
On a Network Generalization
of the Minmax Theorem

Constantinos Daskalakis1 and Christos H. Papadimitriou2?

1 Microsoft Research, New England
2 U.C. Berkeley

Abstract. We consider graphical games in which the edges are zero-sum
games between the endpoints/players; the payoff of a player is the sum of
the payoffs from each incident edge. Such games are arguably very broad
and useful models of networked economic interactions. We give a simple
reduction of such games to two-person zero-sum games; as a corollary, a
mixed Nash equilibrium can be computed efficiently by solving a linear
program and rounding off the results. Our results render polynomially
efficient, and simplify considerably, the approach in [3].

1 Introduction

In 1928, von Neumann proved that every two-person zero-sum game has the
minmax property [8], and thus a randomized equilibrium — which, we now
know, is easily computable via linear programming. According to Aumann, two-
person strictly competitive games — that is zero-sum games (see the discussion
in the last section) — are “one of the few areas in game theory, and indeed in
the social sciences, where a fairly sharp, unique prediction is made” [2]. In this
paper, we present a sweeping generalization of this class to multi-player games
played on a network.
Networked Interactions. In recent years, with the advent of the Internet and the
many kinds of networks it enables, there has been increasing interest in games
in which the players are nodes of a graph, and payoffs depend on the actions
of a player’s neighbors [6]. One interesting class of such games are the graphical
polymatrix games, in which the edges are two-person games, and, once all players
have chosen an action, the payoff of each player is the sum of the payoffs from
each game played with each neighbor. For example, games of this sort with
coordination games at the edges are useful for modeling the spread of ideas and
technologies over social networks [7].

But what if the games at the edges are zero-sum — that is, we have a network
of competitors? Do von Neumann’s positive results carry over to this interesting
case? Let us examine a few simple examples. If the network consists of isolated
edges, then of course we have many independent zero-sum games and we are
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done. The next simplest case is the graph consisting of two adjacent edges. It
turns out that in this case too von Neumann’s ideas work: We could write the
game, from the middle player’s point of view, as a linear program seeking the
mixed strategy x such that

max z1 + z2

subject to A1x ≥ z1
A2x ≥ z2,

where A1 and A2 are the middle player’s payoff matrices against the two other
players. In other words, the middle player assumes that his two opponents will
each punish her separately as much as they can, and seeks to minimize the total
damage. In fact, a little thought shows that this idea can be generalized to any
star network.

But what if the network is a triangle, for example? Now the situation becomes
more complicated. For example, if player u plays matching pennies, say, with
players v and w (take the stakes of the game with v to be higher than the stakes
of the game with w), while v and w play between them, for much higher stakes,
a game that rewards v for playing heads, then v cannot afford to pay attention to
u, and u can steal a positive payoff along the edge (u, v), so that her total payoff
is positive — despite the fact that she is playing two matching pennies games.
Is there a general method for computing Nash equilibria in such three-player
zero-sum polymatrix games? Or is this problem PPAD-complete?

Our main result (Theorem 2) is a reduction implying that in any zero-sum
graphical polymatrix game a Nash equilibrium can be computed in polynomial
time, by simply solving a two-player zero-sum game and rounding off the equi-
librium. In other words, we show that there is a very broad and natural class
of tractable network games to which von Neumann’s method applies rather di-
rectly. The basic idea of the reduction is very simple: We create two players
whose strategy set is equal to the union of the actions of all players, and have
both of them “represent” all players. To make sure that the two players ran-
domize evenly between the players they represent, we make them play, on the
side, a high-stakes game of generalized rock-paper-scissors. It is not hard to see
that any minmax strategy of this two-person zero-sum game can be made (by
increasing the stakes of the side game) arbitrarily close to a Nash equilibrium of
the original game.3

We prove our main result in Section 2. In Section 3 we show an interesting
consequence: if the nodes of the network run any distributed iterative learning
algorithm of the bounded regret variety known to perform well in many contexts,
then the whole game converges to the Nash equilibrium (Theorem 3).

3 Ilan Adler (private communication, April 2009) pointed out to us a proof of our main
result by a direct reduction to linear programming: Formulate the two-player game
(without the generalized rock-paper-scissors part) as a linear program, adding con-
straints which require that each of the two players assigns the same total probability
mass to the strategies of each of the players it represents.
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Related work. In a very interesting paper [3] (which we discovered after we had
proved our results. . .), Bregman and Fokin present a general approach to solving
what they call separable zero-sum games: multiplayer games that are zero-sum,
and in which the payoff of a player is the sum of the payoffs of the player’s
interactions with each other player. Their approach is to formulate such games
as a linear program with huge dimensions but low rank, and then solve it by
a sequence of reductions to simpler and simpler linear programs that can be
solved by the column generation version of the simplex method in a couple of
special cases, one of which is our zero-sum polymatrix games. Even though their
technique does not amount to a polynomial-time algorithm, we believe that it
can be turned into one by a sophisticated application of the ellipsoid method
and multiple layers of separating hyperplane generation algorithms. In contrast,
our method is a very simple and direct reduction to two-player zero-sum games.

Definitions. An n-player zero-sum graphical polymatrix game is defined in terms
of an undirected graph G = (V,E), where V := [n] is the set of players, and, for
each edge [u, v] ∈ E, an mu×mv real matrix Au,v and another Av,u = −(Au,v)T.
That is, each player/node u has a set of actions, [mu], and each edge is a zero-
sum game played between its two endpoints. Given any mapping f from V to
the natural numbers such that f(u) ∈ [mu] for all u ∈ V — that is, any choice
of actions for the players, the payoff of player u ∈ V is defined as

Pu[f ] =
∑

[u,v]∈E

Au,vf(u),f(v).

In other words, the payoff of each player is the sum of all payoffs of the zero-sum
games played with the player’s neighbors.

In any game, a (mixed) Nash equilibrium is a distribution on actions for each
player, such that, for each player, all actions with positive probabilities are best
responses in expectation. In an ε-Nash equilibrium, all actions played by a player
with positive probability give her expected utility which is within an additive ε
from the expected utility given by the best response. A weaker but related notion
of approximation is the notion of an ε-approximate Nash equilibrium, in which the
mixed strategy of a player gives her expected utility that is within an additive ε
from the expected utility of the best response. Clearly, an ε-Nash equilibrium
is also an ε-approximate Nash equilibrium; but the opposite implication is not
always true. Nevertheless, the two notions are computationally related as follows.

Proposition 1 [4] Given an ε-approximate Nash equilibrium of an n-player
game, we can compute in polynomial time a

√
ε · (
√
ε+ 1 + 4(n− 1)αmax)-Nash

equilibrium, where αmax is the magnitude of the maximum in absolute value
possible utility of a player in the game.

2 Main Result

Theorem 2. There is polynomial-time reduction from any zero-sum graphical
polymatrix game GG to a symmetric zero-sum bimatrix game G, such that from
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any Nash equilibrium of G one can recover in polynomial time a Nash equilibrium
of GG.

Proof of Theorem 2: In our construction we use a generalization of the well
known rock-paper-scissors game, defined below.

Definition 1 (Generalized Rock-Paper-Scissors). For an odd integer n >
0, the n-strategy rock-paper-scissors game is a symmetric zero-sum bimatrix
game (Γ,−Γ ) with n strategies per player such that for all u, v ∈ [n]:

Γu,v =


+1, if v = u+ 1 mod n

−1, if v = u− 1 mod n

0, otherwise.

It is not hard to see that, for every odd n, the unique Nash equilibrium of the
n-strategy generalized rock-paper-scissors game is the uniform distribution over
both players’ strategies. Now let GG = {Au,v}[u,v]∈E be an n-player zero-sum
graphical polymatrix game with edge set E, whose u-th player has mu strategies.
Assuming without loss of generality that n is odd, let us define the embedding
G of GG into the n-strategy rock-paper-scissors game with scaling parameter
M > 0 as follows: G = (R,C) is an

∑
umu ×

∑
umu bimatrix game, whose

rows and columns are indexed by pairs (u : i), of players u ∈ [n] and strategies
i ∈ [mu], such that, for all u, v ∈ [n], i ∈ [mu], j ∈ [mv],

R(u:i),(v:j) = M · Γu,v +Au,vi,j

C(u:i),(v:j) = −M · Γu,v +Av,uj,i .

In the above, we take Au,v and Av,u to be the all-zero matrices if [u, v] /∈ E.
Observe that G is zero-sum and also symmetric, since the generalized rock-paper-
scissors game is symmetric.

Lemma 1. Let n > 0 be an odd integer, GG = {Au,v}[u,v]∈E a zero-sum graph-
ical polymatrix game whose largest in absolute value payoff entry has magni-
tude M/L, and G = (R,C) the embedding of GG into the n-strategy rock-paper-
scissors game, with scaling parameter M . Then for all u ∈ [n], in any Nash
equilibrium (x, y) of G, xu, yu ∈ ( 1

n −
n
L ,

1
n + n

L ), where xu =
∑
i∈[mu] xu:i and

yu =
∑
i∈[mu] yu:i is the probability mass assigned by x and y to the block of

strategies (u : ·).

Proof of Lemma 1: Observe first that, since G is a symmetric zero-sum game,
the value of both players is 0 in every Nash equilibrium. We will use this to
argue that xu ≥ x(u+2 mod n) − 1

L , for all u ∈ [n], and similarly for y. This is
enough to conclude the proof of the lemma. For a contradiction, suppose that,
in some Nash equilibrium (x, y), xu < x(u+2 mod n) − 1

L , for some u. Then the
payoff to the column player for playing strategy (u + 1 mod n : j), for any
j ∈ [mu+1 mod n], is at least

Mx(u+2 mod n) −Mxu −
M

L
> 0.
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Since (x, y) is an equilibrium, the expected payoff to the column player from y
must be at least as large as the expected payoff from (u + 1 mod n : j), so in
particular larger than 0. But this is a contradiction since we argued that in any
Nash equilibrium of G the payoff of each player is 0. �

We argue next that, given any Nash equilibrium (x, y) of G, we can extract an
approximate equilibrium of the game GG by assigning to each node u of GG the
marginal distribution assigned by x to the block of strategies (u : i), i ∈ [mu].
For each node u, let us define the distribution x̂u over [mu] as follows

x̂u(i) =
xu:i

xu
, for all i ∈ [mu]. (1)

Lemma 2. In the setting of Lemma 1, if (x, y) is a Nash equilibrium of G, then
the collection of mixed strategies {x̂u}u is a 2M ·n3

L2 –Nash equilibrium of GG.

Proof of Lemma 2: Notice that, because G is a symmetric zero-sum game, if
x is a minimax strategy of the row player, then x is also a minimax strategy
of the column player. Hence, the pair of mixed strategies (x, x) is also a Nash
equilibrium of G. Now, for every node u of the polymatrix game, we are going
to show that the collection {x̂u}u satisfies the equilibrium conditions at node u
approximately. Indeed, because (x, x) is a Nash equilibrium of G it must be that,
for all i, j ∈ [mu]:

E [Pu:i] > E [Pu:j ] ⇒ xu:j = 0, (2)

where
E [Pu:i] =

∑
v

M · Γu,v · xv +
∑

[u,v]∈E

∑
`∈[mv]

Au,vi,` · xv:`

is the expected payoff to the row player of G for playing strategy (u : i). From
Lemma 1 we have

∣∣∣∣∣∣
∑

[u,v]∈E

∑
`∈[mv ]

Au,vi,` · xv:` −
1
n

∑
[u,v]∈E

∑
`∈[mv]

Au,vi,` · x̂v(`)

∣∣∣∣∣∣ ≤ M · n2

L2
.

Hence, (2) implies

1
n

∑
[u,v]∈E

∑
`∈[mv]

Au,vi,` · x̂v(`) >
1
n

∑
[u,v]∈E

∑
`∈[mv]

Au,vj,` · x̂v(`) +
2M · n2

L2
⇒ x̂u(j) = 0,

which is equivalent to

E [Pu:i] > E [Pu:j ] +
2M · n3

L2
⇒ x̂u(j) = 0, (3)
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where E [Pu:i] is the expected payoff of node u in GG for playing pure strategy i,
if the other players play according to the collection of mixed strategies {x̂v}v 6=u.
Since (3) holds for all u ∈ [n], i, j ∈ [mu], the collection {x̂u}u is a 2M ·n3

L2 -Nash
equilibrium of GG. �

Choosing M = 2q(|GG|)2n3u2
max and L = M

umax
, where q(|GG|) is some polyno-

mial in the size of GG, and umax the magnitude of the maximum in absolute value
entry in the payoff tables of GG, the collection of mixed strategies {x̂u}u obtained
from a Nash equilibrium (x, y) of G, constitutes a 2−q(|GG|)-Nash equilibrium of
the game GG. If q(·) is a sufficiently large polynomial, then a 2−q(|GG|)-Nash
equilibrium of GG can be transformed in polynomial time to an exact equilib-
rium. To see this, let us consider the following linear program with respect to
the variables z and {ŷu}u, where ŷu is a distribution over [mu]:

min z

s.t.
∑

[u,v]∈E

∑
`∈[mv ]

Au,vi,` · ŷv(`) ≥
∑

[u,v]∈E

∑
`∈[mv ]

Au,vj,` · ŷv(`)− z,
∀u ∈ [n],
i ∈ supp(x̂u),
j ∈ [mu].

(4)

In LP (4), supp(x̂u) denotes the support of the distribution x̂u. Observe in partic-
ular that (2−q(|GG|), {x̂u}u) is a solution of LP (4) with objective value 2−q(|GG|).
But, let us assume that q(·) has been chosen to be larger than the bit complexity
of any optimal solution to LP (4) (for any possible set of supports {supp(x̂u)}u).
It follows then that the optimal solution to LP (4) has objective value z = 0, so
that the corresponding collection {ŷu}u is an exact Nash equilibrium of GG. �

3 Distributed Learning

One of the more subtle advantages of two-person zero-sum games is that a large
variety of learning algorithms converge to the Nash equilibrium. Hence in this
section we study the behavior arising if every player in a zero-sum graphical
polymatrix game runs a no-regret learning algorithm.

Definition 2 (No-Regret Behavior). Let every node u ∈ V of a graphical
polymatrix game choose a mixed strategy xtu, at every time step t = 1, 2, . . .. We
say that the sequence of strategies (xtu)t chosen by u is a no-regret sequence, if
for every mixed strategy x of player u and all times T

T∑
t=1

 ∑
[u,v]∈E

(xtu)T ·Au,v · xtv

 ≥ T∑
t=1

 ∑
[u,v]∈E

xT ·Au,v · xtv

− o(T ), (5)

where the function o(T ) could depend on the number strategies available to player
u, the number of neighbors of u and magnitude of the maximum in absolute value
entry in the matrices Au,v. The function o(T ) is called the regret of player u at
time T .
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Example 1 (Multiplicative Weights-Update Algorithm). In the multiplicative weights-
update algorithm (see for example [5]) each player maintains a mixed strategy.
At each period, each probability is multiplied by a factor exponential in the
utility the corresponding strategy would yield against the opponent’s mixed
strategy (and the probabilities are renormalized). If every node in a zero-sum
graphical polymatrix game runs such an algorithm, then the resulting regret
is O((

√
T · logmu + logmu) · du · αumax), where mu is the number of strategies

available to player u, du is the degree of u, and αumax is the magnitude of the
largest in absolute value entry in the payoff matrices {Au,v}[u,v]∈E .

Our main result is the following.
Theorem 3. Suppose that every node u ∈ V of a zero-sum graphical polyma-
trix game GG plays a no-regret sequence of strategies (xtu)t=1,2,..., with regret
g(T ) = o(T ). Then, for all T , the set of strategies x̄Tu = 1

T

∑T
t=1 x

t
u, u ∈ V , is a(

2.3 · n · g(T )
T + 2

T

)
-approximate Nash equilibrium of the game.

Proof. Our proof plan is the following: Using the no-regret strategy sequences
of the players of GG we are going to define no-regret strategy sequences for
the players of the symmetric zero-sum bimatrix game G defined in the proof of
Theorem 2. We are going to show then that the time-averages of these sequences
comprise an approximate equilibrium of the game G, if M is sufficiently large.
Going back to the game GG using the mapping (1), we will then deduce that the
time-averages of the original sequences need to also comprise an approximate
equilibrium of the game GG.

To define the no-regret sequences of the players of the bimatrix game G, it
is tempting to take, at every time step, the (uniform) average of the strategies
of the players of GG. That is, for every time t = 1, 2, . . ., assign to both players
of G the strategy xt, such that xtu:i = 1

nx
t
u(i), for all u and i. This, however,

may result in large regrets for the players of G (essentially because the payoffs
of the side game are eliminated in this accounting, and the two players will tend
to skew their distributions towards the most “lucrative” of the players that they
represent). We define instead a non-uniform averaging with weights selected by
solving yet another related game, in a manner that depends on the payoffs of
the nodes of GG under the no-regret sequences.

Let us denote the average payoff of player u over the period t = 1, . . . , T as

P̄Tu :=
1
T

T∑
t=1

 ∑
[u,v]∈E

(xtu)T ·Au,v · xtv

 .

Let also αmax be the magnitude of the largest in absolute value entry in the
payoff tables of the game GG. We show the following lemma.

Lemma 3. For any Z > n2 and M > 2nZ ·αmax, there exist c > 0, and positive
weights {ku > 0 : u ∈ V }, such that for all u:

M ·
(

1
k(u+1 mod n)

− 1
k(u−1 mod n)

)
= − 1

n
P̄Tu + c; (6)
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1
ku
∈
[

1
n
− n

Z
,

1
n

+
n

Z

]
and

∑
u

1
ku

= 1. (7)

Recall that we have identified the vertices of GG with the integers in [n], and
without loss of generality let us assume that n is odd. Also, for conciseness, in
the remaining of the proof of Theorem 3 we are going to omit “mod n.” We
proceed with the proof of Lemma 3.
Proof of Lemma 3: We define a symmetric bimatrix game G′, with n strategies
per player corresponding to the different nodes of the game GG. The payoff
matrices (R,C) of the row and column players of G′ are defined as follows. For
all u, v ∈ V :

Ru,v = M · Γu,v +
1
n
P̄Tu ; Cu,v = −M · Γu,v +

1
n
P̄Tv ;

where Γu,v is the payoff matrix defined in the proof of Theorem 2. Since the game
G′ is symmetric, there exists a symmetric equilibrium (x, x), where x = (xu)u∈V .
We will argue first that xu ≥ 1

n −
1
Z , for all u ∈ V ; from this we can easily

deduce that xu ∈
[

1
n −

n
Z ,

1
n + n

Z

]
, for all u. Take u ∈ arg minu{xu} and suppose

that xu < 1
n −

1
Z . Then there exists a pair of nodes v and (v + 2) such that

xv+2− xv > 1
nZ . Indeed, if xv+2− xv ≤ 1

nZ for all v, it would be easy to deduce
(because n is odd) that xv ≤ xu + 1

Z < 1
n , for all v, which is clearly impossible.

Now, given that xv+2 − xv > 1
nZ , the utility of the players of the game G′ for

playing pure strategy v + 1 is

M · (xv+2 − xv) +
1
n
P̄Tv+1 >

M

nZ
− αmax > αmax,

since αmax is a bound on the absolute value of every entry in the payoff matrices
of the game GG, every node has at most n neighbors, and M

nZ > 2αmax. On the
other hand, since u ∈ arg minu{xu} it follows that the payoff of the players of
the game G′ for playing pure strategy u− 1 is

M · (xu − xu−2) +
1
n
P̄Tu−1 ≤ αmax.

Since (x, x) is an equilibrium, it must be that xu−1 = 0. It follows that there
must exist some w such that xw = 0 and xw−1 6= 0. But, the utility of the players
of the game G′ for playing pure strategy w − 1 is

M · (xw − xw−2) +
1
n
P̄Tw−1 ≤ αmax.

And, using again the fact that the utility for playing v+1 is larger than αmax, it
follows that xw−1 = 0 (a contradiction). This finishes the proof of Assertion (7)
taking ku := x−1

u , for all u.
Now, we need to justify (6). Since xu > 0 for all u, it follows that the

expected payoff for playing every u is the same. So, there exists c such that, for

all u, M · (xu+1 − xu−1) +
1
n
P̄Tu = c. Assertion (6) then follows. �

Now let us choose Z = n2TΛ (where Λ > 1 will be decided later), M >
2nZ · αmax, and let us define strategies for the players of G by averaging the
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strategies of the nodes of GG with the weights {1/ku}u given by Lemma 3. That
is, for all t, we define the strategy xt for each player of G as follows:

xtu:i =
1
ku
xtu(i), for all u ∈ [n], i ∈ [mu].

We show that if both players of G adopt the sequence of strategies xt, t =
1, 2, . . ., defined above then the regret of each at time T is at most

(
g(T )
n + 2αmax

Λ

)
.

Lemma 4. For all mixed strategies z:
T∑
t=1

(xt)T ·R · xt ≥ zT ·R ·

(
T∑
t=1

xt

)
− g(T )

n
− 2αmax

Λ
, (8)

T∑
t=1

(xt)T · C · xt ≥

(
T∑
t=1

xt

)T

· C · z − g(T )
n
− 2αmax

Λ
. (9)

Proof of Lemma 4: Since G is symmetric it is enough to justify (8). Indeed,
for the left hand side we have:
T∑
t=1

(xt)T ·R · xt =
T∑
t=1

∑
u∈[n]

1
ku

M · ( 1
ku+1

− 1
ku−1

)
+

∑
[u,v]∈E

1
kv

(xtu)TAu,vxtv


=

T∑
t=1

∑
u∈[n]

1
ku

− 1
n
P̄Tu + c+

∑
[u,v]∈E

(
1
n
± n

Z

)
(xtu)TAu,vxtv


≥

T∑
t=1

∑
u∈[n]

1
ku

− 1
n
P̄Tu + c+

1
n

∑
[u,v]∈E

(xtu)TAu,vxtv −
n

Z
nαmax


= Tc− T

n

∑
u∈[n]

P̄Tu
ku

+
1
n

∑
u∈[n]

1
ku

T∑
t=1

 ∑
[u,v]∈E

(xtu)TAu,vxtv

− n2T

Z
αmax

= Tc− T

n

∑
u∈[n]

P̄Tu
ku

+
1
n

∑
u∈[n]

1
ku
T P̄Tu −

n2T

Z
αmax

= Tc− n2T

Z
αmax = Tc− αmax

Λ
.

Let us now consider a mixed strategy z such that zu:i = 1, for some u ∈ [n] and
i ∈ [mu]. If we establish (8) for this z, it is easy to see that (8) holds for any z.

zT ·R ·

(
T∑
t=1

xt

)
=

T∑
t=1

M · ( 1
ku+1

− 1
ku−1

)
+

∑
[u,v]∈E

1
kv
eTu:iA

u,vxtv


=

T∑
t=1

− 1
n
P̄Tu + c+

∑
[u,v]∈E

(
1
n
± n

Z

)
eTu:iA

u,vxtv
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≤
T∑
t=1

− 1
n
P̄Tu + c+

1
n

∑
[u,v]∈E

eTu:iA
u,vxtv +

n

Z
nαmax


= Tc− T

n
P̄Tu +

1
n

T∑
t=1

 ∑
[u,v]∈E

eTu:iA
u,vxtv

+
n2

Z
Tαmax

= Tc− T

n
P̄Tu +

1
n

∑
[u,v]∈E

eTu:iA
u,v

(
T∑
t=1

xtv

)
+
n2Tαmax

Z
≤ Tc+

g(T )
n

+
αmax

Λ
,

where for the last derivation we used that the strategy sequence of the node u
of GG has regret at most g(T ). Combining the above bounds we get (8). �

We argue next the following

Lemma 5. The pair of strategies ( 1
T

∑T
t=1 x

t, 1
T

∑T
t=1 x

t) is a 2
T

(
g(T )
n + 2αmax

Λ

)
-

approximate Nash equilibrium of the game G.

Proof of Lemma 5: Let Φ := g(T )
n + 2αmax

Λ , and let us fix a pure strategy z∗

for the row player. (8) implies

T∑
t=1

(xt)T ·R · xt ≥ z∗T ·R ·

(
T∑
t=1

xt

)
− Φ. (10)

Recalling that C = −R and setting z = xt we get from (9) that for all t:

−
T∑
t=1

(xt)T ·R · xt ≥ −

(
T∑
t=1

xt

)T

·R · xt − Φ. (11)

Combining (10) and (11), we get

(
T∑
t=1

xt

)T

·R ·xt+Φ ≥ z∗T ·R ·

(
T∑
t=1

xt

)
−Φ,

for all t. Summing this for t = 1, . . . , T we get(
T∑
t=1

xt

)T

·R ·

(
T∑
t=1

xt

)
≥ T · z∗T ·R ·

(
T∑
t=1

xt

)
− 2ΦT.

Dividing by T 2 and recalling that that the above holds for all z∗ completes the
proof. �

We conclude the proof of Theorem 3 by arguing that the set of strategies {x̄Tu }u,
where x̄Tu = 1

T

∑T
t=1 x

t
u, comprise an approximate equilibrium of the game GG.

Denote by Γ := 2
T

(
g(T )
n + 2αmax

Λ

)
and take Ξ = n2

1−n2
Z

Γ + n3

Z 2αmax + 1
T .
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Lemma 6. For all u ∈ [n], and for all mixed strategies zu of node u:∑
[u,v]∈E

(x̄Tu )T ·Au,v · x̄Tv ≥
∑

[u,v]∈E

zT
u ·Au,v · x̄Tv −Ξ. (12)

Proof of lemma 6: Suppose that (12) is violated for some pair u, zu. We are
going to contradict the assertion of Lemma 5. Indeed, let us define the following
strategy q for the row player of G:

qv:i =

{
1
kv
x̄Tv (i), if v ∈ [n] \ {u}, i ∈ [mv];

1
ku
zu(i), if v = u, i ∈ [mu];

and let us consider the change in the row player’s payoff if she replaces strategy
x̄T := 1

T

∑T
t=1 x

t by q. Clearly, the payoff from x̄T is∑
v∈[n]

1
kv

(x̄Tv )TRvx̄T , (13)

where we denote by Rv the matrix v restricted to the rows (v : i), i ∈ [mv].
Similarly, the payoff that the row player gets from q is

1
ku

(zu)TRux̄T +
∑

v∈[n]\{u}

1
kv

(x̄Tv )TRvx̄T . (14)

Subtracting the two payoffs we get that the difference between the payoff from
q and the payoff from x̄T is

1
ku

(
zT
uRux̄

T − (x̄Tu )TRux̄T
)

=
1
ku

 ∑
[u,v]∈E

1
kv

(zu − x̄Tu )T ·Au,v · x̄Tv


=

1
ku

 ∑
[u,v]∈E

(
1
n
± n

Z

)
(zu − x̄Tu )T ·Au,v · x̄Tv


≥ 1
ku

∑
[u,v]∈E

(
1
n

(zu − x̄Tu )T ·Au,v · x̄Tv −
n

Z
2αmax

)

≥ 1
ku
· 1
n

∑
[u,v]∈E

(zu − x̄Tu )T ·Au,v · x̄Tv −
1
ku

n2

Z
2αmax

≥ 1
ku
· 1
n
Ξ − 1

ku

n2

Z
2αmax > Γ,

and this contradicts the assertion of Lemma 5 that (x̄T , x̄T ) is a Γ -approximate
Nash equilibrium. �

From Lemma 6 it follows that the strategies {x̄Tu }u comprise a Ξ-approximate
Nash equilibrium of the game GG. Choosing Λ > max{8n2, 5n2αmax} it follows
that Ξ < 2.3 · n · g(T )

T + 3
T .
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4 Discussion

We believe that graphical polymatrix games are useful models of important social
phenomena, such as trading or other interaction in social networks. In this paper
we focused on the zero-sum variety of such games. Without restrictions on the
games played on the edges, it is easy to see that the problem of computing a
Nash equilibrium becomes intractable even for two strategies per player [4]. It
is interesting to understand what other classes of polymatrix games have nice
computational properties. For example, can the Nash equilibrium of such games,
with a small number of strategies at each player, be approximated well?

Our main result raises a number of other important questions. Consider a
directed graph such that along every edge (u, v) nodes u and v play the same
zero-sum game (A,−A). It is easy to see (assuming, for example, that the overall
game is non-degenerate) that each node can be assigned a value, characterizing
its expected payoff at equilibrium. This brings up an interesting question: which
structural properties of the graph and of the position of a node in it — as well as
the nature of the game A — determines these values? Such investigation could
result in important insights into networked economic activity.

Finally, in an earlier version of our paper we had included an extension
of our main result to the (ostensibly) more general case in which the games
played at the edges are strictly competitive, games that share with zero-sum
games this property: if both opponents change their mixed strategy, then their
utilities either both stay the same, or one increases while the other decreases.
In subsequent joint work with Ilan Adler [1], however, we proved that the only
examples of such games are zero-sum games (or their trivial affine variants,
resulting from a zero-sum game by adding a constant to all payoffs of one player,
or multiplying them all by the same positive constant). In other words, this well
known, and much discussed in the literature, generalization of zero-sum games
is, rather astonishingly, void!
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