
An Empirical Comparison of Automated Generation and Classification
Techniques for Object-Oriented Unit Testing

Marcelo d’Amorim1, Carlos Pacheco2, Darko Marinov1,
Tao Xie3, Michael D. Ernst2

1 Department of Computer Science, University of Illinois, Urbana-Champaign
2 Computer Science and Artificial Intelligence Lab, MIT, Cambridge

3 Computer Science Department, North Carolina State University, Raleigh
E-mail: {damorim,marinov}@cs.uiuc.edu, {cpacheco,mernst}@csail.mit.edu, xie@csc.ncsu.edu

Abstract

Testing involves two major activities: generating test in-
puts and determining whether they reveal faults. Techniques
for automating these activities include automated test gen-
eration based on symbolic execution or random generation
and automated test classification based on uncaught excep-
tions or operational models (more precisely, violations of
the models inferred from manually provided tests). Previous
research on unit testing for object-oriented programs de-
veloped three combinations of these techniques: exception-
based symbolic testing, model-based random testing, and
exception-based random testing. In this research, we have
developed a novel combination, model-based symbolic test-
ing. This paper presents an empirical study that compares
all four combinations of these generation and classification
techniques. The empirical study uses 61 subjects taken from
a variety of sources. The results show that the techniques
are complementary (i.e., detect different faults) and illus-
trate their respective strengths and weaknesses.

1. Introduction

Unit testing checks the correctness of program units
(components) in isolation. It is an important part of soft-
ware development: if the units are incorrect, it is hard to
build a correct system from them. Unit testing is becom-
ing a common and substantial part of the software devel-
opment practice: at Microsoft, for example, a recent survey
found that 79% of developers use unit tests [24] and in many
projects, the code for unit tests is larger than the code for the
project under test [23].

Creation of a test suite requires test generation, which
generates unit tests, and test classification, which deter-
mines whether a test passed or failed. (This paper uses the
term “classification” for determining the correctness of an

execution, which is sometimes called the oracle problem.)
Programmers often perform some test generation and test
classification by hand, but it is tedious and error-prone to
systematically perform testing by hand. Programmers use
their intuition or experience to make up test inputs, and use
either informal reasoning or experimentation to determine
the proper output for each input. One alternate technique
is to use formal specifications, which can aid both test gen-
eration and test classification [4]. Such specifications are
time-consuming and difficult to produce manually and of-
ten do not exist in practice. This research focuses on testing
techniques that do not require a priori specifications. We
focus on automated testing as it can significantly reduce the
cost of software development and maintenance.

Researchers proposed several techniques that automate
test generation and classification for unit testing of object-
oriented programs [6, 16, 18, 26, 32, 33]. In object-oriented
languages, each unit test is a sequence of method calls.

Techniques for automated test generation include ran-
dom generation (RanGen) [6, 18], symbolic execution
(SymGen) [16,26–28,32], and a recent mix of RanGen and
SymGen [3, 12, 21]. RanGen creates random sequences of
method calls with random values for method parameters.
SymGen [17] executes method sequences with symbolic pa-
rameters, builds constraints on these parameters, and solves
these constraints to produce actual tests with concrete val-
ues for method parameters.

Techniques for automated test classification include
those based on uncaught exceptions (UCExp) [6,16,26,32]
and operational models (OpModel) [18, 33]. UCExp clas-
sifies a test as potentially faulty if it throws an uncaught
exception. OpModel is a technique for automatically creat-
ing an approximate model (or oracle) that is inferred from
the tests that programmers manually generate; many other
techniques that automate test generation neglect the man-
ually generated tests. OpModel first infers an operational
model [14] that includes properties such as class invariants



and method pre- and post-conditions. As in other model-
based techniques, executions that violate the properties are
classified as potentially faulty. Since OpModel also catches
uncaught exceptions, we can view UCExp as OpModel with
a trivial model where all properties are set to true.

Previous research proposed three combinations of the
RanGen or SymGen generation techniques and the UCExp
or OpModel classification techniques for object-oriented
programs: exception-based random testing [6], model-
based random testing [18], and exception-based symbolic
testing [16, 26, 32].

This paper makes the following contributions.
New Testing Approach: We propose a novel combi-

nation, model-based symbolic testing. The approach uses
symbolic execution to automate both generation and classi-
fication of object-oriented unit tests. As in OpModel [14,
18, 33], our approach first infers an operational model for
a set of classes under test. It then symbolically executes
both the methods from these classes and the operational
model to generate method sequences with symbolic param-
eters and to classify the sequences that violate the model for
some constraints on the method parameters. It finally solves
the constraints on these symbolic parameters and outputs a
small number of (concrete) test inputs that are likely to re-
veal faults. In principle, our new technique may allow oper-
ational models to more effectively guide test generation for
violating the models than the previous techniques [18, 33].

Implementation: We have implemented our approach
in a tool called Symclat. Symclat provides automatic sym-
bolic execution for Java, whereas several previous stud-
ies [16,26,32,33] required manual instrumentation for sym-
bolic execution.

Empirical Study: We present a study that empirically
compares the four pairs of RanGen/SymGen generation and
UCExp/OpModel classification techniques. More specifi-
cally, we compare two tools that implement automated test
generation—Eclat [18] based on RanGen and our tool Sym-
clat based on SymGen—and that each support test classifi-
cation based on OpModel and UCExp. Our study investi-
gates the following two questions: (i) Is RanGen or Sym-
Gen more effective in revealing faults? and (ii) Is UCExp
or OpModel more effective in revealing faults? Answering
these questions not only provides insights for tool develop-
ers to improve the existing tools but also guidelines for tool
users to understand how to use existing tools. Our empiri-
cal study uses 61 subjects originally taken from a variety of
sources and used in a previous study on Eclat [18].

Suggested Improvements: Based on the previous find-
ings, we give several suggestions for improving the existing
techniques and tools for test generation and classification
and for using such tools. Since the techniques are comple-
mentary in detecting faults, we propose that all techniques
be used on the same code under test.

2. Framework

We describe different techniques for test generation and
classification in terms of a common framework and present
two tools, Eclat and Symclat, that implement instantiations
of the framework. The input to the framework is a set of
classes and a model of the correct behavior of the classes
consisting of method pre- and post-conditions and object
invariants. The framework uses the model to determine if a
test input is normal, illegal, or fault-revealing. The frame-
work has three components: generation, classification, and
reduction:

1. Test generation. A test is a sequence of method calls
(and arguments to the calls) that exercise the code under
test. This component generates tests by exploring the
state space in a random or systematic fashion.

2. Test classification. This component executes each test
(concretely or symbolically), and based on the result of
its execution, classifies the test as normal (the execution
satisfies all pre- and post-conditions), illegal (the execu-
tion violates some pre-condition) or fault-revealing (the
execution satisfies all pre-conditions but violates some
post-condition).

3. Test reduction. This component selects a subset of the
inputs labeled fault-revealing to provide a better guid-
ance to the user. The component attempts to select only
one of possibly many fault-revealing test inputs that un-
cover the same fault.

The framework outputs a (reduced) set of test inputs that are
potentially fault-revealing for the code under test.

Figure 1 characterizes the four pairs of random/symbolic
generation and model-based/exception-based classification
that we evaluate in this paper. For the two OpModel tech-
niques, a set of existing test cases is provided as input in or-
der to infer an operational model of correct behavior of the
input classes. The UCExp techniques use a trivial model
and do not take advantage of the existing test cases.

Our study compares the four pairs with and without re-
duction. We have implemented in Symclat the same reduc-
tion used in Eclat [18]. It considers two test inputs to be
equivalent if they lead to the same violation pattern, i.e.,
they violate the same set of model properties (if any) or
throw the same exception from the same program point (if
any). Reduction outputs one representative from each set of
equivalent test inputs.

Three of the four pairs (model-based random testing,
exception-based random testing, and exception-based sym-
bolic testing) have been previously studied in isolation [6,
18, 31–33]. One contribution of this paper is a proposal for
model-based symbolic testing, which has not been previ-
ously studied to the best of our knowledge. Our comparison
uses two tools, Eclat and Symclat. Eclat [18] implements



model-based random testing and exception-based random
testing. Symclat is a novel symbolic execution engine that
we engineered for this study; it implements model-based
symbolic testing and exception-based symbolic testing.

2.1. Eclat: Random Exploration

We next briefly describe Eclat [18], a tool for ran-
dom test generation that we use to evaluate the pairs
RanGen+OpModel and RanGen+UCExp. Eclat takes as in-
put (1) a set of classes to test and (2) an existing test suite
(known to be correct). Eclat’s output is a set of tests that are
likely to reveal faults not exposed by the existing test suite.

Eclat uses Daikon [9] to dynamically infer an operational
model consisting of a set of likely program invariants. The
model is obtained by observing the execution trace of the
existing test suite. Eclat instruments the classes with the
invariants that it gets from Daikon so that it can detect in-
variant violations at runtime.

Eclat generates random test inputs, executes each of
them, and detects and runtime violations of the model. If
the execution leads to no violations of invariants, the in-
put is classified as normal. If the execution leads to a pre-
condition violation, the input is classified as illegal and dis-
carded. Finally, if the execution leads to no pre-condition
violations and some post-condition violations (or the exe-
cution throws an uncaught exception), the test input is clas-
sified as fault-revealing. All fault-revealing inputs are given
to the reducer, which selects a subset to report to the user.

2.2. Symclat: Symbolic Exploration

This section describes Symclat, a symbolic exploration
engine that we implemented to evaluate test generation
based on symbolic execution in SymGen+OpModel and
SymGen+UCExp. Symclat takes as input a set of classes
and an existing test suite, and outputs test cases that are
likely to reveal faults. Like Eclat, Symclat uses Daikon to
derive an operational model based on the existing test suite.
Unlike Eclat, Symclat explores the model symbolically.

Symclat builds on our previous work on symbolic ex-
ploration of Java programs [32]. The key conceptual ex-
tension that Symclat provides is symbolic execution of
model invariants. Symclat also provides a significant ad-
vance in terms of implementation: Symclat has a fully
automatic symbolic execution, whereas several previous
projects [16, 26, 32, 33] required manual instrumentation.
Without an automatic symbolic engine, we could not eas-
ily conduct a large study of SymGen. We next describe the
important parts of Symclat.
Path exploration. A symbolic execution engine needs to
execute each code path symbolically, and it also needs to
explore (all) different paths. Execution of one path operates

on a symbolic state that consists of a symbolic heap and a
path condition [32]. The path condition accumulates con-
straints from the conditional branches encountered along
the path. At each conditional branch, symbolic execution
may need to explore both outcomes.

Our Symclat implementation builds on Java Pathfinder
(JPF) [25], an explicit-state model checker for Java. In gen-
eral, execution of a single path can be implemented by mod-
ifying the virtual machine or instrumenting the program.
The exploration of different paths can be implemented in
a in a stateful manner as done for example in JPF or in
a stateless manner with code re-execution as done say in
Verisoft [11]. Since JPF already implements a Java virtual
machine (in Java), we chose to modify the virtual machine
for execution of one path and to perform stateful exploration
of paths. JPF works by interpreting bytecode instructions.
We have modified the interpretation of all bytecode instruc-
tions in JPF such that they operate on the symbolic state.
We use the support that JPF provides for exploring Java
bytecodes, storing and searching states, backtracking, and
so on. Our version allows symbolic expressions to be used
as values and thus to be stored in heap or local variables, to
be passed as arguments to methods, return values, etc. Com-
bining JPF’s features for exploration together with our sym-
bolic expressions allows exhaustive exploration of method
sequences.

State representation, infeasibility, subsumption. A sym-
bolic state consists of a symbolic rooted heap and a path
condition [32]. Without loss of generality, Symclat assumes
that there is one object under test for which method se-
quences are generated. The symbolic heap is rooted in a
reference to such an object and may contain symbolic vari-
ables and expression. A path condition is composed of a set
of constraints accumulated up to a program point and de-
notes the decisions (on symbolic variables) that have been
made from the beginning of the execution to the current
program point. Symbolic execution may generate infea-
sible paths due to unsatisfiable constraints. Symclat uses
the CVC Lite [2] theorem prover to determine feasibility
of path conditions and to avoid exploration of infeasible
paths. Furthermore, Symclat avoids exploration of equiv-
alent states by implementing state subsumption introduced
in our previous work [32].

Exploration of method sequences. Symclat uses drivers
to explore exhaustively sequences of declared methods up
to a given bound for the sequence length. The driver spec-
ifies the methods that should be explored and their argu-
ments. In its basic form, Symclat allows only primitive ar-
guments. (See below how Symclat uses wrappers to han-
dle non-primitive arguments.) These arguments are sym-
bolic variables from which symbolic execution will build
symbolic expressions and path conditions. Symclat uses a
depth-first traversal to explore all paths within one method



pair tool/input generation classification
RanGen+
OpModel

Implementation: Eclat.
Input to tool: classes under test and
an existing test suite.
Model: operational model derived
from test suite.

(RanGen) Generates test inputs by
constructing method sequences and in-
put data in a random fashion.

(OpModel) A test whose operational
pattern of execution differs from the
model is labeled illegal or fault-
revealing. A test whose operational
pattern does not differ from the model
is labeled normal.

RanGen+
UCExp

Implementation: Eclat, modified to
work without an operational model.
Input to tool: classes under test.
Model: exception-based model (un-
caught exceptions are fault-revealing).

Same as (RanGen) above. (UCExp) A test whose execution
throws an uncaught exception is la-
beled fault-revealing.

SymGen+
OpModel

Implementation: Symclat.
Input to tool: classes under test and
an existing test suite.
Model: operational model derived
from test suite.

(SymGen) Generates symbolic test in-
puts by exploring exhaustively method
sequences providing symbolic vari-
ables as parameters to methods. Sym-
bolic tests are translated to concrete
ones by solving constraints accumu-
lated during the execution of the sym-
bolic test.

Same as (OpModel) above, but the op-
erational model is interpreted symbol-
ically.

SymGen+
UCExp

Implementation: Symclat.
Input to tool: classes under test.
Model: exception-based model (un-
caught exceptions are fault-revealing).

Same as (SymGen) above. Same as (UCExp) above.

Figure 1. Instantiations of the general evaluation framework.

and a breadth-first traversal to explore method sequences.
For more details, see our previous work on exploration [32]
that Symclat builds on.
Model execution. Symclat uses Daikon [7] to generate
models for the classes under test. Symclat instruments these
classes to check model properties at method entry and exit
points. (At entry, the check involves object invariants and
method pre-conditions, and at exit, the check involves ob-
ject invariants and method post-conditions.) The tool dis-
cards the properties that it cannot handle due to limitations
of theorem provers (non-integer constraints, non-linear in-
teger constraints etc.).

At method entry, Symclat conjoins the pre-condition to
the current path condition and checks satisfiability. If it is
satisfied, Symclat proceeds with the execution. If not, Sym-
clat backtracks as generating tests along this execution path
would produce illegal tests. At method exit, Symclat checks
if it is possible to satisfy the negation of the post-condition
in the context of the current path condition. If so, Sym-
clat has found a potentially fault-revealing path, namely an
execution that satisfies all pre-conditions but results in a vi-
olated post-condition. Symclat uses the POOC [20] con-
straint solver to generate concrete values for the symbolic
variables in the path condition (conjoined with the negation
of post-condition). Those symbolic variables represent ar-
guments of methods in the test sequence. Once the variable
get concrete values, Symclat outputs a test that consists of
method sequences with concrete arguments.
Non-primitive arguments and wrappers. Symclat uses

wrapper classes when non-primitive or non-integer argu-
ments appear in the methods of the subjects under test. Sup-
pose we want to test the method equals(Object) that the
subject declares. The wrapper defines two fields of the sub-
ject type, one standing for the receiver and the other for
the argument. It also declares operations to construct and
mutate the receiver, and to create aliasing between the argu-
ment and the receiver. The wrapper looks like the following:

class SubjectWrapper {
Subject receiver;
Subject argument;
...
public void equals() { receiver.equals(argument) ; }
...
public void alias() { argument = receiver ; }
public void cons() { receiver = new Subject() ; }
public void mutate() { receiver...(); }

}

Drivers as well as the tests they generate operate on these
wrapper classes instead of the actual subject classes. Se-
quences of method calls (without non-primitive arguments)
on the wrapper can be translated into sequences of method
calls (with non-primitive arguments) on the class under test.
Limitations. In our implementation, symbolic variables
can only have integer types, symbolic expressions cannot
index arrays, and the operators % and / are not supported
due to limitations on the underlying theorem prover and
constraint solver, CVC-Lite [2] and POOC [20], respec-
tively. More precisely, they are unsupported due to the un-



decidability of the logic used to express constraints. When
these operators appear in path conditions, Symclat back-
tracks the execution. When symbolic expressions appear
in the conditional of a loop, Symclat “unfolds” the loop
for only a limited number of times. This mechanism corre-
sponds to setting a bound on the depth of the symbolic exe-
cution tree [17]. Thus, Symclat cannot catch stack overflow
exceptions or detect infinite recursion. In addition, Symclat
uses arbitrary precision integer arithmetic provided by the
theorem prover and constraint-solver. As a result, Symclat
cannot catch errors due to integer arithmetic overflows.

Several of these limitations could be handled in im-
proved versions of the symbolic engine. For instance, tests
could be reported when the exploration reaches the bound
limits set to the branching tree making it possible to report
infinite loops and stack overflows in the expense of decreas-
ing precision. Integers could be encoded in the finite do-
main with bitvectors so to report on arithmetic overflows
and be able to decide on expressions with % and /, and ar-
rays could have symbolic representations in order to allow
symbolic dereferences. But the underlying theoretical lim-
its would prevent symbolic execution to completely handle
all programs.

3. Experimental Study

Our study compares the techniques appearing in Figure 1
with and without reduction of test suites. We used Eclat and
Symclat for implementing respectively RanGen and Sym-
Gen for test generation. Both Eclat and Symclat can use
either UCExp or OpModel for classification. We first de-
scribe the experimental setup, then compare the techniques,
and finally summarize the results of comparison.

3.1. Experimental Setup

We set a time bound of two minutes for running each test
generation in Symclat. We ran Eclat in its default configu-
ration: bottom-up sequence generation, four rounds of pool
iteration, and maximum of 100 inputs per round per subject.

Figure 2 lists the subject programs that we used in our
experiments. We show the number of non-comment-non-
blank (NCNB) lines of code and the total number of meth-
ods for each subject. The subject are as follows:

• UBStack refers to the implementation of the unique
bounded stack used in previous studies on testing [6, 18,
22,33]. This code comes with two test suites, consisting
of 8 and 12 test cases.

• ExpMDE is a supporting class from Daikon’s codebase.
The current Symclat implementation can explore only
the two (overloaded) methods create combinations

Figure 2. Size of the subjects.
subject NCNB LOC #methods

UBStack (8) 88 11
UBStack (12) 88 11

ExpMDE 1832(37) 69(2)
BinarySearchTree 186 9

StackAr 90 8
StackLi 88 9

IntegerSetAsHashSet 28 4
Meter 21 3

DLList 286 12
E OneWayList 171 10

E SLList 175 11
OneWayList 88 12

OneWayNode 65 10
SLList 92 12

TwoWayList 175 9
RatPoly 582.51 17.20

as the others heavily use String objects, float num-
bers, or other constructs that the current Symclat imple-
mentation does not support.

• The subjects BinarySearchTree, StackAr, and StackLi
are drawn from a textbook [29]. These classes are pro-
vided with a set of example uses.

• The next 9 subjects refer to a set of example classes pro-
vided in the JML distribution [15]. They are provided
with formal specifications.

• RatPoly refers to student solutions to an assignment in
the MIT class 6.170. The assignment asked the students
to implement the core operations for rational polynomi-
als. The course staff provided some supporting classes
and a test suite to the students.

RanGen can explore all methods from the subjects, while
SymGen may not be able to execute all methods. For our
subjects, RanGen and SymGen differ only in ExpMDE; we
show the numbers of lines of code that SymGen explores
in parentheses. For RatPoly, the numbers are averages over
46 different implementations. We selected our subjects
from those used in a previous study on Eclat [18]. We se-
lected all subjects that the current Symclat implementation
can explore; the study on Eclat used 631 implementations,
but approximately 90% of them contain programming con-
structs that the current Symclat implementation cannot ex-
plore (float numbers, String objects, symbolic indexing
into arrays, etc.). Even for the selected subjects, the current
Symclat implementation cannot explore all the methods.

We next describe how we label the tests generated by
different techniques. The goal is to determine which tests
reveal actual faults. We use formal JML specifications for
each subject to detect tests that violate the specifications.
We consider especially arithmetic (integer) overflows, as



several tests for RatPoly implementations produce them.
This potential type of fault is inherent in all RatPoly sub-
jects as the problem set asked the students to use a staff-
provided class for rational numbers based on fixed preci-
sion numbers (Java 32-bit int numbers). We instrumented
this class to detect overflows during test execution. We keep
overflows in separate and do not count them as actual faults.

We label each test as follows. A test that produces a
JML violation before an overflow is labeled as a specifica-
tion violation. Such tests reveal a mismatch between the
code and the specification, and in our study all such tests
but one were caused by actual faults in either the code or
the specification.

We also determine for each test suite the number of dis-
tinct specification violations. The rationale is that a test
suite with 10 test cases that are all faulty but all due to the
same fault may not be as valuable as a test suite with 10
test cases, only two of which are faulty but due to two dis-
tinct faults. Each test that violates a JML specification ei-
ther throws an uncaught exception at some program point
(violating the implicit specification that the code should
not throw uncaught exceptions) or violates some explicit
part of the specification (class invariant, internal method
pre-condition, or method post-condition) at some program
point. We consider two tests to have the same violation if
they either violate the same part of the specification at the
same program point or throw the same exception at the same
program point. This is similar to reduction as pointed out in
Section 2 but using JML specifications.

3.2. Results with Reduction

Figure 4 shows the results of running the subjects in all
four techniques with reduction of generated test suites. The
columns list as TG the difference between the number of
tests generated and the number of tests that result in arith-
metic overflows, as JV the sum of tests that either violate
JML specifications or raise uncaught exceptions, and as Pr.
the precision given by the ratio JV/TG. The number of dis-
tinct violations appears in parentheses in the JV column.

For UBStack (8), each generation-classification pair
finds the same two faults. The two pairs that use UC-
Exp classification generate no false positives, whereas the
two pairs that use OpModel classification generate one false
positive. UBStack (12) differs from UBStack (8) in the
tests from which the operational model is inferred. Thus,
the results for these two subjects differ only for the two
pairs that use OpModel classification. Each of those two
pairs generates one test that detects an actual fault. These
pairs miss the other fault because the operational model for
UBStack (12) includes a pre-condition that the argument of
equals should not be null; thus, the test that sets the pa-
rameter to null is classified as illegal, although it is legal

and fault-revealing.
For ExpMDE, the techniques based on SymGen generate

only false positives: all tests call create combinations

with a parameter set to null that directly leads to a null

dereference exception. However, these tests are actually il-
legal as they violate the actual method pre-condition, but
OpModel does not infer this pre-condition. RanGen detects
a real fault in create combinations as it ends up in an
infinite recursion when two of the parameters are 0. RanGen
detects this scenario because the test execution results in a
stack overflow. If the method had an infinite loop, RanGen
would not detect it but instead it would report that the test
times out. SymGen did not detect the infinite recursion as
it requires a very long execution sequence. RanGen also
detects an index out of bounds exception when given a neg-
ative value to one of the arguments. SymGen misses this
fault because its exploration time expires before reaching
the fault, i.e., the symbolic search gave priority to branches
that did not reach the fault.

For 10 out of 12 subjects from the textbook [29] and JML
samples [15] none of the techniques detect any actual fault.
To the best of our knowledge, these subjects do not have
any fault that any of the four combinations could detect.

For DLList and SLList, the techniques based on Sym-
Gen generates only false positives due to weak precon-
ditions used in the exploration. The implementation of
toString in these data structures do not admit lists with
self references. Such inputs lead to infinite recursion caus-
ing stack overflow error. The formal specification did not
expose this constraint as a pre-condition of toString.
DLList is a subclass of SLList and overrides the method
toString but the fault was revealed in both (recursive) im-
plementations and with tests that create self references.

For RatPoly, there are a total of 46 subjects. For 37 sub-
jects, none of the four pairs with reduction detects any fault.
For the remaining 9 subjects, these pairs find a total of 9 dis-
tinct actual faults.

In s5, s13, and s24 SymGen+UCExp detects a fault in
the method div of the rational polynomial class. This fault
results in an array index out of bounds exception. Model-
based symbolic testing detects the fault only in s24 because
in s5 and s13 one of the methods in the test that could de-
tect a fault has a too strong pre-condition inferred by Op-
Model and thus appears to be illegal. RanGen did not detect
this fault as it does not select the appropriate values for the
method parameters in the tests.

All techniques reported a fault in s7 and s33 when calling
the operation antiDifferentiate passing the argument
0. These implementations add a new rational term using
the argument as the coefficient and the constant 0 as the ex-
ponent, and the specification includes an invariant stating
that no polynomial should include zero-coeffcient terms.
In s21, the techniques based on UCExp reported the same



Figure 3. Comparison of generation-classification pairs with reduction of test suites.
subject RanGen+OpModel RanGen+UCExp SymGen+OpModel SymGen+UCExp

#TG #JV Pr. #TG #JV Pr. #TG #JV Pr. #TG #JV Pr.
UBStack (8) 3 2(2) 0.67 2 2(2) 1.00 3 2(2) 0.67 2 2(2) 1.00

UBStack (12) 1 1(1) 1.00 2 2(2) 1.00 1 1(1) 1.00 2 2(2) 1.00
ExpMDE 2 1(1) 0.50 3 2(2) 0.67 1 0(0) 0.00 2 0(0) 0.00
DLList 0 0(0) NaN 5 1(1) 0.20 4 0(0) 0.00 4 0(0) 0.00
SLList 3 1(1) 0.33 7 1(1) 0.14 6 0(0) 0.00 6 0(0) 0.00

s5 0 0(0) NaN 1 0(0) 0.00 1 0(0) 0.00 7 1(1) 0.14
s7 20 0(0) 0.00 17 2(1) 0.12 4 1(1) 0.25 10 1(1) 0.10
s13 1 0(0) 0.00 1 0(0) 0.00 2 0(0) 0.00 7 1(1) 0.14
s14 2 0(0) 0.00 3 2(1) 0.67 3 0(0) 0.00 7 0(0) 0.00
s21 0 0(0) NaN 14 4(1) 0.29 0 0(0) NaN 12 1(1) 0.08
s24 1 1(1) 1.00 1 0(0) 0.00 2 1(1) 0.50 7 1(1) 0.14
s33 2 2(1) 1.00 3 2(1) 0.67 3 1(1) 0.33 8 1(1) 0.12
s39 1 1(1) 1.00 2 1(1) 0.50 1 0(0) 0.00 6 0(0) 0.00
s46 0 0(0) NaN 1 0(0) 0.00 2 1(1) 0.50 7 1(1) 0.14
total 93 9(8) 0.24 151 19(13) 0.10 98 7(7) 0.06 335 11(11) 0.05

for 4 subjects 0 0(0) NaN 0 0(0) NaN 0 0(0) NaN 0 0(0) NaN
for 43 subjects 57 0(0) 0 89 0(0) 0 65 0(0) 0 248 0(0) 0

Figure 4. Comparison of generation-classification pairs without reduction of test suites.

subject RanGen+OpModel RanGen+UCExp SymGen+OpModel SymGen+UCExp
#TG #JV Pr. #TG #JV Pr. #TG #JV Pr. #TG #JV Pr.

UBStack (8) 29 21(2) 0.72 15 15(2) 1.00 100 63(2) 0.63 91 90(2) 0.99
UBStack (12) 12 12(1) 1.00 15 15(2) 1.00 26 25(1) 0.96 91 90(2) 0.99

ExpMDE 11 10(1) 0.91 27 26(2) 0.96 2 0(0) 0.00 17 0(0) 0.00
DLList 318 21(2) 0.07 320 21(2) 0.07 75 0(0) 0.00 75 0(0) 0.00
SLList 256 21(1) 0.08 684 27(1) 0.04 1535 0(0) 0.00 1535 0(0) 0.00

s5 0 0(0) NaN 24 0(0) 0.00 33 0(0) 0.00 112 1(1) 0.01
s7 320 19(1) 0.06 301 33(1) 0.11 152 49(1) 0.32 505 162(1) 0.32

s13 1 0(0) 0.00 24 0(0) 0.00 16 0(0) 0.00 83 1(1) 0.01
s14 11 2(1) 0.18 31 3(1) 0.10 34 8(2) 0.24 136 33(1) 0.24
s21 0 0(0) NaN 65 23(1) 0.35 0 0(0) NaN 309 67(1) 0.22
s24 0 0(0) NaN 24 0(0) 0.00 13 1(1) 0.08 52 1(1) 0.02
s33 29 28(1) 0.97 52 28(1) 0.54 29 7(1) 0.24 144 24(1) 0.17
s37 0 0(0) NaN 24 0(0) 0.00 24 0(0) 0.00 149 1(1) 0.01
s39 10 10(1) 1.00 37 13(1) 0.35 19 0(0) 0.00 51 0(0) 0.00
s46 0 0(0) NaN 24 0(0) 0.00 38 5(1) 0.13 129 2(1) 0.02
total 1925 144(11) 0.20 3649 204(15) 0.08 5204 158(9) 0.05 10136 472(13) 0.05

for 4 subjects 0 0(0) NaN 0 0(0) NaN 0 0(0) NaN 0 0(0) NaN
for 42 subjects 928 0(0) 0 1982 0(0) 0 3108 0(0) 0 6657 0(0) 0

fault. The techniques based on OpModel could not detect
this fault for this student due to strong pre-conditions in-
ferred to one internal operation to antiDifferentiate.

In s14, RanGen+UCExp reported a fault when trying to
evaluate a polynomial that represents NaN (Not a Number).

In s39, RanGen detects a fault due to parsing and unpars-
ing of strings that represent rational polynomials. Symclat
drivers did not explore these methods as they involve string
objects.

In s46, SymGen could find an index out of bounds excep-
tion raised from the div operation when trying to access the
0-index term in the remainder polynomial which can be 0.
RanGen misses this fault as it does not pick the appropriate
input value to exercise the method.



3.3. Results without Reduction

Figure 4 shows the results without reduction of generated
test suites obtained by running the tools that implement the
techniques in Figure 1. Without reduction, the generated
test suites can detect more faults, but often result in lower
precision.

In s37, SymGen+UCExp detects a fault produced when
the NaN polynomial is passed to add. RanGen misses this
fault as it does not systematically produce NaN polynomials
and provides them as inputs to methods.

In s14, model-based symbolic testing without reduction
detects a fault that it does not detect with reduction. Without
reduction, model-based symbolic testing detects this fault in
an indirect way. The operational model of a method infers a
post-condition that is stronger than the real post-condition.
As a result, OpModel labels as faulty some actually normal
tests and some actually fault-revealing tests then violate the
inferred post-condition. The reducer chooses as a represen-
tative test for these violations a test that is actually a normal
test (since the reducer does not know the actual specifica-
tion) and thus misses the fault.

3.4. Summary

Our study evaluates how effective is RanGen as opposed
to SymGen in finding faults, and how effective is OpModel
as opposed to UCExp in finding faults. Based on the exper-
imental results, we give the following answers.

RanGen and SymGen are complementary techniques for
test generation. When SymGen can explore some code (i.e.,
the code has no programming constructs that SymGen can-
not explore), it can generate tests that reveal faults, and it
can reveal all the faults than RanGen can. However, Sym-
Gen often cannot explore code; we were able to run our
Symclat tool on only 61 out of 631 subjects from the Eclat
study [18], and Symclat cannot even explore all the code
from these 10% of subjects. A better implementation of
SymGen could explore some more subjects, but in general,
SymGen cannot explore arbitrary code because of the the-
oretical limitations of the underlying technology (incom-
pletness of theorem provers and constraint solvers due to
undecidability). RanGen can, in contrast, explore all code
and thus reveal some faults that SymGen misses. However,
RanGen itself can miss some faults in code that it explores.
For instance, it can miss a fault if it does not generate a
fault-revealing method sequence or it does generate a po-
tentially fault-revealing sequence but does not generate ap-
propriate values. We have found that case for our exper-
iments: RanGen missed faults because it did not generate
the appropriate values.

Furthermore, UCExp and OpModel are complementary
techniques for test classification. In our experiments, UC-

Exp revealed more faults, but each technique revealed some
faults that the other missed. The use of non-trivial models in
OpModel sometimes makes it better and sometimes worse
than UCExp, e.g., OpModel can label as illegal a test that
violates an incorrectly inferred pre-condition although the
test is legal and throws an exception, but OpModel can also
label as potentially fault-revealing a test that violates a post-
condition although the test does not thrown an exception.

In summary, we give several suggestions for improving
the existing techniques and tools for test generation and
classification and for using such tools:

• RanGen may be improved by biasing its selection to
boundary and special values that are more likely to re-
veal faults. For instance, in RatPoly subjects, this means
that RanGen should bias selection to 0 for integers and to
NaN for polynomials and not select the values uniformly
from a large pool. The tools should allow the users to
specify such values. The tools may also try to determine
such values by static or dynamic analysis of code.

• RanGen may be also improved by selecting values that
satisfy certain relationships. For example, to generate
an argument value in a method sequence, RanGen can
bias its selection to the values already selected for that
sequence. This leads to selecting values that are equal in
a sequence. The tools should allow the users to provide
heuristics for selection [5].

• In addition to biasing selection of values that are inputs
to method calls, RanGen may benefit from biasing the
selection of method calls. For example, an error that
RanGen was unable to find requires using two equivalent
polynomials as parameters to a method call. Equivalent
polynomials can be obtained by repeating a sequence
of method calls that creates one polynomial—such a se-
quence is unlikely to be produced with random genera-
tion. Repeated patterns of method calls can detect faults
that would be highly unlikely to be found via random
generation; for example, data structure implementations
such as array-based lists and hash tables require several
insertions before code is reached that resizes the contain-
ers. Random generation is unlikely to produce repeated
additions necessary to reach this code.

• SymGen may be improved by combining it with
RanGen. A recent proposal is to do that by execut-
ing code with both symbolic values and random val-
ues [3, 12, 21]. But there can be many other ways such
as randomly choosing method sequences and then sym-
bolically exploring the argument values or exhaustively
choosing the sequences but randomly choosing the argu-
ment values.

• Users should use both UCExp and OpModel classifica-
tions with the tools. These two classifications comple-
ment each other, and it is easy to use them both in any
tool that provides OpModel. (Recall that UCExp is just



a special case with all models being trivial.) Addition-
ally, it is helpful when the users can provide as complete
specifications as possible, because they enable more pre-
cise classification.

3.5 Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject programs, faults, manually writ-
ten test cases, and testing tools are representative of true
practice. The subject programs except for ExpMDE are
relatively small. These threats could be reduced by more
experiments on wider types of subjects and tools in future
work. The threats to internal validity are instrumentation ef-
fects that can bias our results. Faults in the tools that imple-
mented four techniques might cause such effects. To reduce
these threats, we manually inspected the results of a dozen
of subject programs. One threat to construct validity is that
our experiments use the violations of manually written JML
specifications as symptoms of fault exposure. These manu-
ally written JML specifications may not be strong enough to
catch some faults that are in fact exposed by tests exported
by a certain technique.

4. Related Work

Duran and Ntafos [8] and Hamlet and Taylor [13] empir-
ically compared random testing and partition testing such
as path testing. They observed that random testing could
be a potentially cost-effective alternative technique to path
testing. Frankl and Weiss [10] experimentally compared
branch testing, dataflow testing, and random testing. They
observed that branch or dataflow testing performed some-
what better than random testing on most subjects. Weyuker
and Jeng [30] analytically showed that partition testing is
more effective than random testing in fault detection when
at least one subdomain of the partition has a high concen-
tration of fault-inducing inputs.

To the best of our knowledge, there was no empiri-
cal comparison of test generation and classification tools
in previous research. But there existed comparative stud-
ies on static bug-finding tools. For example, Rutar et
al. [19] compared five Java static bug-finding tools against
five open source projects. Their experimental results show
that none of these five tools strictly subsumes another in
terms of bug-finding capability and these tools often find
non-overlapping bugs. They then proposed a meta-tool for
combining and correlating these five tools’ outputs.

Symclat developed in this research extends the research
on using generated operational models to guide test-input
generation and classification. Previous techniques imple-
mented in Jov [33] and Eclat [18] exploit the guidance of
generated operational models in test-input generation and

classification. A commercial tool called Agitar Agitator [1]
also infers operational models from test executions but it
suggests these models to developers so that the developers
can selectively promote them to assertions rather than ag-
gressively classifying test inputs against the inferred mod-
els. In contrast to these previous tools, Symclat uses sym-
bolic execution to systematically explore paths in both the
code for checking operational models and the code under
test.

5. Conclusions

This paper presents an empirical study comparing differ-
ent techniques for test generation and classification. Specif-
ically, we considered random and symbolic exploration
as means to generate tests, and operational models and
unchecked exceptions as means to classify tests. We devel-
oped a tool, Symclat, that implements SymGen+OpModel .
The results show the following findings. (i) RanGen and
SymGen detect different faults. When SymGen can ex-
plore some code under test, it can detect faults that RanGen
misses. However, SymGen cannot explore certain program-
ming constructs (partly because Symclat does not support
them but more importantly because of the underlying the-
oretical limits of tools used in symbolic execution, such as
theorem provers and constraint solvers), and RanGen can
generate tests that find faults for code with such constructs.
(ii) UCExp and OpModel detect different faults. OpModel’s
models find some faults that do not throw an exception
but do violate a post-condition. However, OpModel misses
some faults when a too strong inferred pre-condition filters
out as illegal a test that is actually fault revealing.

References

[1] Agitar Agitatior 3.0, 2005. http://www.agitar.
com/.

[2] C. W. Barrett and S. Berezin. CVC Lite: A new implementa-
tion of the cooperating validity checker. In Proc. 16th Inter-
national Conference on Computer Aided Verification, pages
515–518, July 2004.

[3] C. Cadar and D. R. Engler. Execution generated test cases:
How to make systems code crash itself. In Proc. 12th In-
ternational SPIN Workshop on Model Checking Software,
pages 2–23, August 2005.

[4] Y. Cheon and G. T. Leavens. A simple and practical ap-
proach to unit testing: The JML and JUnit way. In Proc.
16th European Conference Object-Oriented Programming,
pages 231–255, June 2002.

[5] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In Proc.
5th ACM SIGPLAN International Conference on Functional
Programming, pages 268–279, 2000.



[6] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java. Software: Practice and Experience,
34:1025–1050, 2004.

[7] Publications using the Daikon invariant detector tool, 2004.
http://www.pag.csail.mit.edu/daikon/
pubs-using/.

[8] J. Duran and S. Ntafos. An evaluation of random testing.
IEEE Trans. Software Eng., 10(4):438–444, 1984.

[9] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Trans. Softw. Eng., 27(2):99–
123, 2001.

[10] P. G. Frankl and S. N. Weiss. An experimental comparison
of the effectiveness of branch testing and data flow testing.
IEEE Transactions on Software Engineering, 19(8):774–
787, August 1993.

[11] P. Godefroid. Model checking for programming languages
using Verisoft. In Proc. 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages
174–186, 1997.

[12] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proc. ACM SIGPLAN 2005
Conference on Programming Language Design and Imple-
mentation, 2005.

[13] R. G. Hamlet and R. Taylor. Partition testing does not inspire
confidence. IEEE Trans. Software Eng., 16(12):1402–1411,
1990.

[14] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. In Proc. 25th International Con-
ference on Software Engineering, pages 60–71, 2003.

[15] JML website, 2006. http://www.jmlspecs.org/.
[16] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized

symbolic execution for model checking and testing. In Proc.
9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 553–568,
April 2003.

[17] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385–394, 1976.

[18] C. Pacheco and M. D. Ernst. Eclat: Automatic generation
and classification of test inputs. In Proc. 19th European
Conference on Object-Oriented Programming, pages 504–
527, Glasgow, Scotland, July 2005.

[19] N. Rutar, C. B. Almazan, and J. S. Foster. A Comparison
of Bug Finding Tools for Java. In Proc. 15th IEEE Inter-
national Symposium on Software Reliability Engineering,
pages 245–256, November 2004.

[20] H. Schlenker and G. Ringwelski. POOC: A platform for
object-oriented constraint programming. In Proc. 2002 In-
ternational Workshop on Constraint Solving and Constraint
Logic Programming, pages 159–170, June 2002.

[21] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic Unit
Testing Engine for C. In Proc. 5th ESEC/FSE, pages 263–
272, September 2005.

[22] D. Stotts, M. Lindsey, and A. Antley. An informal formal
method for systematic JUnit test case generation. In Proc.
2002 XP/Agile Universe, pages 131–143, 2002.

[23] N. Tillmann and W. Schulte. Unit tests reloaded: Parameter-
ized unit testing with symbolic execution. Technical Report
MSR-TR-2005-153, Microsoft Research, Redmond, Wash-
ington, November 2005.

[24] G. Venolia, R. DeLine, and T. LaToza. Software develop-
ment at Microsoft observed. Technical Report MSR-TR-
2005-140, Microsoft Research, Redmond, Washington, Oc-
tober 2005.

[25] W. Visser, K. Havelund, G. Brat, and S. Park. Model check-
ing programs. In Proc. 15th IEEE International Conference
on Automated Software Engineering, pages 3–12, 2000.

[26] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input gen-
eration with Java PathFinder. In Proc. 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis,
pages 97–107, 2004.

[27] W. Visser, C. S. Pasareanu, and R. Pelánek. Test input gen-
eration for red-black trees using abstraction. In Proc. 20th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 414–417, November 2005.

[28] S. Visvanathan and N. Gupta. Generating test data for
functions with pointer inputs. In Proc. 17th IEEE Inter-
national Conference on Automated Software Engineering,
pages 149–160, September 2002.

[29] M. A. Weiss. Data Structures and Algorithm Analysis in
Java. Addison Wesley, 1999.

[30] E. J. Weyuker and B. Jeng. Analyzing partition testing
strategies. IEEE Trans. Software Eng., 17(7):703–711,
1991.

[31] T. Xie, D. Marinov, and D. Notkin. Rostra: A framework
for detecting redundant object-oriented unit tests. In Proc.
19th IEEE International Conference on Automated Software
Engineering, pages 196–205, Sept. 2004.

[32] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In Proc. 11th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems, pages 365–381, April 2005.

[33] T. Xie and D. Notkin. Tool-assisted unit test selection based
on operational violations. In Proc. 18th IEEE International
Conference on Automated Software Engineering, pages 40–
48, 2003.


