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ABSTRACT
It is known [5] that an additively ε-approximate Nash equi-
librium (with supports of size at most two) can be computed
in polynomial time in any 2-player game with ε = .5. It is
also known that no approximation better than .5 is possible
unless equilibria with support larger than log n are consid-
ered, where n is the number of strategies per player. We
give a polynomial algorithm for computing an ε-approximate
Nash equilibrium in 2-player games with ε ≈ .38; our algo-
rithm computes equilibria with arbitrarily large supports.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: analysis of algorithms
and problem complexity—general

General Terms
Algorithms, Economics, Theory

Keywords
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1. INTRODUCTION
It was recently shown that finding a Nash equilibrium is

PPAD-complete [4], even for 2-player games [2]. As a con-
sequence, finding approximate Nash equilibria has emerged
as the main remaining open question in the area of equilib-
rium computation. The most commonly studied form of ap-
proximation is additive approximation in games in which all
utilities have been normalized to be between 0 and 1 (this is
a common assumption, since scaling the utilities of a player
by any positive factor, and applying any additive constant,
results in an equivalent game). A set of mixed strategies is
called an ε-approximate Nash equilibrium, where ε > 0, if
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for each player all strategies have expected payoff that is at
most ε more than the expected payoff of the given strategy.
Clearly, any mixed strategy combination is a 1-approximate
Nash equilibrium, and it is quite straightforward to find a
3
4
-approximate Nash equilibrium in 2-player games by ex-

amining all supports of size two; see [8] for a slightly im-
proved result. In [9] it was shown that an ε-approximate

Nash equilibrium can be found in time O(n
log n

ε2 ) by exam-
ining all supports of size log n

ε2
. It was pointed out in [1] that

no algorithm that examines supports smaller than about
log n can achieve an approximation better than 1

4
, even for

zero-sum games. In fact [6] have sharpened the 1
4

to a 1
2
.

A very simple algorithm achieving ε = 1
2

in 2-person
games was pointed out in [5]: For any strategy i of player
I let j be the best response of player II, and let k be the
best response of player I to j. Then player I plays an equal
mixture of i and k, while player II plays j. The proof of
1
2
-approximation is not very hard.
In this paper we give an algorithm which breaks the bar-

rier of 1
2

by considering supports of arbitrarily large cardi-

nality. It achieves an approximation ratio 3−
√

5
2

+ε ≈ .38+ε,

for any ε > 0, in time n
O( 1

ε2
)
. It is based on the following

two ideas: (a) If the values (u, v) of a Nash equilibrium to
the two players were known, then we would be able to find a
max{u, v}-approximate Nash equilibrium by solving a set of
linear inequalities; and (b) for every Nash equilibrium, there
is a pair of mixed strategies with support size O( 1

ε2
) which

approximates within ε the true values of that Nash equilib-
rium [9]. Our technique uses both these ideas and also takes
care of the interaction between them. The linear program
in (a) will, of course, return in general mixed strategies of
arbitrarily large support.

2. PRELIMINARIES
We consider normal form games between two players, the

row player and the column player, each with n strategies
at his disposal. The game is defined by two n × n payoff
matrices, R for the row player, and C for the column player.
The pure strategies of the row player correspond to the n
rows and the pure strategies of the column player correspond
to the n columns. If the row player plays row i and the
column player plays column j, then the row player receives
a payoff of Rij and the column player gets Cij . Payoffs are
extended linearly to pairs of mixed strategies — if the row
player plays a probability distribution x over the rows and
column player plays a distribution y over the columns, then



the row player gets a payoff of xT Ry and the column player
gets a payoff of xT Cy.

A Nash equilibrium in this setting is a pair of mixed strate-
gies, x∗ for the row player and y∗ for the column player, such
that neither player has an incentive to unilaterally defect.
Note that, by linearity, the best defection is to a pure strat-
egy. Let ei denote the vector with a 1 at the ith coordinate
and 0 elsewhere. A pair of mixed strategies (x∗, y∗) is a
Nash equilibrium if

∀ i = 1..n, eT
i Ry∗ ≤ x∗

T
Ry∗

∀ i = 1..n, x∗
T
Cei ≤ x∗

T
Cy∗

It can be easily shown that every pair of equilibrium strate-
gies of a game does not change upon multiplying all the en-
tries of a payoff matrix by a constant, and upon adding the
same constant to each entry. We shall therefore assume that
the entries of both payoff matrices R and C are between 0
and 1.

For ε > 0, we define an ε-approximate Nash equilibrium to
be a pair of mixed strategies x∗ for the row player and y∗

for the column player, so that the incentive to unilaterally
deviate is at most ε:

∀ i = 1..n, eT
i Ry∗ ≤ x∗

T
Ry∗ + ε

∀ i = 1..n, x∗
T
Cei ≤ x∗

T
Cy∗ + ε

A stronger notion of approximately equilibrium strategies
was introduced in [7, 4]: For ε > 0, a well-supported ε-
approximate Nash equilibrium, or an ε-well-supported Nash
equilibrium, is a pair of mixed strategies, x∗ for the row
player and y∗ for the column player, so that a player plays
only approximately best-response pure strategies with non-
zero probability:

∀ i : x∗i > 0 ⇒ eT
i Ry∗ ≥ eT

j Ry∗ − ε, ∀ j

∀ i : y∗i > 0 ⇒ x∗
T
Cei ≥ x∗

T
Cej − ε, ∀ j

This is indeed a stronger definition, in the sense that every
ε-well supported Nash equilibrium is also an ε-approximate
Nash equilibrium, but the converse need not be true. How-
ever, the following lemma from [3] shows that there does
exist a polynomial relationship between the two:

Lemma 2.1. [3] For every 2 player normal form game,

for every ε > 0, given an ε2

8n
-approximate equilibrium we can

compute in polynomial time an ε-well-supported equilibrium.

It is known, see [4, 2, 3], that computing an 1
nα -well sup-

ported Nash equilibrium is PPAD-complete, for any con-
stant α > 0, and, by the above lemma, so is computing
a 1

nα+1 -approximate equilibrium. Therefore, a FPTAS for
the problem is unlikely. In [5] we provide an algorithm for
computing a 1

2
-approximate Nash equilibrium via a simple

algorithm which considers strategies of support 2 and an al-
gorithm for computing a 2

3
-well supported equilibrium con-

ditional on some graph theoretic conjecture. Another at-
tempt towards computing approximate equilibria (although
with inferior approximation guarantees) can be found in [8].

3. COMPUTATION OF APPROXIMATE NASH
EQUILIBRIA

3.1 An Existence Proof
Using the properties of Nash equilibrium and Hoefding-

Chernoff bounds we derive the following.

Lemma 3.1. For any ε > 0 and for any two-player game
G = (R, C), where R, C are n × n matrices with entries in
[0, 1], there exist vR, vC ∈ [0, 1], mixed strategies x, α for
the row player, y, β for the column player, with |supp(α)| ≤
4/ε2, |supp(β)| ≤ 4/ε2, such that the following are satisfied

|αT Rβ − vR| ≤ ε (1)

∀ i ∈ supp(α) : eT
i Ry = vR (2)

|xT Rβ − vR| ≤ ε (3)

∀ i : eT
i Ry ≤ vR (4)

|αT Cβ − vC | ≤ ε (5)

∀ j ∈ supp(β) : xT Cej = vC (6)

|αT Cy − vC | ≤ ε (7)

∀ j : xT Cej ≤ vC (8)

Proof. Let (x∗, y∗) be a Nash equilibrium of game G
and let vR = x∗T Ry∗, vC = x∗T Cy∗ be the values obtained
by the two players in the Nash equilibrium. Let us choose
x = x∗ and y = y∗. We will argue that there exists a
pair of mixed strategies α, β for the row and column player
respectively so that the required properties hold.

To show that such strategies exist we apply the proba-
bilistic method. Suppose that we take t independent sam-
ples from the strategy space of the row player according to
the distribution induced by x∗ and let us denote by A the
resulting multiset of pure strategies of the row player. Simi-
larly, let us take t samples according to y∗ and denote by B
the resulting multiset for the column player. Let then α be
the mixed strategy corresponding to the uniform distribu-
tion on multiset A and β the mixed strategy corresponding
to the uniform distribution on B.

We are interested in the probability that x, y, α and β
satisfy the properties stated above. Clearly, Properties (2),
(4), (6), (8) are satisfied with probability 1 by the definition
of Nash equilibrium and since every strategy in A is in the
support of x and every strategy in B in the support of y.
So we only need to worry about Properties (1), (3), (5) and
(7).

Let X and Y be independent random variables such that

X = ei, with probability x(i), for all i ∈ {1, . . . , n},
Y = ei, with probability y(i), for all i ∈ {1, . . . , n}.

Let then X1, . . . , Xt be t copies of variable X and Y1, . . . , Yt

be t copies of variable Y , where variables X1, . . . , Xt, Y1, . . . , Yt

are mutually independent. Denoting A = 1
t

Pt
i=1 Xi and

B = 1
t

Pt
i=1 Yi we will argue that with positive probability

the random variables A and B satisfy Properties (1), (3),
(5) and (7), i.e.

P[(|AT RB − vR| ≤ ε) ∧ (|xT RB − vR| ≤ ε)

∧ (|AT CB − vC | ≤ ε) ∧ (|AT Cy − vC | ≤ ε)] > 0. (9)



Clearly, E[xT RYi] =
P

i,j Rijx(i)E[1{Y =ej}]

=
P

i,j Rijx(i)y(j) = vR. Therefore, a Chernoff bound on

the sequence of random variables Zi = xT RYi gives

P[|xT RB − vR| > ε] ≤ e−2tε2 . (10)

Via similar arguments

P[|AT Cy − vC | > ε] ≤ e−2tε2 .

To bound the probability of the event |AT RB − vR| > ε
we note that

|AT RB − vR| ≤ |AT RB − xT RB|+ |xT RB − vR|.

Therefore,

P[|AT RB − vR| > ε]

≤ P[|AT RB − xT RB| > ε/2 ∨ |xT RB − vR| > ε/2]

≤ P[|AT RB − xT RB| > ε/2] + P[|xT RB − vR| > ε/2]

The second term of the latter expression can be bounded as
follows from (10)

P[|xT RB − vR| > ε/2] ≤ e−tε2/2.

To bound the first term we note that
E[XT

i RB|B] =
P

i,j RijE[1{X=ei}]B(j) =
P

i,j Rijx(i)B(j) =

xT RB. Therefore, conditioned on the value of B, a Chernoff
bound on the sequence of random variables Z′

i = XT
i RB

gives

P[|AT RB − xT RB| > ε/2|B] ≤ e−tε2/2

which implies

P[|AT RB − xT RB| > ε/2] ≤ e−tε2/2

Putting everything together we get

P[|AT RB − vR| > ε] ≤ 2e−tε2/2

Similarly,

P[|AT CB − vC | > ε] ≤ 2e−tε2/2

Choosing t = 4
ε2

we get

P[|xT RB − vR| > ε] ≤ e−8,

P[|AT Cy − vC | > ε] ≤ e−8,

P[|AT RB − vR| > ε] ≤ 2e−2

P[|AT CB − vC | > ε] ≤ 2e−2

Therefore, by union bound

P[(|AT RB − vR| > ε) ∨ (|xT RB − vR| > ε)

∨ (|AT CB − vC | > ε) ∨ (|AT Cy − vC | > ε)] < 0.55.

The latter implies (9). This completes the proof. We note
that (1) and (5) were also proved to be true in [9] using a
similar method.

3.2 An Algorithm
Let ε > 0. The following algorithm computes an 3−

√
5

2
+ ε

approximate equilibrium.

1. Discretize [0, 1] into the set V = {0, ε, 2ε, . . . , kε}, where
k = k(ε) is such that kε ≤ 1 and (k + 1)ε > 1.

2. Guess a pair of values vR, vC ∈ V that are ε-close to the
values of a Nash equilibrium to the two players (this
is, of course, done by trying all O( 1

ε2
) pairs until the

A, B, x, y sought by the algorithm below are found).

(a) Let vmax = max{vR, vC}.
(b) Find a multiset A of row player’s pure strategies,

and a multiset B of column player’s pure strate-
gies, both multisets of size 4/ε2 so that the fol-
lowing is satisfied.

αT Rβ ≥ vR − 3ε/2 (11)

αT Cβ ≥ vC − 3ε/2 (12)

where α, respectively β, is the uniform distribu-
tion on the elements of the multiset A, respec-
tively B.

(c) Find x, a mixed strategy for the row player, and
y, a mixed strategy for the column player, as any
solution of the following linear program

L(vR, vC , α, β) : αT Ry ≥ vR − 3ε/2 (13)

∀ i : eT
i Ry ≤ vR + ε/2 (14)

xT Rβ ≥ vR − 3ε/2 (15)

αT Cy ≥ vC − 3ε/2 (16)

∀ j : xT Cej ≤ vC + ε/2 (17)

xT Cβ ≥ vC − 3ε/2 (18)

(d) If vmax ≥ 1/3 then return the pair of strategies:

(δα + (1− δ)x , δβ + (1− δ)y)

where δ = δ(vR, vC) = 3
2
− 1

2vmax
.

(e) If vmax < 1/3, then return the pair of strategies
(x, y).

Theorem 3.2. For every ε > 0, the Algorithm returns an
3−

√
5

2
+ ε approximate equilibrium, in time nO(1/ε2)

Proof. The algorithm exhaustively searches through its
guesses of vR, vC , α and β, and for each guess it checks if the
system of equations L(vR, vC , α, β) has a feasible solution.

Since there are only (1/ε)2 ×
`

n
1/ε2

´2
, i.e., nO(1/ε2) differ-

ent choices for the tuple (vR, vC , α, β), so it is clear that,
provided that the algorithm finds a solution, it terminates

in time nO(1/ε2). Now, to prove that the algorithm indeed
finds a solution, we have to show that there is some guess
of (vR, vC , α, β) for which L(vR, vC , α, β) has a feasible so-
lution.

By Lemma 3.1, we know that there exists a tuple
(v∗R, v∗C , x, α, y, β), with |supp(α)|, |supp(β)| ≤ 4/ε2, s.t. (1)
– (8) hold. Let vR, vC ∈ V be s.t. |vR − v∗R| ≤ ε/2 and
|vC − v∗C | ≤ ε/2 (these exist because of the discretization
in V). By (1) αT Rβ ≥ v∗R − ε ≥ vR − 3ε/2, proving (11).
Similarly (12) is true as well. Hence (vR, vC , α, β) is one
of the possible guesses of the algorithm. We will now show
that L(vR, vC , α, β) has a feasible solution.

Now (2) implies ∀ i ∈ supp(α) : eT
i Ry = v∗R ≥ vR −

ε/2 which proves (13). Similarly (4) and (3) give (14) and
(15) respectively. Similarly the column side inequalities also
hold. Thus (x, y) is a feasible solution to L(vR, vC , α, β), as
required.



So it remains to determine the value of the approxima-
tion. Define valR, valC as the values obtained by the row
and column player (resp.) in the solution output by the al-
gorithm. Define defR, defC as the maximum value that the
player can get by defecting to some pure strategy. Thus our
algorithm outputs a max{defR−valR, defC−valC} approx-
imate equilibrium. The analysis is in two cases.

In the easy case, when vmax < 1/3, the algorithm outputs
(x, y). By (14), we see that defR ≤ vR + ε/2 < 1/3 + ε/2.
Similarly defC < 1/3 + ε/2. Since valR, valC ≥ 0, we have
a 1/3 + ε/2 approximate equilibrium.

In the case when vmax ≥ 1/3, we have, from (11), (13)
and (15) that

valR ≥ δ2(vR − 3ε/2) + 2δ(1− δ)(vR − 3ε/2)

= (vR − 3ε/2)(δ2 + 2δ(1− δ))

From (14), and the fact that all the entries are at most 1,
we get:

defR ≤ δ + (1− δ)(vR + ε/2)

Hence

defR − valR ≤ δ + vRg(δ) + εf(δ)

where g(δ) = (1− δ)− δ2− 2δ(1− δ) and f(δ) = (1− δ)/2+
3/2(δ2 + 2δ(1− δ))

Similarly, we have

defC − valC ≤ vCg(δ) + εf(δ)

Assume, w.l.o.g., that vmax = vC . Then, from above
we see that defR − valR ≤ defC − valC . Plugging in the
choice of δ in the algorithm, we get defC − valC ≤ 3

2
−

1
4
(5vmax + 1

vmax
) + εf(δ). This function has a maximum at

vmax = 1/
√

5, where it equals (3−
√

5)/2+εf(δ). This means
that for every ε′ > 0, the algorithm returns an (3−

√
5)/2+ε′

approximate equilibrium.
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