
Introduction Technical discussion Results Conclusion & Thanks

Trigger Selection Strategies to Stabilize
Program Verifiers

K. Rustan M. Leino (MSR), Clément Pit-Claudel (MIT CSAIL)

CAV 2016 – July 21, 2016

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 1 / 20

Introduction Technical discussion Results Conclusion & Thanks

What is Dafny?

Dafny is a verification-aware programming language.
Like many other tools, Dafny is based on Boogie and Z3.
It runs on most platforms, and has advanced editor support in
Visual Studio and (now!) in Emacs.

: finding the maximum of a sequence ()

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 2 / 20

// -*- eval: (demo-mode 1); dafny-prover-local-args: ("/autoTriggers:1") -*-
method maximum(s: seq<int>) returns (max: int)
 requires 0 < |s|
 ensures max in s
 ensures forall i :: 0 <= i < |s| ==> max >= s[i]
{
 max := s[0];
 var pos := 0;

 while (pos < |s|)
 invariant max in s
 invariant pos <= |s|
 invariant forall i :: 0 <= i < pos ==> max >= s[i]
 {
 if (max <= s[pos]) {
 max := s[pos];
 }
 pos := pos + 1;
 }
}

// -*- eval: (demo-mode 1); dafny-prover-local-args: ("/autoTriggers:1") -*-
method Maximum(s: seq<int>) returns (max: int)
 requires s != []
 ensures max in s
 ensures forall i :: 0 <= i < |s| ==> s[i] <= max
{
 max := s[0];
 var pos := 0;

 while (pos < |s|)
 invariant max in s
 invariant pos <= |s|
 invariant forall i :: 0 <= i < pos ==> s[i] <= max
 {
 if (s[pos] > max) {
 max := s[pos];
 }
 pos := pos + 1;
 }
}

Introduction Technical discussion Results Conclusion & Thanks

What problem are we trying to solve?

Dafny is very snappy on small programs
On larger programs it suffers from butterfly effects:

Verification performance is chaotic (unstable and unpredictable)
Insignificant changes cause verification failures

var x := y;
assert …;

3 Verifies :)

var x := y + 0;
assert …;

7 Fails to verify ?!

This work focuses on this issue in Dafny, but we expect our
techniques to apply to other verifiers.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 3 / 20

Introduction Technical discussion Results Conclusion & Thanks

What causes instability?

Translation
Similar Dafny programs can look very different at the Z3 level

Undecidable/Semi-decidable domains:
Non-linear arithmetic
First-order logic (quantifier instantiations)←− Our focus

Costly instantiations
Matching loops

Solution: pick better triggers

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 4 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

The Dafny pipeline

0 Parse
1 Type-check
2 Transform the AST←− this project happens here
3 Translate to Boogie
4 Translate to Z3
5 Verify

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 5 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

How does Z3 handle quantifiers?

Z3 relies on triggers (matching patterns) to instantiate
quantifiers. Every time Z3 comes across a new term, it
instantiates all quantifiers whose triggers match the new term.
For example:

IsHuman(Socrates)
∀ h {IsMortal(h)} · IsHuman(h) =⇒ IsMortal(h)
Goal: IsMortal(Socrates)

Bad trigger choices cause verification failures, matching loops,
and costly instantiations.
Z3 knows how to pick good triggers for clean formulas.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 6 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

Why isn’t this enough?

Z3 produces excessively liberal triggers on Dafny programs.

Dafny produces large formulas with many parasitic terms, due
to its internal encoding.

Dafny: s[x]
Boogie: $Unbox(read($Heap, s#0, IndexField(x#1)))
Z3: (U_2_int ($Unbox intType (MapType1Select $Heap1 |s#00| …)))

Debugging and understanding trigger choices is hard (triggers
are Z3 terms, not Dafny terms!).

We need to pick triggers at the Dafny level.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 7 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

How do we generate good triggers?

0 Walk the AST below a quantifier. Annotate each term as
A trigger head, if it can act as a trigger:
f(x) old(h(x, y)) x in multiset{…}
A trigger killer, if it prevents parent nodes from being heads:
x+1 ¬y x in multiset{…}

1 Collect all trigger heads
2 Enumerate subsets to generate candidates
3 Filter

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 8 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

Trigger generation example

Quantifier: ∀ x · P(x) ∧ (Q(x) =⇒ P(x+1))
Subexpressions: x P(x) Q(x) 1 x+1 P(x+1) (Q(x)=⇒P(x+1)) …
Killers: x+1 P(x+1) (Q(x)=⇒P(x+1)) …
Heads: P(x) Q(x)

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 9 / 20

Introduction Technical discussion Results Conclusion & Thanks

Picking good triggers

What do we gain?

Triggers now come from actual Dafny terms: we can show them
to the user directly
Parasitic terms are not chosen as triggers anymore: less costly
instantiations
We can show warnings when we can’t find good triggers
And we can start looking for matching loops!

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 10 / 20

Introduction Technical discussion Results Conclusion & Thanks

Suppressing matching loops

What are matching loops?

Matching loops occur when instantiating a quantifier produces
terms that directly or indirectly cause it to be instantiated again,
repeatedly:

∀ x {f(x)} · f(x) ≤ f(f(x))

f(0) ⇝ f(f(0)) ⇝ f(f(f(0))) ⇝ f(f(f(f(0)))) ⇝ f(f(f(f(f(0))))) ⇝ …

∀ x {P(x)} · P(x) ∧ (Q(x) =⇒ P(x+1))

P(x) ⇝ P(x+1) ⇝ P(x+2) ⇝ P(x+3) ⇝ P(x+4) ⇝ …

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 11 / 20

Introduction Technical discussion Results Conclusion & Thanks

Suppressing matching loops

Detecting and suppressing matching loops

0 For every candidate trigger, compute the set of matching terms
in the body of the quantifier.

1 For each matching term, decide whether it might create a loop:
{f(x)} ∞≼ f(x) ? Safe
{f(x)} ∞≼ f(x+1) ? Loops
{f(x)} ∞≼ f(f(x)) ? Loops
{f(x, y)} ∞≼ f(y, x) ? Safe

2 Suppress triggers that could lead to matching loops
3 Report information to the user

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 12 / 20

Introduction Technical discussion Results Conclusion & Thanks

Recovering expressive power

Overly enthusiastic loop suppression causes a loss of
expressive power

Cycle detection acts on a full quantifier, while loops often only
involve parts of it:

∀ x {??} · P(x) ∧ (Q(x) =⇒ P(x+1))

Suppressing loops costs us too much expressiveness: we don’t
learn P(x) anymore!

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 13 / 20

Introduction Technical discussion Results Conclusion & Thanks

Recovering expressive power

Splitting quantifiers regains some expressiveness

We extended Dafny to split quantifiers before checking for loops:

∀ x {Q(x)} · P(x) ∧
(Q(x) =⇒ P(x+1))

7−→ ∀ x {P(x)} · P(x)
∀ x {Q(x)} · Q(x) =⇒ P(x+1)

Each quantifier gets its own triggers.
This fixes some of our issues, but we lose a different type of
expressiveness: learning Q(x) doesn’t teach us P(x) anymore!

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 14 / 20

Introduction Technical discussion Results Conclusion & Thanks

Recovering expressive power

Triggers sharing further recovers expressive power

Triggers do not need to appear in the body of a quantifier.
Dafny can share triggers across all terms of a split quantifier:

∀ x {P(x)} {Q(x)} · P(x)
∀ x {Q(x)} · Q(x) =⇒ P(x+1)

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 15 / 20

Introduction Technical discussion Results Conclusion & Thanks

On the test suite

Variability and performance on Dafny’s test suite
The effect on most tests is small, but some tests do benefit
significantly.

0 5 10 15 20 25 30

COST11/Duplicates

VSTTE12/Tree

Heapstate

CalcStatement

TreeBarrier

VSComp10/Queue

Original test suite, no triggers
Adjusted test suite, no triggers
Adjusted test suite, Dafny’s triggers

Verification times (seconds) for six of the affected test programs.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 16 / 20

Introduction Technical discussion Results Conclusion & Thanks

In the real world

IronFleet RSL

0 s

50 s

100 s

150 s

200 s

250 s

300 s
IronFleet RSL, no triggers
IronFleet RSL, Dafny's triggers

Verification times in seconds for the 48 programs composing the
implementation layer of IronRSL. Overall: 30% faster.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 17 / 20

Introduction Technical discussion Results Conclusion & Thanks

In the real world

Usability results

Dafny now picks triggers and reports them directly in the editor.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 18 / 20

Introduction Technical discussion Results Conclusion & Thanks

Conclusion

Trigger generation, quantifier splitting, and matching loop
elimination offer new, exciting opportunities to improve the
performance and predictability of tools based on SMT solvers.

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 19 / 20

Introduction Technical discussion Results Conclusion & Thanks

Thanks!

Check out the updated Dafny (on GitHub! MIT-licensed!):
https://github.com/Microsoft/dafny

Emacs mode: https://github.com/boogie-org/boogie-friends/

Implement this and try it in your own solver
(and let us know how well it works!)

Talk to me!
clement@pit-claudel.fr

http://pit-claudel.fr/clement/

Clément Pit-Claudel Trigger Selection Strategies to Stabilize Program Verifiers CAV 2016 – July 21, 2016 20 / 20

https://github.com/Microsoft/dafny
https://github.com/boogie-org/boogie-friends/
mailto:clement@pit-claudel.fr
http://pit-claudel.fr/clement/

	Introduction
	Technical discussion
	Picking good triggers
	Suppressing matching loops
	Recovering expressive power

	Results
	On the test suite
	In the real world

	Conclusion & Thanks

