Trigger Selection Strategies to Stabilize
Program Verifiers

K. Rustan M. Leino (MSR), Clément Pit-Claudel (MIT CSAIL)

CAV 2016 - July 21, 2016

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 - July 21, 2016 1/20

What is Dafny? .

m Dafny is a verification-aware programming language.
m Like many other tools, Dafny is based on Boogie and 73.

m |t runs on most platforms, and has advanced editor support in
Visual Studio and (now!) in Emacs.

Dafny hands-on: finding the maximum of a sequence (solution)

Clément Pit-Claudel CAV 2016 - July 21, 2016 2/20

// -*- eval: (demo-mode 1); dafny-prover-local-args: ("/autoTriggers:1") -*-
method maximum(s: seq<int>) returns (max: int)
 requires 0 < |s|
 ensures max in s
 ensures forall i :: 0 <= i < |s| ==> max >= s[i]
{
 max := s[0];
 var pos := 0;

 while (pos < |s|)
 invariant max in s
 invariant pos <= |s|
 invariant forall i :: 0 <= i < pos ==> max >= s[i]
 {
 if (max <= s[pos]) {
 max := s[pos];
 }
 pos := pos + 1;
 }
}

// -*- eval: (demo-mode 1); dafny-prover-local-args: ("/autoTriggers:1") -*-
method Maximum(s: seq<int>) returns (max: int)
 requires s != []
 ensures max in s
 ensures forall i :: 0 <= i < |s| ==> s[i] <= max
{
 max := s[0];
 var pos := 0;

 while (pos < |s|)
 invariant max in s
 invariant pos <= |s|
 invariant forall i :: 0 <= i < pos ==> s[i] <= max
 {
 if (s[pos] > max) {
 max := s[pos];
 }
 pos := pos + 1;
 }
}

Introduction
[]

What problem are we trying to solve?

m Dafny is very snappy on small programs

m On larger programs it suffers from butterfly effects:

m Verification performance is chaotic (unstable and unpredictable)
m Insignificant changes cause verification failures

var X :=y; var x:=y + 0;
assert ..; assert ..;
v/ Verifies ?) X Fails to verify ?!

This work focuses on this issue in Dafny, but we expect our
techniques to apply to other verifiers.

Clément Pit-Claudel CAV 2016 — July 21, 2016 3/20

Introduction
L

What causes instability? -

m Translation
m Similar Dafny programs can look very different at the Z3 level

m Undecidable/Semi-decidable domains:

= Non-linear arithmetic
m First-order logic (quantifier instantiations) «+— Our focus

m Costly instantiations
B Matching loops

Solution: pick better triggers

Clément Pit-Claudel CAV 2016 - July 21, 2016 4120

Technical discussion
[Jelelelele)

Picking good triggers

The Dafny pipeline

[Parse

Type-check

Transform the AST «— this project happens here
Translate to Boogie

Translate to Z3

Verify

Clément Pit-Claudel CAV 2016 — July 21, 2016 5/20

ductio Technical discussion

(o] Jelelele]

Picking good triggers

How does Z3 handle quantifiers?

m Z3 relies on triggers (matching patterns) to instantiate
quantifiers. Every time Z3 comes across a new term, it
instantiates all quantifiers whose triggers match the new term.
For example:

IsHuman(Socrates)
Vv h {IsMortal(h)} - IsHuman(h) = IsMortal(h)
Goal: IsMortal(Socrates)

m Bad trigger choices cause verification failures, matching loops,
and costly instantiations.

m /3 knows how to pick good triggers for clean formulas.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 — July 21, 2016

6/20

Technical discussion
[e]e] lelele)

Picking good triggers

Why isn't this enough?

73 produces excessively liberal triggers on Dafny programs.

m Dafny produces large formulas with many parasitic terms, due
to its internal encoding.

m Dafny: s[x]
m Boogie: $unbox(read($Heap, s#@, IndexField(x#1)))
m 73: (U_2_int ($Unbox intType (MapTypelSelect $Heapl |s#60]| ..)))

m Debugging and understanding trigger choices is hard (triggers
are Z3 terms, not Dafny terms!).

We need to pick triggers at the Dafny level.

Clément Pit-Claudel CAV 2016 - July 21, 2016 7/20

Technical discussion
[e]e]e] lele)

Picking good triggers

How do we generate good triggers?

[@ Walk the AST below a quantifier. Annotate each term as
m Atrigger head, if it can act as a trigger:
f(x) old(h(x, y)) x in multiset{..}
m Atrigger killer, if it prevents parent nodes from being heads:
x+1 -y x in multiset{..}
Collect all trigger heads
Enumerate subsets to generate candidates

Filter

Clément Pit-Claudel CAV 2016 — July 21, 2016 8/20

Technical discussion
[e]e]ele] o)

Picking good triggers

Trigger generation example

Quantifier: vV x - P(x) A (Q(x) = P(x+1))
Subexpressions: x P(x) Q(x) 1 x+1 P(x+1) (Q(x)=P(x+1)) ..
Killers: x+1 P(x+1) (Q(x)=P(x+1)) ..
Heads: P(x) Q(x)

Clément Pit-Claudel

CAV 2016 - July 21, 2016 9/20

Technical discussion
00000e

Picking good triggers

What do we gain?

m Triggers now come from actual Dafny terms: we can show them
to the user directly

m Parasitic terms are not chosen as triggers anymore: less costly
instantiations

m We can show warnings when we can’t find good triggers

m And we can start looking for matching loops!

Clément Pit-Claudel CAV 2016 - July 21, 2016 10 / 20

Technical discussion

@O

Suppressing matching loops

What are matching loops? .

m Matching loops occur when instantiating a quantifier produces
terms that directly or indirectly cause it to be instantiated again,
repeatedly:

vV ox {f(x)} - f(x) < f(f(x))

(@) ~ f(f(0)) ~ F(F(£(0))) ~ FIF(F(F(0)))) ~ FIF(F(F(F(0))))) ~ .

v x {P(x)} - P(x) A (Q(x) = P(x+1))

P(X) ~» P(x+1) ~» P(x#2) ~» P(x+3) ~» P(X+4) ~> ..

Clément Pit-Claudel CAV 2016 - July 21, 2016 1/20

Technical discussion

(o] J

Suppressing matching loops

Detecting and suppressing matching loops -

[@ For every candidate trigger, compute the set of matching terms
in the body of the quantifier.
For each matching term, decide whether it might create a loop:
m{f(x)} X f(x) ? Safe
m {f(x)} X f(x+1)? Loops
m {f(x)} X f(f(x)) ? Loops
m{f(x, y)} X f(y, x)7?safe

Suppress triggers that could lead to matching loops
Report information to the user

Clément Pit-Claudel election Strategies to Stabilize Verifiers CAV 2016 - July 21, 2016 12 /20

Technical discussion

[leje}

Recovering expressive power

Overly enthusiastic loop suppression causes a los
expressive power

m Cycle detection acts on a full quantifier, while loops often only
involve parts of it:

v x {22} - P(x) A (Q(x) = P(x+1))

m Suppressing loops costs us too much expressiveness: we don't
learn P(x) anymore!

Clément Pit-Claudel CAV 2016 - July 21, 2016 13 /20

Technical discussion

[e] Je}

Recovering expressive power

Splitting quantifiers regains some expressiveness .

We extended Dafny to split quantifiers before checking for loops:

v x {Q(x)} - P(x) A Y x APOOT - P(x)
(Q(x) = P(x+1)) v x {Q(x)} - Q(x) = P(x+1)

m Fach quantifier gets its own triggers.

m This fixes some of our issues, but we lose a different type of
expressiveness: learning Q(x) doesn’t teach us P(x) anymore!

Clément Pit-Claudel CAV 2016 - July 21, 2016 14 [20

Technical discussion

ooe

Recovering expressive power

Triggers sharing further recovers expressive powe-

m Triggers do not need to appear in the body of a quantifier.

m Dafny can share triggers across all terms of a split quantifier:

vV x {P(x)} {Q(x)} - P(x)
vV ox {Q(x)} - Q(x) = P(x+1)

Clément Pit-Claudel CAV 2016 - July 21, 2016 15/ 20

On the test suite

Variability and performance on Dafny’s test suite

The effect on most tests is small, but some tests do benefit
significantly.

VSComp10/Queue IW' :) '

~]

TreeBarrier [~k
7" 7H
CalcStatement [~ " ¢

Heapstate [~k
| F

B Original test suite, no triggers
77 Adjusted test suite, no triggers
COST!1/Duplicates |k [0 Adjusted test suite, Dafny’s triggers

0 5 10 15 20 25 30

Verification times (seconds) for six of the affected test programs.

Clément Pit-Claudel Trigger Selection Strategies to Stab m Veri CAV 2016 - July 21, 2016

16 / 20

Results

In the real world

lronFleet RSL -

300 s

777 IronFleet RSL, no triggers

250 = IronFleet RSL, Dafny's triggers ||

200 s i

150 s i

100s 1

Verification times in seconds for the 48 programs composing the
implementation layer of IronRSL. Overall: 30% faster.

Clément Pit-Claudel CAV 2016 - July 21, 2016 17/ 20

In the real world

Usability results

Dafny now picks triggers and reports them directly in the editor.

method Main() {
assume [/ x - P(x) A (Q(x)=P(x+1));
} For expression "Q(x) ==> P(x + 1)":
Selected triggers: {Q(x)}
Rejected triggers: {P(x)} (may loop with "P(x + 1)")

For expression "P(x)":
Selected triggers:

{Q()}, {P(x)} LV

Clément Pit-Claudel tion Strategies to Stab CAV 2016 - July 21, 2016

18 /20

Conclusion & Thanks
[le]

Conclusion -

Trigger generation, quantifier splitting, and matching loop
elimination offer new, exciting opportunities to improve the
performance and predictability of tools based on SMT solvers.

Clément Pit-Claudel CAV 2016 - July 21, 2016 19 /20

Conclusion & Thanks
oe

Thanks! .

m Check out the updated Dafny (on GitHub! MIT-licensed!):
https:/ /github.com/Microsoft/dafny

Emacs mode: https://github.com/boogie-org/boogie-friends/

m Implement this and try it in your own solver

(and let us know how well it works!)

m Talk to mel!
clement@pit-claudel.fr

http:/ /pit-claudel.fr/clement/

Clément Pit-Claudel CAV 2016 - July 21, 2016 20 /20

https://github.com/Microsoft/dafny
https://github.com/boogie-org/boogie-friends/
mailto:clement@pit-claudel.fr
http://pit-claudel.fr/clement/

	Introduction
	Technical discussion
	Picking good triggers
	Suppressing matching loops
	Recovering expressive power

	Results
	On the test suite
	In the real world

	Conclusion & Thanks

