
Online Bipartite Perfect Matching With
Augmentations

Kamalika Chaudhuri∗, Constantinos Daskalakis†, Robert D. Kleinberg‡, and Henry Lin†
∗Information Theory and Applications Center, U.C. San Diego

Email: kamalika@soe.ucsd.edu
†Division of Computer Science, U.C. Berkeley

E-mail: costis@cs.berkeley.edu, henrylin@eecs.berkeley.edu
‡Computer Science Department, Cornell University

E-mail: rdk@cs.cornell.edu

Abstract—In this paper, we study an online bipartite
matching problem, motivated by applications in wireless
communication, content delivery, and job scheduling. In
our problem, we have a bipartite graph G between n clients
and n servers, which represents the servers to which each
client can connect. Although the edges of G are unknown
at the start, we learn the graph over time, as each client
arrives and requests to be matched to a server. As each
client arrives, she reveals the servers to which she can
connect, and the goal of the algorithm is to maintain a
matching between the clients who have arrived and the
servers. Assuming that G has a perfect matching which
allows all clients to be matched to servers, the goal of the
online algorithm is to minimize the switching cost, the total
number of times a client needs to switch servers in order
to maintain a matching at all times.

Although there are no known algorithms which are
guaranteed to yield switching cost better than the trivial
O(n2) in the worst case, we show that the switching cost can
be much lower in three natural settings. In our first result,
we show that for any arbitrary graph G with a perfect
matching, if the clients arrive in random order, then the
total switching cost is only O(n log n) with high probability.
This bound is tight, as we show an example where the
switching cost is Ω(n log n) in expectation. In our second
result, we show that if each client has edges to Θ(log n)
uniformly random servers, then the total switching cost
is even better; in this case, it is only O(n) with high
probability, and we also have a lower bound of Ω(n/ log n).
In terms of the number of edges needed for each client, our
result is tight, since Ω(log n) edges are needed to guarantee
a perfect matching in G with high probability. In our
last result, we derive the first algorithm known to yield
total cost O(n log n), given that the underlying graph G
is a forest. This is the first result known to match the
existing lower bound for forests, which shows that any
online algorithm must have switching cost Ω(n log n), even
when G is restricted to be a forest.

I. INTRODUCTION

In this paper, we study an online bipartite matching
problem, which models a scenario in which clients arrive
over time and request permanent service from a set of

given servers. As each client arrives, she announces a set
of feasible servers capable of servicing her request, and
our goal is to provide service to each client persistently
by maintaining a matching at all times between clients
who have arrived and servers capable of servicing their
requests. We would like to assign clients to servers
permanently without ever having to reassign clients to
different servers, but when a new client arrives we
may be forced to reassign existing clients to alternative
servers to ensure that all clients can receive service.
As it is often more important to provide service to all
clients, the goal of our algorithm will be to maintain
a matching always between arrived clients and allowed
servers, while minimizing the switching cost, the total
number of times that clients are reassigned to different
servers.

Our online bipartite matching problem has a wide
variety of applications spanning diverse areas, including
streaming content delivery, web hosting, remote data
storage, job scheduling, and hashing. We describe a few
applications below, which can be modeled as an instance
of the online bipartite matching problem we described
above. In the following examples, we always refer to
the entities requesting service as clients and the entities
providing service as servers for consistency. In examples
where it is not clear, we mark in parenthesis which
entities are clients and which entities are servers.
• Streaming Content Delivery, Web Hosting, and

Remote Data Storage We have a set of servers
capable of streaming content online, hosting web
pages, or storing data remotely. A sequence of
clients arrives requesting to have their content
streamed online, their web pages hosted online, or
their data stored online. Due to locality, security,
cost, routing policy, or other reasons, the streaming
content, web page, or data from each client can only
be hosted at a subset of server locations.

• Job Scheduling We have a set of servers with dif-
fering capabilities available to process job requests
from persistent sources - jobs that need to be pro-
cessed over a long or indefinite period of time (e.g.
protein folding, genomic research, SETI@HOME).
A sequence of persistent job requests (clients) arrive
and reveal a subset of servers capable of servicing
their request.

• Hashing We have locations in a hash table (servers)
available to store data objects (clients), and a set of
hash functions. Data objects arrive over time and
can be assigned to a location in the hash table, if
one of the hash functions maps the data object to
that location.

Note that in all the examples above, it is reasonable to
assume that clients can be reassigned to different servers,
but at a cost. For instance, in the streaming content
example, clients may not be able to access their content
while their content is being transferred from one server
to another. Thus, it is desirable to minimize the number
of the reassignments our algorithm incurs, which causes
these interruptions.

Before stating our results, we define our problem more
formally. Each instance of the online bipartite matching
problem is defined by:
• A bipartite graph G between clients and servers,

which represents the servers to which each client
can connect

• A permutation σ, which represents the sequence in
which the clients arrive

The graph G is unknown at the beginning, but as
clients arrive according to σ, each client reveals the
servers to which she has edges. The goal of the algorithm
to is to maintain a matching between arrived clients and
servers at all times, while minimizing the total number
of times that clients are reassigned to different servers.
Alternatively, as each client arrives, our algorithm can
be viewed as finding an augmenting path (a path that
alternates between matched and unmatched edges), in
the graph revealed so far, from the arriving client to an
unmatched server. It should be clear that upper bounding
the total length of the augmenting paths used by the
algorithm, also upper bounds the total switching cost.
As the total length of the augmenting paths is close to
the switching cost, it can also be used to lower bound
the switching cost in some cases as well.

For simplicity, note that we assume each server may
service (or be matched to) at most one client at a time,
although our results can be fully generalized to the
case where servers can service multiple requests. We
also assume that G consists of n clients and n servers,

and G contains a perfect matching, although our results
still hold essentially without these assumptions. See the
Appendix for further discussion.

Although this problem was introduced over a decade
ago [7], we still know surprisingly little about the
optimal algorithm. For example, there is a very natural
greedy algorithm, which provides service to each new
client by using an augmenting path of minimal length,
but is this greedy algorithm optimal? What is its worst-
case switching cost? There are no known upper bounds
to show that the greedy algorithm or any other algorithm
performs better than O(n2) in the worst case, but an
upper bound of O(n2) is trivial since any reasonable
algorithm only switches at most O(n) clients per arriving
client. Furthermore, an existing lower bound only shows
that the total switching cost has to be Ω(n log n), so
a large gap exists between the known upper and lower
bounds.

A. Our Results

Although worst case analysis for this problem has not
yielded fruitful results, we know that the worst case does
not often occur in practice, and it may be reasonable
to make certain assumptions about the graph G or the
arrival order σ. For example, in the case of remote
data storage, one might imagine that the graph G which
determines the servers which can store a client’s data is
fixed, but perhaps the arrival order σ is random. Does the
greedy algorithm perform provably better than O(n2) in
this case? Moreover in some cases, it might be reason-
able to assume that the graph G is generated randomly.
For example, in the case of hashing, if Θ(log n) random
hash functions are chosen, then the set of edges between
clients (data elements) and servers (hash locations) is a
graph where each client has Θ(log n) random edges to
servers. Can better bounds be proved in this case as well?

In this paper, we show that indeed the switching cost
can be much better under these conditions, despite the
lack of worst case upper bounds better than O(n2).
In the first case, we show that when G is chosen
arbitrarily, but σ is chosen uniformly at random, then the
greedy algorithm performs well and achieves O(n log n)
switching cost with high probability. This bound is tight
as we show that there is a distribution over graphs
for which any deterministic algorithm must incur cost
Ω(n log n) in expectation, even if σ is chosen uniformly
at random.

In the second case, where each client has Θ(log n)
random edges to servers, we show that the switching
cost can be even better. In this case, we prove that
the switching cost is O(n) with high probability, and it
nearly matches our lower bound of Ω(n/ log n). In terms

2

of the number of edges used to generate the graph G, our
result is tight, since Ω(log n) random edges are needed
per node, in order to guarantee a perfect matching with
high probability.

Lastly, we also make the first progress in over a decade
in the original worst case model where σ is chosen
adversarially, but G is known to be acyclic (i.e. a forest).
In this setting, we derive a new algorithm which achieves
cost O(n log n), which matches the existing lower bound
of Ω(n log n) for forests. Although the networks that
occur in practice are not often acyclic, we view our last
result as making progress towards finding an O(n log n)
solution in the general worst case setting.

B. Related Work

The problem studied here was first introduced by
Grove et al. [7] in a paper, which focused on a special
case of the problem where each client has degree at most
two. For this special class of instances, they prove that
the greedy algorithm incurs a worst-case switching cost
of O(n log n), and they give a matching lower bound by
showing there are cases where any algorithm must have
cost Ω(n log n). The paper goes on to consider the case
in which clients can connect and disconnect over time;
for this problem, assuming that each client has degree
at most two, they present a randomized algorithm which
has a competitive ratio of O(

√
n), where the competitive

ratio of an online algorithm is the ratio between the cost
incurred by the online algorithm, which does not know
the input sequence in advance, and the cost incurred
by an optimal algorithm which does know the input
sequence in advance. Previous to our work, the special
case in which each client has degree at most two, was
the only class of instances for which an optimal online
algorithm was known.

Our problem is related to previous work on online load
balancing with task preemption, which has been studied
by many authors [1], [9], [10]. The main difference be-
tween our work and the previous work on load balancing
is that our model assumes a hard capacity constraint on
the servers and allows clients to be reassigned, while
the previous load balancing work generally does not
assume a hard capacity constraint on the servers, or
does not allow reassignments. Without hard capacity
constraints or reassignments, the goal in online load
balancing is often to minimize the maximum load, or
if reassignments are allowed, the goal is to minimize
the number of reassignments while always maintaining
a maximum load which is close to the optimal maximum
load achievable.

For example, a series of works by Azar et al. [2], [3],
[4] studied online load balancing without the possibility

of task preemption (i.e. without reassigning clients, in
our terminology). They established that when tasks arrive
but never depart, the greedy algorithm, which assigns
each task to the least-loaded admissible server, has
O(log n) competitive ratio with respect to the maximum
load. When tasks both arrive and depart, they show
that the optimal competitive ratio is O(

√
n). When jobs

arrive and depart and task preemption is allowed, the sit-
uation improves dramatically: Phillips and Westbrook [9]
give an algorithm which always maintains a maximum
load within a factor of O(log n) of optimal, while only
incurring a reassignment cost of O(m), where m is
the number of arrivals and departures. Westbrook [10]
also gives an algorithm which is O(1)-competitive with
respect to the maximum load and with a reassignment
cost of O(m log n). Andrews et al. [1] study online load
balancing with reassignment costs in a model in which
any client may be assigned to any server, but clients have
arbitrary sizes and reassignment costs. (The same model
was considered, in lesser generality, in [10].) They give
an online algorithm which is 3.5981-competitive with
respect to load and 6.8285-competitive with respect to
reassignment cost.

Our work is also related to the recent work of Godfrey,
who analyzes the load balancing properties of certain
random processes which assign clients to servers [6].
Godfrey proves that only very weak conditions are
needed on the random process, in order to ensure that
the servers stay roughly balanced with high probability.

Our load-balancing scenario in Section III also has
connections to hashing. A large body of theoretical and
experimental research has focused on hashing schemes
and dictionary data structures; a dictionary data-structure
is a table containing items, and the goal is to design
a data-structure which supports fast insertions and ac-
cesses, with a fairly high space-utilization. Typically, dic-
tionaries are used in combination with a hashing scheme,
which is a mapping from the items to their locations in
the table. A common assumption in theoretical work is
that such mappings are random. Under this assumption,
the connection between hashing and our setting is as
follows: if an item has d randomly chosen locations
where it can be inserted into the table, then the problem
of inserting a series of items into the table reduces to
the problem of finding a matching in a random bipartite
graph in an online manner. Under this setting, our
algorithm is very similar to the Cuckoo Hashing scheme
of Pagh and Rodler [8]. Cuckoo hashing, essentially, uses
the following algorithm for inserting items to tables, or
equivalently, matching new clients to servers. If there is
an empty server adjacent to the client to be matched,

3

then the client is matched to this server; otherwise, it is
matched arbitrarily to one of its adjacent servers, and a
new matching is recursively found for the client which
was previously attached to this server. In [8], [5], it was
shown that if the degree of each node is d = O(ln 1

ε),
and if there are n clients and n(1 + ε) servers, then the
expected switching cost is O(1), where the expectation
is with respect to the randomness in the assignments.
In contrast, our results imply that if d = O(log n), and
if there are n clients and n servers, the switching cost
is still O(1), with high probability over the assignments.
Thus, our results extend the results of [8], [5] to the case
in which there is no surplus of servers over clients.

II. RANDOM ARRIVAL ORDER

In this section, we assume that the bipartite graph G is
arbitrary, but that the clients arrive in a uniformly random
order (i.e. the arrival order is uniformly distributed over
all n! possible orderings of the clients). Under this
assumption, we prove that the natural greedy algorithm
for the problem, which always augments along the
shortest augmenting path available, suffers a switching
cost which is O(n log n) with high probability. We also
provide a lower bound demonstrating that this upper
bound is the best possible in the random-ordering model.

A. Upper bound

To obtain some intuition, we start by showing the
expected cost is at most O(n log n). Our analysis here is
just for intuition, as we will need a more sophisticated
argument to show that the cost is O(n log n) with high
probability. To prove that the expected cost is O(n log n),
we just need the following lemma, which upper bounds
the expected cost of a client who arrives when i clients
remain to arrive.

Lemma II.1 Given that i clients remain to be con-
nected, the expected number of servers that the greedy
algorithm needs to augment in order to connect the next
client is at most n

i .

Given the lemma, it is easy to sum over all clients and
bound the total expected switching cost by

∑n
i=1

n
i =

O(n log n). We now prove the lemma.
Proof: Before we prove the lemma, let us define

dk, for k ∈ {1, . . . , i}, to be the least number of servers
that need to be switched if the kth remaining client
arrives, out of i remaining clients. Note that when i
clients remain to arrive, the expected cost of the next
arriving client is

∑i
k=1(

dk

i). Thus, if we can just show
that

∑i
k=1 dk ≤ n, then the expected cost will then be

upper bounded by n
i , and the lemma follows. To show

∑i
k=1 dk ≤ n, note that if one is given knowledge in

advance about the remaining k clients, it is possible to
find a perfect matching M between all n clients and
all n servers. Furthermore, if we are given the perfect
matching M , note that we can connect the i remaining
clients with total switching cost≤ n, since we can switch
the matching between clients and servers to be exactly
the same as M with total cost ≤ n. Given that the
remaining i clients can be matched with ≤ n switches,
it must be the case that there must exist i disjoint
augmenting paths of total length at most n (in terms of
servers augmented), which can be used to connect the
remaining i clients to free servers. Since we found that
we could connect the i remaining clients with i disjoint
paths of total length n (in terms of servers augmented),
then it must be the case that

∑i
k=1 dk ≤ n, since dk

is the length of the shortest augmenting path from the
kth remaining client to a free server. Thus, the lemma
follows, and the total expected cost must be O(n log n).

We now prove the main theorem of this section, which
states the cost is bounded by O(n log n) with high
probability.

Theorem II.2 For any graph G, when the clients in
G arrive in random order, the switching cost incurred
by the greedy algorithm is at most O(n log n) with
probability at least 1− n−2.

Proof: To prove the cost is O(n log n) with high
probability, we couple our online matching process with
a sequence of n2 binary random variables, Xi,j for i, j ∈
{1, . . . , n}, such that

∑
i,j∈{1,...,n}Xi,j stochastically

dominates the total augmentation cost. In our random
process, our random variables Xi,j have the property that
Pr[Xi,j = 1] = (1

i) for any i, j ∈ {1, . . . , n}, although
they are not completely independent. If the Xi,j variables
were completely independent, then it would be easy to
apply a standard Chernoff bound to show the total cost
is at most O(n log n) with high probability. In our case,
we have to carefully avoid dependencies to show that∑

i,j∈{1,...,n}Xi,j = O(n log n) with high probability.
Before we can analyze the Xi,j variables, we need to

describe them and to define the coupling between our
random online matching process and the Xi,j variables.
The main idea is to define our coupling so that for
each i ∈ {1, . . . , n}, the random variable

∑n
j=1 Xi,j

stochastically dominates the number servers that need to
be augmented in order to connect a new arriving client,
when i clients remain to be connected.

To define our coupling, when i ∈ {1, . . . , n} clients
remain, let dk represent the minimum number of servers

4

that need to be augmented in order to connect the kth
remaining client out of i total remaining clients, for
k ∈ {1, . . . , i}. Recall that

∑i
k=1 dk ≤ n from our

previous argument. Thus, we can assign to each client
k ∈ {1, . . . , i}, dk distinct binary random variables from
{Xi,j | j ∈ {1, . . . , n}} without overlap, which can be
used to represent the connection cost if the kth client
arrives next. Moreover, if the kth client arrives next, then
we set the dk binary variables assigned to it to value
1, and 0 otherwise. Note that this causes each binary
variable assigned to a client in {Xi,j | j ∈ {1, . . . , n}}
to be true with probability (1

i), since each client arrives
with probability exactly (1

i). For consistency, we also
set variables in {Xi,j | j ∈ {1, . . . , n}}, which are
not assigned to any client, to value 1 independently at
random with probability (1

i) and 0 otherwise.
As we have defined our coupling, note that

∑n
j=1 Xi,j

always dominates the number servers that need to be
augmented in order to connect a new client, when i
clients remain to be connected. Furthermore, Pr[Xi,j =
1] = (1

i) for any i, j ∈ {1, . . . , n}, and it is not
hard to see that our random process defines the ran-
dom variables Xi,j in a way such that each Xi,j vari-
able is independent of random variables Xi′,j , where
i′ ∈ {1, . . . , n} − {i}. Thus, we can apply a standard
Chernoff bound to conclude that for any fixed j ∈
{1, . . . , n},

∑n
i=1 Xi,j = O(log n) with probability at

least (1 − n−3). Then a simple union bound implies∑
i,j∈{1,...,n}Xi,j = Θ(n log n) with probability at least

(1− n−2). Therefore, the total connection cost must be
at most O(n log n) with probability at least (1 − n−2).

B. Lower bound

In this section, we show using a lower bound that
our upper bound is essentially optimal (proof in the
appendix).

Theorem II.3 For any online algorithm, there exists a
graph G such that the algorithm incurs an expected
switching cost of Ω(n log n) when the clients of G arrive
in random order.

III. RANDOM CONNECTION MODEL

In this section we study the following scenario: there
is an equal number n of servers and clients, the clients
arrive sequentially, and each of them selects, at arrival,
a random subset of O(log n) servers. We provide an
online matching protocol for this setting which incurs
total switching cost of O(n) with high probability, so that
the average switching cost is O(1) per client. Moreover,
we give a lower bound, showing that any online matching

protocol requires switching cost Ω(n/ log n) with high
probability, which establishes that our upper bound is
tight to within a factor of O(log n). Before proceeding to
the details of our results, we note that, since the number
of servers and clients are equal, we need to assume that
every client selects Ω(log n) servers in order to guarantee
that a matching exists, after all clients arrive.

The idea of our protocol is this: When a new client
arrives, the current server-client graph is examined, and a
binary subtree of the breadth-first-search tree originating
at the new client is chosen carefully, in order for an
augmenting path to be found along the edges of that
tree. Our analysis establishes that the binary tree that is
explored is likely to contain a free server at constant
depth, so that the augmenting path, and hence the
resulting switching cost, is constant.

Theorem III.1 Consider the following online matching
problem: There are n servers, and n clients arrive
sequentially, each client selecting O(log n) servers at
random. There exists a client-server assignment protocol
for this online arrival model which, with high probabil-
ity, succeeds in matching each client with a server with
overall switching cost of O(n).

Proof: Let S = {s1, . . . , sn} be the set of servers
and C = {c1, . . . , cn} the set of clients, and let us
suppose that the clients arrive in the order c1, c2, . . . , cn,
where t, t = 1, . . . , n, is the arrival time of client ct.
Without loss of generality, we assume that n = 2`,
for some integer `; we also assume that every client
selects a random set of α · log2 n servers from the set
S with repetition, for some sufficiently large constant
α > 0; with minor modifications in the proof, the
result extends to the case where n is not a power
of 2 and the clients select servers without repetition.
For this model, we show that the ONLINE MATCHING
PROTOCOL described in Figure 1 satisfies the following
properties with high probability. (Here and throughout
this section, we interpret “with high probability” to mean
“with probability at least 1−O(1/n).”)
• at every time step t > 0, the clients c1, . . . , ct are

matched with a subset of t servers;
• the total switching cost incurred by the protocol is

O(n).
In the description of the protocol in Figure 1 we use the
following notation. We denote by ft : {c1, . . . , ct} →
S the matching of clients to servers that the protocol
maintains at time t, and by gt : S → {¬}∪ {c1, . . . , ct}
the “inverse matching”, defined so that gt(s) = c iff
c ∈ {c1, . . . , ct} and ft(c) = s. Finally, by Gt we denote
the bipartite graph with node set {c1, . . . , ct}tS and an

5

edge between client ci, i ≤ t, and server s iff s ∈ Sci ,
where Sci

is the set of servers that client ci selects.

ONLINE MATCHING PROTOCOL
At time step t > 0:

1) client ct chooses a random set Sct of α · log2 n
servers from the set S with repetition;

2) ct orders Sct arbitrarily into a list Lct and sets
jct

= 1 (to be used as an index in her list of
servers);

3) P:=BINARY BFS(ct, ft−1, gt−1);
/*upon success BINARY BFS returns an aug-
menting path on the graph Gt originating at the
node ct*/

if P 6= ∅ then augment matching ft−1 along
path P; define ft, gt appropriately;
else declare FAIL;

Fig. 1. High-level description of the protocol; when client ct joins
the network an augmenting path from ct to a free server is sought; if
such path is found, the current matching is augmented along this path
to include client ct.

We will make use of the following fact about the
Coupon Collector Model (proof in the appendix).

Lemma III.2 (Coupon Collector Model) Suppose
that there are n types of coupons. If every coupon has
one of the n types uniformly at random, then, with
probability at least 1 − (2/e)n, after k · n coupons
are requested at most n/k − 1 types of coupons are
uncollected.

To analyze the performance of the ONLINE MATCH-
ING PROTOCOL we are going to temporarily forget the
fact that every client has a list of α · log2 n servers;
we will pretend instead that every client has an infinite
list of servers selected uniformly at random. Under this
assumption, with probability 1, the protocol does not
declare FAIL and every client gets matched with a server.
We establish the following lemma which concludes the
proof of the theorem.

Lemma III.3 Under the assumption of infinite server-
lists, the following are satisfied with high probability, i.e.
with probability at least 1−O(1/n):

1) the total augmentation cost incurred by the protocol
is O(n);

2) no client explores more than α · log2 n servers from
her infinite list of servers.

Proof: To show Part 1 of the lemma, let us divide

BINARY BFS
input: client ct, current matching ft−1, inverse
matching gt−1;
output: augmenting path P on the graph Gt

starting at node ct, or ∅;
1) let σ := Lct(jct);
2) if gt−1(σ) = ¬ then P := 〈(ct, σ)〉; return
P;
else initialize a queue data structure Q con-
taining the element gt−1(σ);

3) while Q 6= ∅
a) c := deQueue(Q);
b) for r = 1, 2

if jc < α log2 n then
i) σ := Lc(jc); jc := jc + 1;

ii) if gt−1(σ) = ¬ then
let P be the path from node
ct to node σ on the BFS tree
created by the process;
return P;

else push gt−1(σ) into Q;
else declare FAIL;

Fig. 2. When a client ct joins the network, process BINARY BFS
explores the graph Gt in a Breadth-First-Search fashion in order to
find an augmenting path from ct to a free server. However, each time a
client node is encountered by the BFS process, only two of its adjacent
edges are explored; moreover, the process has memory: the next time
that the same client is encountered a different pair of edges will get
explored.

the arrival times of the clients into log2 n + 1 ≡ ` + 1
progressively smaller intervals Ij = {bj , . . . , ej}, j =
1, . . . , log2 n + 1, where each interval j has d n

2j e time
steps. In particular, we define:
• bj = n−n/2j−1 + 1, for all j = 1, . . . , log2 n + 1;
• ej = n− bn/2jc, for all j = 1, . . . , log2 n + 1;

Let Ti be the BFS-tree constructed by the BINARY BFS
process when client ci arrives and denote by |Vi| the
number of client nodes in Ti. We show the following
lemma.

Lemma III.4 Under the infinite server-lists assumption,
with high probability over the random choices of servers
by the clients,

for all j ∈ {1, . . . , log2 n + 1} :
∑

i∈Ij

|Vi| ≤ 2jn.

Proof: Let us fix any j ∈ {1, . . . , log2 n + 1}.
Let Kj be the number of times Steps 1 and 3(b)i of
BINARY BFS are invoked between the arrival of client
cbj and until client cej is matched with a server. Observe

6

that, every time the Steps 1 and 3(b)i of BINARY BFS
are invoked, the identity of server σ is independent of
the identities of the servers revealed in the preceding
invocations of Steps 1 and 3(b)i of BINARY BFS. Also,
observe that, if the number of distinct servers that the
invocations of Steps 1 and 3(b)i of BINARY BFS have
returned over the course of the protocol is at least
dn − n

2j e, then the clients of the set {ci}i∈∪t≤jIt
have

all been matched with servers. From Lemma III.2 it
follows that, with probability at least 1 − (2/e)n, after
2jn invocations of Steps 1 and 3(b)i of BINARY BFS,
dn− n

2j e distinct servers will be discovered. Hence, with
probability at least 1− (2/e)n,

Kj ≤ 2jn. (1)

It is easy to see that

∑

i∈Ij

|Vi| ≤ 2
⌈ n

2j

⌉
+

Kj − 2
⌈

n
2j

⌉

2
.

which by (1) implies
∑

i∈Ij

|Vi| ≤
⌈ n

2j

⌉
+ 2j−1n ≤ 2jn.

The result follows from a union bound.
From Lemma III.4 it follows that, for all j =
1, . . . , log2 n + 1,

1
|Ij |

∑

i∈Ij

|Vi| ≤ 1
|Ij |2

jn ≤ 22j

⇒ log2

1
|Ij |

∑

i∈Ij

|Vi|

 ≤ 2j. (2)

By Jensen’s inequality and the concavity of log2 it
follows that

log2

1
|Ij |

∑

i∈Ij

|Vi|

 ≥ 1

|Ij |
∑

i∈Ij

log2 |Vi|.

By combining the above with (2), it follows that
∑

i∈Ij

log2 |Vi| ≤ 2j
⌈ n

2j

⌉
,

and summing over j it follows that

n∑

i=1

log2 |Vi| ≤ n

log2 n∑

j=1

2j

2j
+ 2(log2 n + 1) = O(n).

Finally, observe that, when a client ci joins the network,
the augmenting path chosen by the protocol has length
O(1 + log2 |Vi|). It follows that the total augmentation

cost paid by the protocol is O(n).

To prove part 2 of the lemma, we make use of the
following well known facts.

Lemma III.5 (Coupon Collector Model) In a coupon
collector model with n coupon types, the probability that
all coupons are not collected after 2n loge n steps is at
most 1

n .

Lemma III.6 (Balls in Bins) In the balls and bins
model, if m balls are thrown into n bins, then, with
probability at least 1− 1

n , the maximum load of a bin is
O(m

n + log n).

From Lemma III.5, it follows that, with probability at
least 1 − 1

n , the total number of invocations of Steps
1 and 3(b)i of BINARY BFS throughout the course of
the protocol is at most 2n loge n. Since every client
participates exactly once in an invocation of Step 1,
to conclude the proof of Part 2, it is enough to show
that, with high probability, no client c participates more
than O(log n) times in an invocation of Step 3(b)i. We
argue this by coupling the process of selecting clients
for invoking Step 3(b)i with the process of throwing
m = n log n balls into n bins. For our purposes the
bins are the clients and a ball, thrown at the time of an
invocation of a Step 1 or a Step 3(b)i of BINARY BFS,
is received by a client (bin) c if the server selected by
the invocation is matched with client c; as a result of
this receipt, c will be the next client to participate in an
invocation of Step 3(b)i, at which time another ball will
be thrown, etc. Note that a ball might not be received by
any client; in particular, for any ball that gets thrown the
probability that a client c receives it is at most 1

n . Hence,
the maximum load that a client receives in our model is
dominated by the maximum load of a bin in a balls in
bins process whereby 2n loge ‘n balls are thrown into n
bins; the latter is O(log n) with probability at least 1− 1

n
by Lemma III.6. This concludes the proof of part 2 of
the lemma.

We establish next a lower bound of Ω(n/ log n) on the
switching cost of any online protocol. Hence, the proto-
col described in the proof of Theorem III.1 is optimal
up to a factor of O(log n). The proof is postponed to the
appendix.

Theorem III.7 In the setting of Theorem III.1, any on-
line matching protocol has switching cost of Ω(n/ log n),
with high probability.

7

IV. ONLINE BIPARTITE MATCHING ON FORESTS

In this section, we provide an algorithm that achieves a
switching cost of O(n log n), when the connection graph
on n clients and n servers is a forest, and contains a
perfect matching between clients and servers. The main
result of this section is as follows.

Theorem IV.1 Let G be the underlying graph of con-
nections between clients and servers. If G is a forest,
then, for any arrival order of clients, there is an algo-
rithm which has a switching cost of O(n log n).

Before we describe the algorithm, we first make some
preliminary observations, which provide a foundation for
stating our algorithm. Note that at the start of our online
process, we have n server nodes and no edges, and thus
our connection graph contains n connected components
consisting of a single server node each. As new clients
arrive with their edges, these connected components
become merged. In particular, one should note that when
a new client i arrives with di ≥ 2 edges, the client’s
di edges must connect to di distinct components in the
graph, since our final graph must be a forest. Thus a
client arriving with di ≥ 2 edges causes di components
to merge into a single connected component.

As our process proceeds, our online algorithm moni-
tors these connected components, and designates a node
from each connected component to be the root of the
component. The root and size of each component are
key elements in deciding the augmenting path to be
used to connect a new client. At the beginning of
the process, each server node starts as the root node
of its own connected component; this will change as
clients arrive and components merge. Now to define
how our algorithm maintains the root nodes and selects
augmenting paths to connect each new arriving client i,
we have three different cases:
• Case I: If client i has a single edge, then this edge

connects to a single connected component C and
thus all potential augmenting paths from i must pass
through component C. Among the set of potential
augmenting paths, choose the augmenting path that
stays furthest away from the root of C.

• If a client i has more than one edge, then we
have two cases to consider, depending on the set
of connected components to which client i can
find an augmenting path. Let Si denote the set of
connected components to which client i can find
an augmenting path, and let Ti denote the set of
connected components to which client i has an
edge.

– Case II: If the set Si contains only one connected
component, and that connected component is the
unique largest component of Ti, then follow the
rule in case I .

– Case III: Otherwise, choose any augmenting
path into the smallest component in Si.

At the end of both case II and case III , all compo-
nents in Ti have merged into a single component T .
Assign T to have the same root node as the largest
component in Ti, breaking ties arbitrarily if needed.

We now prove Theorem IV.1, by bounding the total
switching cost of our algorithm.

Proof of Theorem IV.1: We first bound the total cost
of augmentations arising from case III by O(n log n).
Note that each time a server switches clients via case
III , its component size at least doubles, and thus each
server can switch clients at most O(log n) times via case
III augmentations. Therefore, the total cost arising from
case III augmentations is O(n log n).

Lemma IV.2 shows that the switching cost arising
from case I and case II augmentations is at most
O(n log n). The theorem thus follows by combining
Lemma IV.2 with our bound on the total cost of aug-
mentations arising from case III . ¥

We now bound the switching cost arising from case
I and case II augmentations. Here we need to do a bit
more work (see proof in the appendix).

Lemma IV.2 Let G be the underlying graph of connec-
tions between clients and servers. If G is a forest, then,
for any arrival order of clients, the total switching cost of
case I and case II augmentations is at most O(n log n).

V. CONCLUSION

In conclusion, we study three variants of the online
bipartite matching problem. First, we show that when
the underlying bipartite graph is arbitrary, and the clients
arrive in a random order, the greedy algorithm, which al-
ways uses the shortest available switching path, achieves
a switching-cost of O(n log n) with high probability.
We also study the problem when the arrival order is
adversarial and the underlying graph is a forest, and
provide a O(n log n) algorithm for this case. Finally, we
study the problem in random bipartite graphs of degree
O(log n) and show an algorithm which achieves O(n)
switching-cost.

The main open question is to find an algorithm which
achieves a switching cost of O(n log n) for any arbitrary
bipartite graph between clients and servers, and for an

8

adversarial arrival order of clients. In particular, it would
be interesting to find a proof that the greedy algorithm
achieves a switching-cost of O(n log n) in any bipartite
graph, for any arrival order of the clients, or to find a
counterexample that suggests otherwise.

REFERENCES

[1] Matthew Andrews, Michel X. Goemans, and Lisa Zhang. Im-
proved bounds for on-line load balancing. In Computing and
Combinatorics, Second Annual International Conference (CO-
COON), pages 1–10, 1996.

[2] Yossi Azar, Andrei Broder, and Anna Karlin. On-line load
balancing. In Proc. 33rd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 218–225, 1993.

[3] Yossi Azar, Bala Kalyanasundaram, Serge Plotkin, Kirk Pruhs,
and Orli Waarts. Online load balancing of temporary tasks.
In Proc. 2nd International Workshop on Algorithms and Data
Structures (WADS), pages 119–130, 1993.

[4] Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness
of on-line assignments. In Proc. 3rd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 203–210, 1992.

[5] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G.
Spirakis. Space efficient hash tables with worst case constant
access times. In Proc. 20th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 271–282, 2003.

[6] Brighten Godfrey. Balls and bins with structure: Balanced
allocations on hypergraphs. In Proc. 19th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2008.

[7] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott
Vitter. Online perfect matching and mobile computing. In Proc.
4th International Workshop on Algorithms and Data Structures
(WADS), pages 194–205, 1995.

[8] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In Proc. 9th Annual European Symposium on Algorithms (ESA),
pages 121–133, 2001.

[9] Steven Phillips and Jeffrey Westbrook. Online load balancing
and network flow. In Proc. 25th ACM Symposium on Theory of
Computing (STOC), pages 402–411, 1993.

[10] Jeffrey Westbrook. Load balancing for response time. In Proc.
3rd Annual European Symposium on Algorithms (ESA), pages
355–368, 1995.

APPENDIX

A. Discussion

Although we assume the total number of arriving
clients is the same as the total number of servers, it is
not difficult to see our proofs still hold if n clients arrive
and there are m > n servers. We omit formal details,
but the bounds on the switching cost are the same for
this case when measuring the switching costs relative to
n, the number of clients.

We also assume that each server may service (i.e. be
matched to) at most one client, but one should note that
our result also holds when servers can service multiple
clients. In this more general setting, when n clients are to
be matched to m servers who can service s1, s2, . . . , sm

clients each, our bounds also hold and are exactly the
same as the unit capacity case, when measuring the cost
relative to n the number of clients. The bounds from the
unit capacity case also apply here, since we can reduce
this more general problem to the unit capacity case by
creating si server nodes for each server i ∈ {1, . . . , m}.
By treating each server i as si unit capacity servers, and
creating edges appropriately, it is not hard to see that any
bounds for the unit capacity case also yield equivalent
bounds for the general capacity case in terms of n the
number of clients that arrive.

Lastly, we assume that there is a matching at each step
of the algorithm. We make this assumption because if a
new client i arrives and no matching exists between the
arrived clients and the servers, then we might as well
ignore client i. We feel no remorse ignoring client i,
since no algorithm could have matched i and the other
arrived clients. By ignoring the clients who we cannot
possibly serve (without disconnecting other clients), we
are then left with an instance where at each step a
matching exists between the arrived clients and the
existing servers.

B. Skipped Proofs

In this section, we present the details of some of the
proofs from previous sections of the paper.

Proof of Theorem II.3: Using Yao’s lemma, it suffices to
specify a distribution on input instances such that for any
deterministic online algorithm, the expected switching
cost incurred by the algorithm on one of these instances
is Ω(n log n). (Here, the expectation is over the random
choice of instance and the random ordering of clients.)
We define our instance distribution as follows: form a
random bipartite graph between n clients and n servers
by choosing a random permutation π of {1, 2, . . . , n}
and matching client i to servers π(i) and π(i+1), where

9

π(n + 1) is interpreted to mean π(1). (In other words,
the bipartite graph is a random 2n-cycle on the set of
clients and servers.)

This input distribution is invariant under permutations
of the clients, so we may assume without loss of
generality that the clients’ arrival order is 1, 2, . . . , n.
At the arrival time of client k, the servers belong to
n−k+1 different connected components (including iso-
lated servers) and each of these connected components is
a path. Client k is adjacent to endpoints of two of these
paths, namely, the arcs of the cycle which extend from
client k to the first higher-numbered client encountered
when going around the cycle in either direction. The
theorem now follows from a sequence of observations
outlined below.

1) Conditioning on the cyclic ordering of all clients
besides k, client k is equally likely to be spliced
anywhere into the cycle. In particular, it has proba-
bility 1/3 of being spliced into the middle third of
an arc between higher-numbered clients.

2) The average length of the arcs between higher-
numbered clients is (n − 1)/(n − k), so the ex-
pected distance from client k to the nearest higher-
numbered client is at least n/3k.

3) The input distribution is invariant under the opera-
tion of cutting out an arc of the cycle (with servers
at both endpoints) and reattaching it backwards.
Therefore, conditional on the states of the two paths
to which client k < n is connected at the time of its
arrival (i.e., the sets of clients and servers in those
paths and the current matching between them), each
of the ways for k to connect to these paths is equally
likely. (Client k connects to these two paths by
choosing an endpoint of each. Thus, the number
of ways for k to connect to the two paths is the
product of the number of endpoints of the paths. As
each path has either 1 or 2 endpoints, this number
is at most 4.) Thus, conditional on the states of
the two paths at the time of client k’s arrival, with
probability 1/4 client k connects to each of these
paths at the endpoint which is furthest from the
free server on that path. If so, the switching cost
is bounded below by half the length of the shorter
path.

4) Combining (2) and (3), we find that the expected
cost incurred at the arrival time of client k is at
least n

24k . Summing over k, we get the stated lower
bound.

¥

Proof of Lemma III.2: Let S be any set of n − n
k =(

1− 1
k

)
n coupon types. Then, if k · n coupons are

requested,

Pr[all k · n coupons are from the set of types S]

≤
(

1− 1
k

)kn

≤ e−n.

It follows that, if k · n coupons are requested, then

Pr
[
at least

n

k
coupons are uncollected

]

≤
∑

S,|S|=(1− 1
k)n

Pr
[

all k · n coupons are from
the set of types S

]

≤
(

2
e

)n

,

where the summation ranges over all sets S of coupon
types of size |S| = (

1− 1
k

)
n. ¥

Proof of Theorem III.7: Let S = {s1, . . . , sn} be the
set of servers and C = {c1, . . . , cn} the set of clients,
and let us suppose that the clients arrive in the order
c1, c2, . . . , cn, where t, t = 1, . . . , n, is the arrival time of
client ct. Suppose also that every client selects a random
set of D := α · log2 n servers with repetition; as in the
proof of Theorem III.1, with minor modifications the
argument extends to the case where the selection happens
without repetition. Denoting by Sct the set of servers that
client ct chooses, let us define the following collection
of events for t = 1, . . . , n:

At :=
“When client ct arrives all servers in Sct

are occupied by other clients.”

Recall that an online matching protocol needs to main-
tain a matching of the clients with servers at all times.
Hence, if the event At happens, the protocol must incur
an extra cost of at least 1 in period t in order to service
client ct. Moreover, observe that

Pr[At] =
(

t− 1
n

)D

.

Therefore, the expected switching cost incurred by the
protocol is

E[switching cost] ≥
n∑

t=1

(
t− 1

n

)D

=
1

nD

n−1∑
t=1

tD

≥ 1
nD

∫ n−2

t=0

tDdt =
1

nD

(n− 2)D+1

D + 1

=
(n− 2)D

nD

n− 2
D + 1

= Ω
(

n

log n

)
.

So, in expectation, every online matching protocol has
cost Ω(n/ log n). To show that this is also true with high

10

probability, note that the events {At}n
t=1 are indepen-

dent. The result follows from an easy Chernoff bound.
¥

Proof of Lemma IV.2: Note that for this lemma, we do
not need to distinguish between case I and II augmen-
tations; we just need to note that these augmentations
seek to maximize the distance from the root node, and
for servers involved in case I or case II augmentations,
their root node does not change as a result of these
augmentations.

Although we do not need to distinguish between these
two types of augmentations anymore, we do need to
further classify the client/server switches that arise as
a result of these types of augmentations. For a server
v which switches clients as a result of a case I or II
augmentation, we classify v’s switch as either an upward
switch, a downward switch, or a peak switch, depending
on the direction of the augmentation/switch relative to
the root node. To classify these switches, suppose that
a case I or case II augmenting path passes through a
client u, a server v, and a client w in sequence and
thus results in edge (u, v) being added to the matching
and edge (w, v) being deleted from it. We say node v
experiences an upward switch if client u is strictly closer
to the component root than client w, and v experiences
a downward switch if client u is strictly further from
the component root than client w. If both client u and
w are the same distance from the root, then server v
experiences a peak switch. To complete the proof of
the cost upper bound, we prove the following three
statements:
• Each node experiences at most one downward

switch.
• Each node experiences at most O(log n) upward

switches.
• There are at most O(n) peak switches in total.
Before we prove the three statements, we first define

some terminology. For a set U of clients and servers,
we say that U is finished if every client in U has
already arrived, U contains an equal number of clients
and servers, and no client in U is adjacent to a server in
the complement of U . We say that a client or server is
finished if there exists a finished set U that contains the
client or server. Note that once a set U becomes finished
it remains finished in the future. Also, all the clients in a
finished set U must be matched to servers in U and there
can be no augmenting paths passing through a node of
U .

Now to prove the first statement, suppose that a server
node v engages in a downward switch which results in
its becoming connected to a client u. After this switch

takes place, let U be the set consisting of v, u, and all the
clients and servers reachable from u by an augmenting
path that does not pass through v. It must be the case
that every server in U is matched to a client in U ,
because otherwise u would have an augmenting path that
stays strictly further from the root than any path passing
through v, and therefore u would not have switched to
v in the most recent step of the algorithm. Moreover,
every client in U is matched to a server in U and no
client in U is adjacent to a server v′ 6∈ U , because this
would imply the existence of an augmenting path from
u to v′ that does not pass through v, contradicting the
assumption that v′ 6∈ U . Thus, the set U is finished; in
particular, this means v is finished, thus confirming that v
can engage in at most one downward switch throughout
the execution of the algorithm.

To prove the second statement, note that once a
server v engages in an upward switch, if it engages in
another switch before its component root changes then
this switch must be a downward switch, which would
finish v. Thus, the number of upward switches involving
v is bounded above by the number of times the root
of the component containing v changes. However, a
server’s root node can change at most O(log n) times,
since the component size at least doubles each time the
root changes. As a result, we have that each server may
undergo at most O(log n) upward switches.

To prove that there are at most O(n) peak switches,
note that each augmentation of case I or case II , consists
of a sequence of zero or more upward switches, a
peak switch, and a sequence of zero or more downward
switches. Thus, the second statement follows since each
augmentation contains at most one peak switch and since
there are at most n augmentations.

Thus, we have proven all three statements, and we
have that the total cost of case I and II augmentations
is O(n log n). ¥

11

