
LP decoding was that these analyses were close in spirit to the Sipser and Spielman
expansion-based approach. By contrast the Richardson–Urbanke style analysis of
message passing algorithms relies upon the high girth of the graph defining the code

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 3

(specifically, the fact that high-girth graphs look locally like trees).

Nevertheless, it remained unclear how to bring girth-based arguments into the
context of LP decoding. In a recent paper, Koetter and Vontobel [2006] achieved
this. Their key idea was to use the min-sum algorithm rather than Belief-
Propagation (which uses highly nonlinear operations). They showed how to trans-
form the messages exchanged in the min-sum algorithm into an intricate dual solu-
tion. (Their construction was inspired by the Gauss–Seidel method to solve convex
programs.) Though they did not report any numbers in their paper, our calcula-
tions show that their analysis of LP decoding allows (3, 6)-regular codes to tolerate
random error rate 0.01 —a factor of 5 improvement over Daskalakis et al. [2008].

In this paper we present an improvement of the error rate by another factor of 5
to 0.05, coming very close to the performance of BP. The key ingredient in our proof
is a new approach to analyzing LP decoding. Instead of trying to construct a dual
solution as in all the previous papers, we give a direct analysis of the primal linear
program. (This also answers an open question of Feldman et al. regarding whether
a primal-only analysis is possible.) At its heart, the proof relies on the fact that
the LP relaxation is tight for trees. We use this to show that an LP solution can
be decomposed into a distribution over codewords for every tree-like neighborhood
of G so that these distributions are consistent in overlapping neighborhoods; the
type of consistency that we use is inspired by hierarchies of LP relaxations, such as
the Sherali–Adams hierarchy [Sherali and Adams 1990] (though all proofs are self-
contained and no prior knowledge is required besides basic linear programming).
We use our decomposition to define a criterion for certifying the optimality of a
codeword in the right circumstances (Theorem 2), which is quite interesting on its
own right. If the certificate exists, it can be found by a simple message-passing
algorithm (Theorem 3), and if it exists, then LP decoding works (Theorem 4).
The first such certificate was described in [Koetter and Vontobel 2006]; ours is
more general and therefore occurs with high probability for much larger error rates
(Theorems 1, 5). We note that prior to [Koetter and Vontobel 2006] no other
analyses led to message-passing algorithms that certify the correctness of their
answer.

As for the probability with which such a certificate exists, our calculation consists
of reducing the whole problem to the study of a min-sum process on a finite tree
(Definition 4), which is even amenable to analytic calculation, as done for error rate
up to 0.0247 (see Section 7.1). This consists of tracing the Laplace transform of
the messages exchanged by the min-sum process, as these messages move upwards
on the tree. We believe that this idea of recursing the Laplace transform, rather
than the density functions, of the messages is interesting on its own right and could
be useful in other settings. In our setting it is rather effective in handling the min
operators, which we cannot handle analytically if we trace the density functions of
the messages.

Combining our analytic bounds with a MATLAB calculation, we can accommo-
date error rate up to 0.05 (see Section 7.2). The method seems to break down
beyond 0.05, suggesting that getting to 0.084 would require new ideas. We note
that our analysis does not require expansion, only high enough girth (a lower bound
of Ω(log log n) on the girth is sufficient to make the probability of decoding error

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 ·

inverse polynomial in the blocklength n). Perhaps the right idea to go beyond 0.05
is to marry high-girth and expansion-based arguments, an avenue worth exploring.

An interesting byproduct of our technique is establishing that a certain re-
weighted version of the min-sum decoder corrects up to a 0.05-fraction of errors
with high probability over the binary symmetric channel for code-rate 1/2. To the
best of our knowledge, the bound of 0.05 is the best known for re-weighted min-
sum decoders over BSC for codes of rate 1/2 (c.f. [Wiberg 1996; Frey and Koetter
2001; Chen and Fossorier 2002a; 2002b; Chen et al. 2005]). As compared to the
0.084 bound for BP, ours has the advantage that with high probability the nearest
codeword can be certified to be correct.

We note that our method, being primal-only, is relatively clean —and in our
opinion, easier to understand (apart maybe from the probabilistic calculation) than
previous analyses. We also suspect that the idea of expressing primal solutions in
terms of local tree assignments may be of wider use in applications that use LP
decoding techniques and random graphs, such as in compressed sensing. Candès
and Tao [2006] (independently of Feldman et al. though somewhat later), as part of
work on compressed sensing, arrived at linear programming as a promising tool for
a variety of reconstruction problems in compressed sensing, which include decoding
random linear codes over the reals (these are not LDPC since the constraint graph
is non-sparse). Recent work such as [Guruswami et al. 2010; Indyk 2008] makes
explicit the connection between Sipser–Spielman type decoding of LDPC codes and
compressed sensing using sparse matrices.

Our Main Result. All result statements including the next one assume that the
message length n is some arbitrarily large constant; so for instance a girth of log n
or log log n is larger than any fixed constant.

Theorem 1. Let p 6 0.05 and let x ∈ {0, 1}n be a codeword of the low-density
parity check code defined by a (3, 6)-regular bipartite graph with Ω(log n) girth. Sup-
pose that y ∈ {0, 1}n is obtained from x by flipping every bit independently with
probability p. Then, with probability at least 1−exp(−nγ) for some constant γ > 0,

(1) the codeword x is the unique optimal solution to the LP decoder of Feldman et
al. [2005] (see LP (2) in Section 2); and

(2) a simple message-passing (dynamic programming) algorithm running in time
O(n · log2 n) can find x and certify that it is the nearest codeword to y.

For LDPC codes defined by general (dL, dR)-regular graphs, we have the same con-

clusion whenever dL, dR, and p satisfy the conditions p < 1− 2
− 1

dR−1 and

√
p
(
1− (1− p)dR−1

) dL−2

2 (1 − p)
(dR−1)(dL−2)

2 + 1
2 <

1

(dR − 1) · 2dL−1
. (1)

The running time is still O(n · log2 n) with the constant hidden inside the O(·)
depending on dL, dR, p.

Remark 1. If we are content with a decoding success probability of 1−1/poly(n),
then Ω(log log n) girth is sufficient for the results in the previous theorem. The
running time of the message-passing algorithm is reduced to O(n(log log n)2).

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 5

2. PRELIMINARIES

Low-density parity check codes. Let G be a simple bipartite graph with bipar-
tition (VL, VR), left degree dL, and right degree dR. Let n be the number of left
vertices, and m be the number of right vertices. We will assume that VL is the set

[n]
def
= {1, . . . , n}. For two vertices u and v of G, we let d(u, v) be the distance of

u and v in G. We denote by N(u) the set of neighbors of u. Similarly, N t(u) is
the set of vertices at distance t from u. We denote by B(u, t) (for “Ball”) the set
of vertices at distance at most t from u.

The parity-check code defined by G is the set of all 0/1 assignments to the left
vertices such that every right vertex has an even number of neighbors with value 1,

C(G)
def
= {x ∈ {0, 1}n |

∑
i∈N(j)xi ≡ 0 mod 2, for all j ∈ VR} .

The elements of C(G) are called codewords. Note that if we allow general graphs
then any linear code can be realized as parity check code C(G) for some (generally
irregular) graphG. In this paper, we will only deal with sparse (low-density) graphs,
that is, the degrees dL and dR will be constants.

In the following, we refer to the vertices in VL and VR as variable nodes and check
nodes, respectively.

LP Decoding. In the nearest codeword problem for the code C(G), we are given
a vector y ∈ {0, 1}n and the goal is to find a codeword x ∈ C(G) so as to minimize
the Hamming distance ‖x− y‖1.

In [Feldman and Karger 2002; Feldman et al. 2005], Feldman et al. introduced
the following LP relaxation for this problem:

Minimize ‖x− y‖1 (2)

subject to x ∈
⋂
j∈VR

Conv Cj , (3)

where ConvX denotes the convex hull of a set X of bit vectors, and Cj is the set
of bit vectors satisfying constraint j ∈ VR,

Cj
def
=
{
x ∈ {0, 1}n |

∑
i∈N(j)xi ≡ 0 mod 2

}
.

We call x ∈ [0, 1]n an LP solution if it satisfies (3). We say x is an optimal LP
solution given y if x is an LP solution that achieves the minimum distance (2) to y.
An optimal LP solution can be computed in time polynomial in n. In this paper,
we are interested to find conditions under which the solution of this LP coincides
with the nearest codeword to y.

Before concluding this section, we note that ‖x− y‖1 is an affine linear function
of x ∈ [0, 1]n for any fixed y ∈ {0, 1}n, since ‖x − y‖1 = ‖y‖1 +

∑n
i=1(−1)yixi, for

all x ∈ [0, 1]n.

3. CERTIFYING THE NEAREST CODEWORD

Throughout this section and the next, y ∈ {0, 1}n is the received word and x ∈ C(G)
is a codeword which we are trying to certify as the nearest codeword to y. We
present a certificate based on local checks that is inspired by and generalizes the

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 ·

key idea in the calculation of Koetter and Vontobel [2006]. The motivation for this
generalization is that it allows certification/decoding in the presence of much higher
noise. Our proof that this certificate works is also quite different. It is designed to
easily carry over to prove that x is also the unique fractional solution to the LP.

To understand the certificate, imagine two different codewords x and x′. When-
ever x and x′ differ in a certain bit, say the one corresponding to i0 ∈ VL then
they must look very different in the neighborhood of i0 in the constraint graph.
Indeed, since x, x′ differ at i0, in order to satisfy the dL parity constraints in N(i0)
(i.e., those that are adjacent to i0), codeword x′ must actually also differ from x
in some other variables that are in N2(i0). Of course, then those other variables
appear in some other constraints in N3(i0), thus necessitating yet more variables
to be flipped in N4(i0), and so on for at least as long as the neighborhood around
i0 looks locally like a tree. (Note that the variable nodes in B(i0, 2T) have even
distance to i0 and the check nodes have odd distance.) Since the girth of the graph
is large, this effect propagates quite a while, implying that x, x′ differ along a large
subtree rooted at i0 in the graph.

Hence if x is not the closest codeword to y, then one could hope that this might
show up locally in the neighborhood of some bit i0: flipping this single bit in x would
trigger a cascade of other bit flips, which might end up lowering the distance to y.
If so, then x would be locally suboptimal. Note that the induced graph on B(i0, 2T),
T 6 1

4girth(G), is a tree (with degrees dL, dR respectively at even and odd levels),
and so one can hope to find the best local perturbation from x—in the sense we
will define below—efficiently via dynamic programming, and thus efficiently test
for local optimality of x.

The above intuitive description raises the question: if x is globally suboptimal
(i.e., not the nearest codeword to y), is it also locally suboptimal? The practical
success of message-passing algorithms gives us hope that the answer may often
be “yes.” Such algorithms are local in the following sense: after t < 1

4girth(G)
iterations, the value computed for the variable i is a “guess” for xi given the infor-
mation in the neighborhood B(i, 2t); in this sense, after t rounds message passing
algorithms compute a “locally optimal” solution. Several notions of “local opti-
mality” were implicit in the algorithms of [Wiberg 1996; Frey and Koetter 2001;
Chen and Fossorier 2002a; 2002b; Chen et al. 2005]. Our notion of local optimality
generalizes the notions used in all of these papers, and our interest centers around
showing that local optimality implies global optimality. (The reader confused by
the stream of ideas coming next may wish to focus on the next two definitions and
then study the simple proofs in Section 4 to understand the essence of our idea.)

Our notion of local optimality is given in Definition 2 and requires the following
definition generalizing Wiberg [1996].

Definition 1. (Minimal Local Deviation) Let T < girth(G)/4. An assignment
β ∈ {0, 1}n is a valid deviation of depth T at i0 ∈ VL or, in short, a T -local
deviation at i0, if βi0 = 1 and β satisfies all parity checks in B(i0, 2T), i.e.,

∀j ∈ VR ∩B(i0, 2T) :
∑

i∈N(j)

βi ≡ 0 mod 2 .

(Notice that β need not be a codeword since we do not insist that the check nodes

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 7

beyond level 2T from i0 are satisfied.)
A T -local deviation β at i0 is minimal if βi = 0 for every i 6∈ B(i0, 2T) ∩ VL,

and every check node j in B(i0, 2T) has at most two neighbors with value 1 in β.
Note that a minimal T -local deviation at i0 can be seen as a subtree of B(i0, 2T) of
height 2T rooted at i0, where every variable node has full degree and every check
node has degree 2. We will refer to such trees as skinny trees.

An assignment β ∈ {0, 1}n is a minimal T -local deviation if it is a minimal T -local

deviation at some i0. Note that given β there is a unique such i0
def
= root(β).

If w = (w1, . . . , wT) ∈ [0, 1]T is a weight vector and β is a minimal T -local
deviation, then β(w) denotes the w-weighted deviation

β
(w)
i =

{
wtβi if d(root(β), i) = 2t and 1 6 t 6 T ,

0 otherwise .

In particular, notice that β
(w)
root(β) = 0. (End of Definition 1.)

For two vectors u, v ∈ {0, 1}n, we denote by u ⊕ v the coordinate-wise sum of
u and v modulo 2. We extend this notation to fractional vectors in the following
way: If u ∈ {0, 1}n and v̄ ∈ [0, 1]n, then u⊕ v̄ ∈ [0, 1]n denotes the vector with ith

coordinate |ui − v̄i|. Note that, for a fixed vector u ∈ {0, 1}n, u⊕ v̄ is affine linear
in v̄. Hence, for any distribution over vectors v ∈ {0, 1}n and a fixed bit vector u,
we have Eu⊕ v = u⊕ (E v).

The next definition tries to capture whether or not local changes to x can increase
the distance from y. While our previous discussion may suggest that it suffices to
consider the weight vector w = 1, 4 we will see later that the overall analysis can
be improved by allowing more general weight vectors. In particular, our results on
local-optimality implying global-optimality (Theorems 2 and 4) remain unaffected
by the use of more general vectors, but different choices of w allow more flexibility
resulting in better error rates in Theorem 5. It is still mysterious to us what
the optimum choice of w is, and a theory for calculating it is left as an open
problem in this paper. Intuitively, adjusting w allows us to improve the likelihood
that local information in the neighborhood of variable i0 predicts correctly the
value of variable i0. At the very least it should be clear that the vector w =
(1, 2−1, . . . , 21−T) is more “natural” than 1 since it gives equal weight to every
level of a skinny tree (recall that the number of nodes in a skinny tree doubles with
(half) the distance from the root). Indeed, this vector is the one we use to compute
the 0.05 bound on error rate claimed in the Introduction.

Definition 2. (Local optimality) If w = (w1, . . . , wT) ∈ [0, 1]T is a weight vector
(with at least one positive coordinate) and T < girth(G)/4 then a codeword x ∈
{0, 1}n is (T,w)-locally optimal for y ∈ {0, 1}n if for all minimal T -local deviations
β,

‖x⊕ β(w) − y‖1 > ‖x− y‖1 .

4Whenever we refer to the weight vector w = 1 in this section we abuse Definition 1, by setting

β
(w)
root(β)

= βroot(β) (instead of 0).

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 ·

Remark: Somewhat confusingly, a globally optimal codeword does not necessarily
have to be locally optimal (even with respect to the weight vector w = 1) because
the definition of local optimality ignores what happens beyond radius T , and also
restricts attention to minimal deviations.

Note that if x is locally optimal then this is some intuitive evidence that x is
the nearest codeword, since changing x in just one variable i0 seems to cause the
distance from y to increase in the immediate neighborhood of i0. Koetter and
Vontobel [2006] make this intuition precise for w = 1, in which case they show
that a locally optimal x is also globally optimal, that is, the nearest codeword to y.
(In fact, all previous theoretical analyses of message passing algorithms have some
notion of local optimality but none of them were known to imply global optimality.)
Our proof works for general w.

Theorem 2. Let T < 1
4 girth(G) and w = (w1, . . . , wT) be any non-negative

weight vector with at least one positive coordinate.

(1) If x is a (T,w)-locally optimal codeword for y ∈ {0, 1}n, then x is also the
unique nearest codeword for y.

(2) Moreover, given w, x, and y a simple dynamic programming algorithm running
in time O(dLdR|w| · T · n log n) can certify that x is a (T,w)-locally optimal
codeword for y, where |w| is the number of bits required to represent a coordinate
of the weight vector w.

Observe that since the local neighborhood at each node i0 is tree-like, the minimal
T -local deviation β at i0 that minimizes ‖x ⊕ β(w) − y‖1, for a given pair of x
and y, can be computed by a simple dynamic programing algorithm in time near-
linear in the size of the neighborhood. Theorem 2(b) shows that it is possible to
interleave these computations for all possible i0’s achieving an overall running time
of O(T · n log n) (which is near-linear since we are going to choose T = O(log n)
or T = O(log log n) later in the proof). The details of the dynamic program are
presented in Section 4. (The running times quoted in this paragraph are hiding the
dependence on the degrees dL, dR and the description complexity of vector w. For
the precise running time see the statement of Theorem 2.)

Theorem 2 implies that we can certify that x is the nearest codeword for y by
verifying the local optimality condition. It raises two questions:

(1) How can we find a locally optimal codeword if it exists?

(2) What is the chance that the nearest codeword satisfies the local optimality
condition?

The first question has been studied in the context of message-passing algorithms.
For w = 1, Wiberg [1996] showed that the well-known min-sum decoding algorithm
can find locally optimal codewords. Other specific weight functions were suggested
and analyzed in several works [Frey and Koetter 2001; Chen and Fossorier 2002a;
2002b; Chen et al. 2005]. We show how to make min-sum decoding work for ar-
bitrary weight vectors (which allows much more freedom in deriving analytic error
bounds). The proof of the following theorem and details of the algorithm are pre-
sented in Section 5.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 9

Theorem 3. Let T < 1
4 girth(G) and w = (w1, . . . , wT) be a non-negative

weight vector with at least one positive coordinate. Suppose that x is a (T,w)-
locally optimal codeword for y ∈ {0, 1}n. Then the w-reweighted min-sum algo-
rithm on input y computes x in T iterations. The running time of the algorithm
is O(dLdR|w| · T · n log n), where |w| is the number of bits required to represent a
coordinate of the weight vector w.

Since the focus of this paper is on LP decoding, we next address whether LP
decoding can find locally optimal solutions. To this end we extend Theorem 2 in
order to show that a locally optimal solution is not only the nearest codeword to y
but also the unique optimal LP solution given y. For the case w = 1, this was also
established by Koetter and Vontobel [2006].

Theorem 4. Let T < 1
4 girth(G) and w = (w1, . . . , wT) be any non-negative

weight vector with at least one positive coordinate. Suppose that x is a (T,w)-
locally optimal codeword for y ∈ {0, 1}n. Then x is also the unique optimal LP
solution given y.

The proof for w = 1 in [Koetter and Vontobel 2006] proceeded by constructing an
appropriate dual solution in an iterative manner. Our proof in Section 6 yields a
more general result, and is completely different, since it only looks at the primal
LP.

Now we address the second question mentioned above, regarding the probability
that the nearest codeword is locally optimal. (Showing higher probabilities for this
event was the main motivation for introducing general weight vectors w.) We prove
the following theorem in Section 7. The theorem asserts the existence of certain
weight vectors. Their explicit choices are described in the proof. We just note
here that each coordinate of these vectors may only be a function of dL, dR and
p, and in particular does not depend on n. We also note that we did not address
the question of numerically computing/approximating these weight vectors. Their
computation is irrelevant as far as proving the success of the Linear Programming
decoder goes, but is needed if one chooses to instead use the w-reweighted min-sum
decoder of Theorem 3, or wants to certify the optimality of the codeword output
by the decoder, using the algorithm of Theorem 2.

Theorem 5. Let G be a (dL, dR)-regular bipartite graph and T < 1
4girth(G).

Let also p ∈ (0, 1) and x ∈ {0, 1}n be a codeword in C(G). Finally, suppose that y
is obtained from x by flipping every bit independently with probability p.

(1) If dL, dR, and p satisfy the condition

min
t>0

{(
(1− p) e−t + p et

)
·
(
(1− p)dR−1 e−t + (1− (1− p)dR−1) et

)dL−2
}
<

1

dR − 1
, (4)

then x is (T,1)-locally optimal with probability at least 1− n · c1−(dL−1)T−1

for
some c > 1. For (dL, dR) = (3, 6), Condition (4) is satisfied whenever p 6 0.02.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 ·

(2) If dL, dR > 2 and p satisfy the conditions p < 1− 2
− 1

dR−1 and

√
p
(
1− (1− p)dR−1

) dL−2

2 (1 − p)
(dR−1)(dL−2)

2 + 1
2 <

1

(dR − 1) · 2dL−1
, (5)

then there exists a weight vector w ∈ [0, 1]T such that x is (T,w)-locally optimal

with probability at least 1−n · c′ · c1−(dL−1)T−1

for some constants c′ and c > 1.
For (dL, dR) = (3, 6), Condition (5) is satisfied whenever p 6 0.0247.

(3) There exists a weight vector w such that, if (dL, dR) = (3, 6) and p 6 0.05, then

x is (T,w)-locally optimal with probability at least 1− n · c′ · c−2T−16

for some
constants c′ and c > 1.

Given Theorems 2, 3, 4, and 5 we can obtain the proof of Theorem 1 as
follows. Suppose that n = Ωp,dL,dR(1) is a large enough constant and take
T = Θ(log n) < 1

4girth(G). From Theorem 5, there exists a weight vector w such
that, with probability at least 1−exp(−nγ) for some constant γ depending linearly
on the leading constant in front of log n in the choice of T (as well as on p, dL, dR),
the codeword x is (T,w)-locally optimal. From Theorem 4 it follows then that x
is the unique optimal LP solution given y. Also, from Theorem 3, it follows that x
can be found by the w-reweighted min-sum algorithm in T = O(log n) iterations,
so time OdR,dL,p(n log2 n) overall, and by Theorem 2 it can be certified that x is the
nearest codeword to y. (If the girth is Ω(log log n) then the decoding still succeeds
with probability 1− 1/poly(n).)

4. LOCAL OPTIMALITY IMPLIES GLOBAL OPTIMALITY

Proof of Theorem 2. In this section y ∈ {0, 1}n is the received word, x ∈ {0, 1}n
is a locally optimal codeword in C(G), and x′ ∈ {0, 1}n is a codeword different from
x. We wish to show ‖x′ − y‖1 > ‖x− y‖1.

The following lemma is the key to our proof of Theorem 2, and may be viewed
as one of our key new contributions.

Lemma 1. Let T < 1
4girth(G). Then, for every codeword z 6= 0, there exists a

distribution over minimal T -local deviations β such that, for every weight vector
w ∈ [0, 1]T ,

Eβ(w) = αz ,

where α ∈ [0, 1] is some scaling factor depending upon w.

Before proving the lemma, let us first see how we can finish the proof of Theorem 2
using such a distribution over minimal local deviations. This proof (as well as the
related proof of Theorem 4) is at the heart of our paper.

Proof of Theorem 2. Let x be a (T,w)-locally optimal codeword for y ∈
{0, 1}n. We want to show that for every codeword x′ 6= x, the distance to y
increases, that is, ‖x− y‖1 < ‖x′− y‖1. The main idea is to observe that z = x⊕x′
is also a codeword, and hence by Lemma 1, there exists a distribution over minimal
T -local deviations β such that Eβ(w) = αz for the codeword z = x⊕ x′. Now it is
easy to complete the proof using local optimality of x. Let f : [0, 1]n → R be the

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 11

affine linear function f(u) = ‖x⊕ u− y‖1 = ‖x− y‖1 +
∑n
i=1(−1)xi+yiui. Now,

‖x− y‖1 < E‖x⊕ β(w) − y‖1 (by local optimality of x)

= ‖x⊕ (αz)− y‖1 (affine linearity of f)

= α‖x′ − y‖1 + (1− α)‖x− y‖1 (aff. lin. of f) ,

which implies ‖x− y‖1 < ‖x′ − y‖1 as desired.
To conclude the proof of the theorem we argue that certifying that a given x

is a (T,w)-locally optimal codeword for a given y ∈ {0, 1}n can be carried out in
O(dLdR|w| · T · n log n) time with dynamic programming, where |w| is the number
of bits required to represent each coordinate of the weight vector w. The algorithm
proceeds in T iterations, where each iteration comprises two phases. In the first
phase of iteration t = 1, . . . , T , for every pair of adjacent variable and check nodes
(u, v) ∈ E(G) ∩ VL × VR, variable node u sends a message µtu→v ∈ R{0,1} to check
node v, while in the second phase of the iteration a message µtv→u ∈ R{0,1} is sent
in the opposite direction of the edge. The messages are as follows

(1) Initialization: For all (u, v) ∈ VL × VR ∩ E(G), zu ∈ {0, 1}:

µ1
u→v(zu) = |yu − |xu − wT · zu||.

(2) Variable-to-check node message: For all (u, v) ∈ VL × VR ∩ E(G), zu ∈ {0, 1},
t > 1:

µtu→v(zu) = |yu − |xu − wT−t+1zu||+
∑

v′∈N(u)\{v}

µt−1
v′→u(zu).

(3) Check-to-variable node message: For all (v, u) ∈ VR × VL ∩ E(G), t > 1:

µtv→u(0) =
∑

u′∈N(v)\{u}

µtu′→v(0);

µtv→u(1) = min
x ∈ {0, 1}N(v)\{u}: ||x||1 6 1

∑
u′∈N(v)\{u}

µtu′→v(xu′).

(4) Termination: After iteration T is completed every variable node u ∈ VL com-
putes:

µu = |yi0 |+
∑

v∈N(i0)

µTv→i0(1).

It is easy to see that, for all u ∈ VL, the message µu computed by the algorithm
described above equals the minimum ‖x ⊕ β(w) − y‖1 over all minimal T -local
deviations β at u. Hence, comparing the computed µu’s against ‖x − y‖1 will
certify correctly the local optimality of x. The running time of the algorithm is
O(dLdR|w| · T · n log n), where |w| is the number of bits required to represent each
coordinate of the weight vector w. Indeed, there are O(dLnT) messages computed
in the course of the algorithm (since there are O(T) iterations and there are O(dLn)
messages computed in each iteration), each message has size O(|w| log n), and takes
time O(dR|w| log n) to compute.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 ·

4.1 Proof of Lemma 1

Constructing Distributions over Minimal Local Deviations for Codewords. Let
z ∈ {0, 1}n be a codeword. We want to construct a distribution over minimal local
deviations such that the mean of the distribution (viewed as a vector in <n) is
proportional to z.

For every variable node i ∈ VL with zi 6= 0, we define a distribution over subtrees
τi of G of height 2T rooted at i: The idea is that we grow τi minimally and
randomly inside the non-zeros of z starting from the variable node i. Consider
the neighborhood B(i, 2T) and direct the edges away from the root i. Remove all
variable nodes in this neighborhood with value 0 in z. Remove now the vertices
that are no longer reachable from i. This leaves a tree (rooted at i) in which the
degree is a nonzero even number at each check node and dL at each variable node.
In this remaining tree, pick a random subtree τi with full out-degree at variable
nodes and out-degree 1 at check nodes.

Suppose now that we choose such a tree τi for all i with zi 6= 0, such that these
trees are mutually independent. Independently from the choices of the trees, we
also choose i0 uniformly at random from the support of z (that is, we pick i0 with
probability zi0/‖z‖1), and define β as

βi =

{
1 if i ∈ τi0 ,
0 otherwise.

We denote by P the joint probability measure over the trees {τi}i:zi 6=0, the variable
node i0 and the assignment β. Before concluding the proof of Lemma 1, we make a
few observations about the random subtrees τi. First, the number of nodes at level
2t 6 2T of any tree τi is always exactly dL(dL−1)t−1 (the root has out-degree dL).
Second, for any two variable nodes i, i′ with zi = zi′ = 1 the above process treats
them symmetrically:

P {i′ ∈ τi} = P {i ∈ τi′} . (6)

Indeed, if d(i, i′) > 2T , then both of the probabilities are 0 (since the height of
the trees is 2T). Otherwise, the nodes i, i′ are connected by a unique path of
length 6 2T , say (i, j0, i1, j1, . . . , it−1, jt−1, i

′). If there exists some variable node
i`, ` ∈ {1, . . . , t − 1}, in this path with zi` = 0 then both of the probabilities are
zero. Otherwise, let dr =

∑
i∈N(jr) zi be the number of neighbors of jr that are in

the support of z. Then both of the probabilities in (6) are equal to

1

(d0 − 1) · · · (dt−1 − 1)
,

which completes the proof of the claim in (6).
Armed with these observations, we can analyze our distribution over minimal

local deviations β: If zi = 0, then βi = 0 with probability 1. Hence, we may

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 13

assume zi = 1. Then,

Eβ(w)
i =

T∑
t=1

wt
∑

i′∈N2t(i)
zi′=1

P {i0 = i′}P {i ∈ τi′}

(6)
=

T∑
t=1

wt
∑

i′∈N2t(i)
zi′=1

1
‖z‖1P {i

′ ∈ τi}

= 1
‖z‖1

T∑
t=1

wt E
∣∣τi ∩N2t(i)

∣∣
= 1
‖z‖1

T∑
t=1

wt · dL(dL − 1)t−1

Therefore, we have the desired conclusion Eβ(w) = αz with α =
∑T
t=1 wt · dL(dL−

1)t−1/‖z‖1.

5. FINDING LOCALLY OPTIMAL CODEWORDS

We briefly describe how to find a (T,w)-locally optimal codeword for a given y ∈
{0, 1}n if such a codeword exists. The algorithm is a weighted version of the min-
sum algorithm (see, e.g., Chapter 3 of [Wiberg 1996]). It proceeds in T iterations,
T < 1

4girth(G), where each iteration comprises two phases. In the first phase of
iteration t = 1, . . . , T , for every pair of adjacent variable and check nodes (u, v) ∈
E(G) ∩ VL × VR, variable node u sends a message µtu→v ∈ R{0,1} to check node v,
while in the second phase of the iteration a message µtv→u ∈ R{0,1} is sent in the
opposite direction of the edge. The messages are as follows

(1) Initialization: For all (u, v) ∈ E(G) ∩ VL × VR, zu ∈ {0, 1}:

µ1
u→v(zu) = |wT · zu − yu|.

(2) Variable-to-check node message: For all (u, v) ∈ E(G) ∩ VL × VR, zu ∈ {0, 1},
t > 1:

µtu→v(zu) = |wT−t+1 · zu − yu|+
∑

v′∈N(u)\{v}

µt−1
v′→u(zu).

(3) Check-to-variable node message: For all (v, u) ∈ E(G) ∩ VR × VL, zu ∈ {0, 1},
t > 1:

µtv→u(zu) = min
x :

∑
u′∈N(v) xu′ ≡ 0 mod 2

and xu = zu

∑
u′∈N(v)\{u}

µtu′→v(xu′).

(4) Termination: After iteration T is completed, every variable node u ∈ VL com-
putes:

zTu = arg min
xu∈{0,1}

{
yu +

∑
v′∈N(u)

µTv′→u(xu)
}
.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 ·

We show the following lemma.

Lemma 2. If x is a (T,w)-locally optimal codeword for y ∈ {0, 1}n and T <
1
4girth(G), then for all u the values computed at termination by the above algorithm
satisfy:

zTu = xu.

Proof. Due to the symmetry of the code we can assume, without loss of gen-
erality, that x = (0, 0, . . . , 0). Hence, we want to establish that, for all u, zTu = 0.
For χ ∈ {0, 1}n let us define:

χ
(w)
i =

{
wtχi if d(u, i) = 2t and 1 6 t 6 T ,

0 otherwise .

It is clear from the definition of our algorithm that, for every variable node u and
because T < 1

4girth(G),

zTu = arg min
χ ∈ {0, 1}n: χ satisfies all
check nodes in B(u, 2T)

{
||χ(w) − y||1

}
. (7)

Now we use the following decomposition lemma due to Wiberg (see Lemma 4.3
in [Wiberg 1996]).

Lemma 3. For s ∈ {0, 1} let

Bs := {χ ∈ {0, 1}n | χ satisfies all check nodes in B(u, 2T) and χu = s}.

Moreover, let E be the set of minimal T -local deviations at u. Then any χ ∈ B1 can
be decomposed as χ = χ′+ e, where χ′ ∈ B0, e ∈ E and χ′, e have disjoint supports
(i.e, for all u′ ∈ VL, χ′u′ and eu′ cannot be both 1).

Armed with this lemma we can conclude the proof. Indeed, assume that zTu = 1.
Then (7) implies that there exists some χ̂ ∈ B1 such that

||χ̂(w) − y||1 6 ||χ′(w) − y||1,∀χ′ ∈ B0,

where B0 and B1 are defined as in Lemma 3. But the same lemma implies that

χ̂ = χ′ + e,

where χ′ ∈ B0, e ∈ E and χ′, e have disjoint support. It is easy to check that

||χ̂(w) − y||1 = ||χ′(w) − y||1 + ||e(w) − y||1 − ||y||1.

Combining the last three equations we have that

||e(w) − y||1 6 ||y||1,

a contradiction to our assumption that 0n is (T,w)-locally optimal for y at u.

Hence, the algorithm described above computes a (T,w)-locally optimal code-
word for a given y ∈ {0, 1}n, if such a codeword exists. The running time of the
algorithm is O(dLdRn · |w| ·T 2 · log(dLdR)), where |w| is the number of bits required
to represent each coordinate of the weight vector w. Indeed, there are O(dLnT)

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 15

messages computed in the course of the algorithm (since there are O(T) iterations
and there are O(dLn) messages computed in each iteration), each message has bit
length O(|w|·T ·log(dLdR)), and takes time O(dR ·|w|·T ·log(dLdR)) to compute. To
argue the latter we use a straightforward dynamic program to do the minimization
of Step (3) in O(dR · |w| · T · log(dLdR)) bit operations.

6. LOCAL OPTIMALITY IMPLIES LP OPTIMALITY

Proof of Theorem 4. Let x ∈ {0, 1}n be a codeword in C(G) and let y ∈ {0, 1}n.
The following lemma is completely analogous to Lemma 1, and follows from the
fact that LP solutions look locally like distributions over codewords.

Lemma 4. Let T < 1
4 girth(G) and w ∈ [0, 1]T . Then for every non-zero LP

solution z ∈ [0, 1]n, there exists a distribution over minimal T -local deviations β
such that

Eβ(w) = αz ,

where α
def
=
∑T
t=1 wt

dL(dL−1)t−1

‖z‖1 .

Using a distribution over minimal local deviations from Lemma 4, we can prove
Theorem 4 in almost the same way as Theorem 2 in the previous section. The
only additional ingredient is the following simple property of LP solutions. Recall
that for x ∈ {0, 1}n and x′ ∈ [0, 1]n, we denote by x ⊕ x′ the vector whose ith
coordinate is |xi − x′i|. The next lemma is straightforward using the observation
that the defining property of an LP solution (specifically, (3)) is that locally (for
every check node) it can be viewed as a convex combination of even-parity vectors.

Lemma 5. Let x be a codeword and x′ be an LP solution (i.e., it satisfies (3)).
Then x⊕ x′ is also an LP solution.

Now we can prove the main theorem.

Proof of Theorem 4. Let x be a (T,w)-locally optimal codeword for y ∈
{0, 1}n. We want to show that for every LP solution x′ 6= x, the distance to y
increases, that is, ‖x − y‖1 < ‖x′ − y‖1. By Lemma 4, there exists a distribution
over minimal T -local deviations β such that Eβ(w) = αz for the LP solution z =
x ⊕ x′. Let f : [0, 1]n → R be the affine linear function f(u) = ‖x ⊕ u − y‖1 =
‖x− y‖1 +

∑n
i=1(−1)xi+yiui. Now,

‖x− y‖1 < E‖x⊕ β(w) − y‖1 (by local optimality of x)

= ‖x⊕ (αz)− y‖1 (affine linearity of f)

= α‖x′ − y‖1 + (1− α)‖x− y‖1 (aff. lin. of f) ,

which implies ‖x− y‖1 < ‖x′ − y‖1 as desired.

6.1 Proof of Lemma 4

Constructing Distributions over Minimal Local Deviations for LP Solutions. Let
z ∈ [0, 1]n be a non-zero LP solution. The proof of the current lemma is very similar
to the proof of Lemma 1 (the integral case). The following lemma is essentially the
only additional ingredient of the proof.

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 ·

Lemma 6. For every nonzero LP solution z and every j ∈ VR, we can find a
function ρj : VL × VL → R+ such that

(1) for every neighbor i ∈ N(j)

zi =
∑

i′∈N(j)\{i}

ρj(i, i
′) ,

(2) for any two neighbors i, i′ ∈ N(j),

ρj(i, i
′) = ρj(i

′, i) .

Proof. Since z is an LP solution, it is a convex combination of assignments in
Cj = {γ ∈ {0, 1}n |

∑
i∈N(j) γi ≡ 0 mod 2}. Hence, there are multipliers αγ > 0

with
∑
γ∈Cj αγ = 1 such that z =

∑
γ∈Cj αγγ. Now we can define ρj(i, i

′) as

ρj(i, i
′) =

∑
γ∈Cj

γi=1,γi′=1

αγ
γiγi′∑

i′′∈N(j)\{i} γi′′
.

The second property (symmetry) follows from the fact
∑
i′′∈N(j)\{i} γi′′ =∑

i′′∈N(j)\{i′} γi′′ for γi = γi′ = 1. The first property (marginalization) can be
verified directly.

Remark 2. The function ρj has a natural probabilistic interpretation. As in the
proof, we can think of z as the mean of a distribution over assignments γ ∈ Cj .
For a variable node i ∈ N(j) with zi > 0, we sample an assignment γ from this
distribution conditioned on the event γi = 1. Now we output a random variable
node i′ ∈ N(j) \ {i} with γi′ = 1. The probability that we output i′ is exactly
ρj(i, i

′)/zi. Note that the function ρj is not fully determined by z, since we could
realize z as mean of two very different distributions.

The distribution over minimal T -local deviations β we construct for the LP so-
lution z is very similar to the distribution used in Lemma 1 (especially taking into
account the probabilistic interpretation of the functions ρj). As before, we first de-
fine for every variable node i with zi > 0, a distribution over height-2T skinny trees
τi rooted at i: we start by choosing i as the root. From any chosen variable node,
we branch to all its neighbors in the next level. From any chosen check node j, we
go to a random neighbor, chosen according to the transition probabilities ρj(·, ·).
More precisely, if we reached j from a variable node iin, then we select the next
variable node iout at random from N(j) \ {iin}, with probability ρj(iin, iout)/ziin .

We can now define the distribution over minimal local deviations β: For every
variable node i with zi > 0, we independently choose a tree τi as described above.
Independently from the choices of the trees, we also choose a variable node i0 at
random according to the probabilities zi0/‖z‖1. Finally, we output the minimal
T -local deviation β defined by

βi =

{
1 if i ∈ τi0 ,
0 otherwise .

We make a few observations. First, the number of nodes at level 2t of τi0 is exactly
dL(dL − 1)t−1. Second, for any two variable nodes i, i′ that lie in the support of z

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 17

and have distance 6 2T to each other, the above process for constructing a random
skinny tree treats them symmetrically:

ziP {i′ ∈ τi} = zi′P {i ∈ τi′} (8)

The reason is that i, i′ are connected by a single path of length 6 2T , say
(i, j0, i1, j1, . . . , it−1, jt−1, i

′). If zi` = 0 for some variable node i` on this path,
both sides of (8) are naught. Otherwise, both sides of (8) are equal to

ρj0(i, i1) · · · ρjt−1
(it−1, i

′)

zi1 · · · zit−1

.

Armed with these observations, we can compute the mean of our distribution over
(w-weighted) minimal local deviations: For every i with zi > 0, we have

Eβ(w)
i =

T∑
t=1

wt
∑

i′∈N2t(i)
zi′>0

P {i0 = i′}P {i ∈ τi′}

=

T∑
t=1

wt
∑

i′∈N2t(i)
zi′>0

zi′
‖z‖1P {i ∈ τi′}

(8)
=

T∑
t=1

wt
∑

i′∈N2t(i)
zi′>0

zi
‖z‖1P {i

′ ∈ τi}

= zi · 1
‖z‖1

T∑
t=1

wt E
∣∣τi ∩N2t(i)

∣∣
= zi · 1

‖z‖1

T∑
t=1

wt · dL(dL − 1)t−1

Therefore, we have the desired conclusion Eβ(w) = αz with α =
∑T
t=1 wt·dL(dL−

1)t−1/‖z‖1.

7. PROBABILISTIC ANALYSIS OF LOCAL OPTIMALITY ON TREES

For the purposes of this section, let us define a notion of optimality of a codeword in
the immediate neighborhood of a variable node i0 ∈ VL, by appropriately restricting
Definition 2 of Section 3.

Definition 3. (Single Neighborhood Optimality) A codeword x ∈ {0, 1}n is
(i0, T, w)-locally optimal for y ∈ {0, 1}n if for all minimal T -local deviations β
at i0,

‖x⊕ β(w) − y‖1 > ‖x− y‖1 .
Now, for a fixed weight vector w, variable node i0 ∈ VL, and codeword x ∈ C(G),

we are interested in the probability

Py∼px

{
x is

(i0, T, w)-locally
optimal for y

}
, (9)

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 ·

where Py∼px is the measure defined by flipping every bit of x independently with
probability p to obtain y.

If T < 1
4 girth(G), the symmetry of the code and the channel imply that Prob-

ability (9) does not depend on the choice of x and i0. Therefore, estimating this
probability can be reduced to the study of a concrete random process on a fixed
regular tree (see Definition 4).

Definition 4. (T, ω)-Process on a (dL, dR)-Tree: Let T be a directed tree of height 2T ,
rooted at a vertex v0. The root has out-degree dL and the vertices in level 2T have out-degree

0. The vertices in any other even level have out-degree dL − 1. The vertices in odd levels have
out-degree dR− 1. The vertices in even levels are called variable nodes and the vertices in odd

levels are called check nodes. For ` ∈ {0, . . . , 2T}, let us denote by V` the set of vertices of T
at height ` (the leaves have height 0 and the root has height 2T).
A skinny subtree of T is a vertex set τ ⊆ V (T) such that the induced subgraph is a directed

connected tree rooted at v0 where each variable node in τ has full out-degree and each check

node in τ has out-degree exactly 1. For a {1,−1}-assignment η to the variable nodes of T and
ω ∈ [0, 1]{0,1,...,T−1}, we define the ω-weighted value of a skinny subtree τ as

valω(τ ; η)
def
=

T−1∑
`=0

∑
v∈τ∩V2`

ω` · ηv .

(In words, we sum the values of the variable nodes in τ weighted according to their height.)
For p ∈ (0, 1), we are interested in the probability

Pp
{

min
τ

valω(τ ; η) > 0
}
,

where the minimum is over all skinny subtrees τ and the measure Pp on η is defined by choosing

ηv = 1 with probability 1− p, and ηv = −1 with probability p.

Notation: Notice the subtle difference between ω and w. Both ω and w represent
weight vectors. However, ω, used in Definition 4 and throughout this section,
assigns weights to the levels of a tree in a bottom-up fashion, i.e. its first coordinate
corresponds to the leaves of the tree. On the other hand, w, used throughout the
previous sections, assigns weights to the levels of a tree in a top-down fashion, i.e.
its first coordinate corresponds to the variables closest to the root of the tree.

The following lemma makes the connection of the above random process to local
optimality and the relation of ω and w precise.

Lemma 7. Let T < 1
4girth(G).

Py∼px

{
x is (i0, T, w)-locally

optimal for y

}
= Pp

{
min
τ

valω(τ ; η) > 0
}
,

where ω` = wT−`, for ` = 0, . . . , T − 1.

Proof. The subgraph of G in B(i0, 2T) is isomorphic to the tree T of Defini-
tion 4. Let then ϕ : B(i0, 2T)→ V (T) be one of the isomorphisms between the two
graphs.

First, we observe that x is (i0, T, w)-locally optimal for y if and only if

min
β

T∑
t=1

∑
i∈N2t(i0)

wt · (−1)xi+yiβi > 0 ,

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 19

where the minimum is over all minimal T -local deviations β at i0. The reason is

that ‖x⊕β(w)−y‖1−‖x−y‖1 can be expanded as
∑n
i=1 β

(w)
i (−1)xi+yi , as is easily

checked.
We also note that the isomorphism ϕ gives rise to a bijection between the minimal

deviations β in B(i0, 2T) and the skinny subtrees τ of T . We define ϕ(β) to be the
skinny tree that contains all variable nodes v with βϕ−1(v) = 1.

Now imagine coupling the random variables y and η in such a way that

ηv = (−1)xi+yi , where i = ϕ−1(v) .

These ηv’s are iid +1/−1 distributed with probability p of being −1, so the distribu-
tion is correct. Furthermore we claim that ‖x⊕β(w)−y‖1−‖x−y‖1 = valω(ϕ(β); η).
The reason is that for all β and τ = ϕ(β)

‖x⊕ β(w) − y‖1 − ‖x− y‖1

=

T∑
t=1

∑
i∈N2t(i0)

wt · (−1)xi+yiβi =

T∑
t=1

∑
i∈N2t(i0)

wt · ηϕ(i)βi

=

T∑
t=1

∑
v∈τ∩V2T−2t

wt · ηv =

T−1∑
`=0

∑
v∈τ∩V2`

ω` · ηv

= valω(φ(β); η).

Let us define

Πp,dL,dR(T, ω)
def
= Pp

{
min
τ

valω(τ ; η) 6 0
}
,

where val is defined as in Definition 4. With this notation, Lemma 7 together with
Theorem 4 (Local optimality implies LP optimality) has the following consequence.

Lemma 8. Let p ∈ (0, 1), G be a (dL, dR)-regular bipartite graph, x ∈ C(G) be
a codeword, and w ∈ [0, 1]T be a weight vector with T < 1

4girth(G). Suppose y
is obtained from x by flipping every bit independently with probability p. Then,
codeword x is (T,w)-locally optimal with probability at least

1− n ·Πp,dL,dR(T, ω) , where ω` = wT−` .

And with at least the same probability, x is also the unique optimal LP solution
given y.

By virtue of Lemma 8, to understand the probability of LP decoding success,
it is sufficient to estimate the probability Πp,dL,dR(T, ω), for a given weight vector
ω, bit error rate p ∈ (0, 1), and degrees (dL, dR). We give such estimates in the
following subsection.

7.1 Bounding Processes on Trees by Evolving Laplace Transforms

We are going to study the probability of the existence of a negative value skinny
subgraph in the (T, ω)-process in a recursive fashion, starting from the leaves of the
tree T .

We define the following correlated random variables Zu for the vertices u of T :
The variable Zu is equal to the minimum value of a skinny tree in the subtree Tu

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 ·

below the (variable or check) node u,

Zu
def
= min

τ∩Tu 6=∅

T−1∑
`=0

∑
v∈τ∩V2`∩Tu

ω` · ηv .

Here, τ ranges over all skinny subtrees of T .
Let N+(u) denote the set of neighbors of u that can be reached by one of its

outgoing edges. The variables Zu satisfy the following recurrence relations:

Zv0 =
∑

v∈N+(v0)

Zv

Zu = ω`ηu +
∑

v∈N+(u)

Zv (u ∈ V2`, 0 6 ` < T)

Zu = min
v∈N+(u)

Zv (u ∈ V2`+1, 0 6 ` < T)

Note that Zv0 is just the minimum value of a skinny tree in the tree T . Hence,
Πp,dL,dR(T, ω) = P {Zv0 6 0}.

By symmetry, the distribution of a variable Zu depends only on the height of
vertex u. Also, for a fixed `, the variables in {Zu}u∈V`

are mutually independent,
because for any two vertices u, u′ of the same height `, the subtrees Tu and Tu′ are
disjoint.

It follows that we can define random variables X0, . . . , XT−1, Y0, . . . , YT−1 in the
following way, so that X` has the same distribution as Zu for u ∈ V2`+1 and Y` has
the same distribution as Zu for u ∈ V2`,

Y0 = ω0η

X` = min
{
Y

(1)
` , . . . , Y

(dR−1)
`

}
(0 6 ` < T)

Y` = ω`η +X
(1)
`−1 + . . .+X

(dL−1)
`−1 (0 < ` < T)

Here, η is a random variable that takes value 1 with probability 1 − p and value
−1 with probability p. The notation X(1), . . . , X(d) means that we take d mutually
independent copies of the random variable X (the copies are also independent of η
in the last equation).

We use the Laplace transform of XT−1 in order to bound the probability
Πp,dL,dR(T, ω). Notice that in the following lemma and the remaining of this sec-
tion, variable t is real-valued and has nothing to do with indexing levels of the tree;
for that purpose we will be using instead the variables ` and s.

Lemma 9. For every t > 0, T > 1,

Πp,dL,dR(T, ω) 6
(
E e−tXT−1

)dL
.

Proof. As noted before, Πp,dL,dR(T, ω) = P {Zv0 6 0}. Hence, by Markov’s
inequality

Πp,dL,dR(T, ω) = P
{
e−tZv0 > 1

}
6 E e−tZv0 .

The variable Zv0 is equal to the sum of the Z-values of its dL children. Each child
of the root v0 has height 2T − 1 and hence its Z-value has the same distribution as

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 21

XT−1. Using this and independence, we have as desired

E e−tZv0 =
(
E e−tXT−1

)dL
.

The following is our key lemma for estimating the probability Πp,dL,dR(T, ω) (or
more precisely, the Laplace transform of XT−1). For the sake of brevity, let us
denote d′L = dL − 1 and d′R = dR − 1.

Lemma 10. For `, s with 0 6 s 6 ` < T , we have

E e−tX` 6
(
E e−tXs

)d′L`−s

·
`−s−1∏
k=0

(d′R E e−tω`−kη)d
′
L

k

.

Proof. We derive the relation for s = `− 1. The general case follows by induc-
tion on `− s.

Since Y` is a sum of mutually independent variables,

E e−tY` =
(
E e−tω`η

) (
E e−tX`−1

)d′L .

We use a relatively crude estimate to bound the Laplace transform of X` in terms
of the Laplace transform of Y`. By the definition of X`, we have exp(−tX`) 6

exp(−tY (1)
`) + . . .+ exp(−tY (dR−1)

`) with probability 1. Hence,

E e−tX` 6 d′R E e−tY` =
(
d′R E e−tω`η

) (
E e−tX`−1

)d′L ,

which is the desired bound for s = `− 1.

Armed with these general bounds on Πp,dL,dR(T, ω) and the Laplace transform
of X`, we can now derive several concrete bounds on Πp,dL,dR(T, ω).

Uniform Weights. In this paragraph, we will consider the case ω = 1. We apply
Lemma 10 for s = 0. For brevity, let us denote c1 = E e−tX0 and c2 = d′R E e−tη.
Note that c1 6 c2 (using the same argument as in the proof of Lemma 10). For
reasons that become apparent shortly, let us choose t > 0 so as to minimize c :=

c1 · c1/(dL−2)
2 . We will assume c < 1. Now, the bound of Lemma 10 simplifies to

E e−tX` 6 c
d′L

`

1 · c
∑`−1

k=0 d
′
L

k

2 = c1
d′L

`

·
(
c
1/(d′L−1)
2

)d′L`−1

= cd
′
L

`

· c−1/(d′L−1)
2 6 cd

′
L

`−1 .

(To obtain the last inequality we used that c1 < 1, which is implied by our assump-

tion that c < 1, given that c1 6 c2 and that c = c1 · c1/(dL−2)
2 .) By Lemma 9 we

can conclude from this bound that

Πp,dL,dR(T,1) 6 cdLd
′
L

T−1−dL .

Next, let us compute c1 and c2 as functions of p, dL and dR. The variable X0 has
the following distribution

X0 =

{
+1, with probability (1− p)dR−1,

−1, with probability 1− (1− p)dR−1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 ·

Hence,

c1 = E e−tX0 = (1− p)dR−1 e−t + (1− (1− p)dR−1) et .

We also have

c2 = (dR − 1)
(
(1− p)e−t + pet

)
.

Putting together the calculations in this paragraph, we proved the following general
bound on Πp,dL,dR(T,1).

Lemma 11. If p ∈ (0, 1) and dL, dR > 2 satisfy the condition

c = min
t>0

{(
(1− p)dR−1 e−t + (1− (1− p)dR−1) et

)
·
(
(dR − 1)

(
(1− p)e−t + pet

))1/(dL−2)
}
< 1 ,

then for T ∈ N+ and ω = (1, . . . , 1) ∈ [0, 1]T , we have

Πp,dL,dR(T, ω) 6 cdLd
′
L

T−1−dL .

For (3, 6)-regular graphs, we have the following corollary.

Corollary 1. Let p 6 0.02, dL = 3, and dR = 6. Then, there exists a constant
c < 1 such that for all T > 1 and ω = 1,

Πp,dL,dR(T, ω) 6 c2
T−1−1 .

Non-uniform Weights. In this paragraph, we will show how to improve the
bounds by using different weights according to the height. We will use very simple
weights: variable nodes at height 0 are weighted by a factor ω0 > 0, all variable
nodes at higher heights are weighted by 1.

We apply Lemma 10 again for s = 0. As in the previous paragraph, the bound
simplifies to

E e−tX` 6 cd
′
L

`

· c−1/(d′L−1)
2 ,

where c1 = E e−tX0 , c2 = d′R E e−tη, and c = c1 · c1/(dL−2)
2 . The additional freedom

of choosing the weight ω0, allows us to minimize both c1 and c2 at the same time.
To minimize c2, we choose t = 1

2 ln 1−p
p . The value of c1 is equal to

c1 = E e−tX0 = (1− p)dR−1 e−tω0 + (1− (1− p)dR−1) etω0 ,

which is minimized for

tω0 = ln

√
(1− p)dR−1

1− (1− p)dR−1
.

Here, the right-hand side is nonnegative for p < 1 − 2−1/d′R . (Note that we
do not have to worry whether ω0 6 1. By the definition of the (T, ω)-process,
Πp,dL,dR(T, ω) is invariant under (nonnegative) scaling of the weights.)

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 23

For these choices of ω0 and t, we have

c1 = 2
√

(1− p)dR−1 (1− (1− p)dR−1)

c2 = d′R2
√
p(1− p) .

Thus,

c = 2
√

(1− p)d′R
(
1− (1− p)d′R

) (
d′R2

√
p(1− p)

)1/(dL−2)

.

We proved the following bound on Πp,dL,dR(T, ω) for ω = (ω0, 1, . . . , 1).

Lemma 12. If p ∈ (0, 1) and dL, dR > 2 satisfy the condition p < 1 − 2
− 1

dR−1

and cp,dL,dR < 1, where

cp,dL,dR
def
= 2

√
(1−p)dR−1 (1−(1−p)dR−1)

(
(dR − 1)2

√
p(1−p)

)1/(dL−2)

,

then there exists a constant ω0 > 0 such that for all T ∈ N+ and ω = (ω0, 1, . . . , 1),

Πp,dL,dR(T, ω) 6 c′cdLd
′
L

T−1

,

where c′ = ((dR − 1)2
√
p(1− p))−dL/(dL−2) and c = cp,dL,dR .

Corollary 2. Let p 6 0.0247, dL = 3, and dR = 6. Then, there exist constants
c′ and c < 1 such that for all T ,

Πp,dL,dR(T, ω) 6 c′ · c2
T−1

, for some ω ∈ [0, 1]T .

7.2 Improved Bounds for (3, 6)-Regular Trees

In this section we show how to obtain the bound of 0.05 on the tolerable error rate of
(3, 6)-regular codes. To achieve this we shall employ specially tailored non-uniform
weights.

Let us first consider the weight vector ω̄ = (1, 2, . . . , 2s). Note that this weight
vector has the effect that every level contributes equally to the ω-weighted value
valω̄(τ ; η) of a skinny subtree τ . For a fixed value of s (say s = 15), we can
compute the distribution of Xs explicitly using the recursive definition of the X
and Y variables, since we deal with finite probability distributions. Hence, for a
fixed s, we can also compute the value

λs
def
= min

t>0
E e−tXs .

Let t∗ > 0 be the point where the Laplace transform of Xs achieves its minimum λs.
We now show how to bound Πp,3,6(T, ω) in terms of λs for ω = (ω̄, ρ, . . . , ρ) ∈ RT+,
where ρ is a carefully chosen constant.

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 ·

By Lemma 10, we have

E e−t
∗XT−1 6 (λs)

2T−s−1
(

5E e−t
∗ρη
)∑T−s−2

k=0 2k

= (λs)
2T−s−1

(
5E e−t

∗ρη
)2T−s−1−1

=
(
λs · 10

√
p(1− p)

)2T−s−1(
10
√
p(1− p)

)−1

,

where we chose ρ such that et
∗ρ =

√
(1− p)/p so as to minimize E e−t∗ρη. Us-

ing Lemma 9, we see that Πp,3,6(T, ω) decreases doubly-exponentially in T if

λs · 10
√
p(1− p) < 1 for some s. We verified that this condition is satisfied for

s = 15 and p = 0.05 using the numerical analysis software MATLAB. Hence, we
establish the following theorem.

Theorem 6. Let p 6 0.05, dL = 3, and dR = 6. Then, there exists a constant
c < 1 such that for T > 15,

Πp,dL,dR(T, ω) 6 O
(
c2

T−16
)

for some ω ∈ [0, 1]T .

We note that, as with all computer assisted proofs, it is possible that rounding
errors or software and hardware bugs invalidate the numerical results.

We extend our approach to general (dL, dR)-regular trees in the following lemma.

Lemma 13. Let p ∈ (0, 1
2) and dL, dR > 2. Suppose that for some s ∈ N+ and

some weight vector ω̄ ∈ Rs+,

min
t>0

E e−tXs <

(
1

(dR − 1)2
√
p(1− p)

) 1
dL−2

.

Then, there exist constants c < 1, c′ and ρ > 0 such that for all T > s,

Πp,dL,dR(T, ω) 6 c′ · c(dL−1)T−s−1

,

where ω = (ω̄, ρ, . . . , ρ) ∈ RT+.

8. CONCLUSIONS

One of our original intentions was to connect Belief Propagation to Linear Pro-
gramming (or some other form of convex programming) and this remains open. It
is unclear where to start since BP relies on highly nonlinear operations.

It would also be interesting to investigate if stronger versions of LP decoding
using either lift-and-project operators such as Sherali Adams or using SDPs could
have better provable performance for LDPCs, possibly approaching the information
theoretic bound.

REFERENCES

Candes, E. and Tao, T. 2006. Near-optimal signal recovery from random projections: Universal

encoding strategies? Information Theory, IEEE Transactions on 52, 12 (dec.), 5406 –5425.

Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M., and Hu, X.-Y. 2005. Reduced-
complexity decoding of ldpc codes. Communications, IEEE Transactions on 53, 8 (aug.), 1288

– 1299.

Journal of the ACM, Vol. V, No. N, Month 20YY.

· 25

Chen, J. and Fossorier, M. 2002a. Density evolution for two improved bp-based decoding

algorithms of ldpc codes. Communications Letters, IEEE 6, 5 (may), 208 –210.

Chen, J. and Fossorier, M. P. C. 2002b. Near optimum universal belief propagation based
decoding of low-density parity check codes. Communications, IEEE Transactions on 50, 3,

406–414.

Daskalakis, C., Dimakis, A., Karp, R., and Wainwright, M. 2008. Probabilistic analysis of
linear programming decoding. Information Theory, IEEE Transactions on 54, 8 (aug.), 3565

–3578.

Feldman, J. and Karger, D. R. 2002. Decoding turbo-like codes via linear programming. In

Proc. of the 43rd annual IEEE Symposium on Foundations of Computer Science (FOCS).
251–260.

Feldman, J., Malkin, T., Servedio, R. A., Stein, C., and Wainwright, M. J. 2007. Lp de-

coding corrects a constant fraction of errors. Information Theory, IEEE Transactions on 53, 1
(jan.), 82 –89.

Feldman, J., Wainwright, M., and Karger, D. 2005. Using linear programming to decode

binary linear codes. Information Theory, IEEE Transactions on 51, 3 (march), 954 – 972.

Frey, B. J. and Koetter, R. 2001. The attenuated max-product algorithm. In Advanced mean

field methods, M. Opper and D. Saad, Eds. MIT Press, Cambridge, MA, 213–227.

Gallager, R. G. 1963. Low-density parity check codes. MIT Press, Cambridge,MA.

Guruswami, V., Lee, J. R., and Razborov, A. A. 2010. Almost euclidean subspaces of ln1 via

expander codes. Combinatorica 30, 1, 47–68.

Indyk, P. 2008. Explicit constructions for compressed sensing of sparse signals. In Proc. of the

19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 30–33.

Koetter, R. and Vontobel, P. 2006. On the block error probability of lp decoding of ldpc

codes. In Inaugural Workshop of the Center for Information Theory and its Applications.

6–10.

Richardson, T. and Urbanke, R. 2001. The capacity of low-density parity-check codes under
message-passing decoding. Information Theory, IEEE Transactions on 47, 2 (feb), 599 –618.

Sherali, H. D. and Adams, W. P. 1990. A hierarchy of relaxation between the continuous and

convex hull representations. SIAM J. Discret. Math. 3, 411–430.

Shokrollahi, A. 2004. Ldpc codes: An introduction. In Coding, cryptography and combinatorics,
K. Feng, H. Niederreiter, and C. Xing, Eds. Birkhauser, 85–110.

Sipser, M. and Spielman, D. 1996. Expander codes. Information Theory, IEEE Transactions

on 42, 6 (nov), 1710 –1722.

Wiberg, N. 1996. Codes and decoding on general graphs. Ph.D. thesis, Linkoping University,
Sweden.

Journal of the ACM, Vol. V, No. N, Month 20YY.

