
The Essence of BlueSpec
A Core Language for Rule-Based Hardware Design

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind | MIT CSAIL

Abstract

Bluespec, a high-hevel HDL, offers a simple concurrency model
that enables functional reasoning without compromising
performance.

Unfortunately, its cost model is hard to formalize: performance
depends on user hints and static analysis of con�icts within a
design.

We present Kôika, a Bluespec derivative that gives direct con-
trol over scheduling decisions that determine performance,
while using dynamic analysis to avoid concurrency anomalies.

Our implementation includes formal semantics, mechanized
theorems, and a veri�ed compiler.

Overview

State function = Rules + Explicit schedule

Contributions

 Core calculus for rule-based language amenable to formal
reasoning about functionality and performance

 Cycle-accurate operational semantics

 Proof of one-rule-at-a-time abstraction

 Full Coq mechanization of the semantics

 Veri�ed compilation to RTL

 Performance case-study of a pipelined processor

Motivation

HW spec = Functional spec (ORAAT) + Performance spec (Not in
previous work)

in → f → → g → out
Functional spec: out = g(f(in))
Performance spec: out[t + 2] = g(f(in[t]))

Precise semantics allows for performance proofs

Our design

The Kôika EDSL

rule divide =

 let v = r.rd_0() in

 if iseven(v) then

 r.wr_0(v >> 1)

rule multiply =

 let v = r.rd_1() in

 if isodd(v) then

 r.wr_1(3 * v + 1)

schedule collatz = [divide; multiply]

rule swap =

 s.wr_0(r.rd_0());

 r.wr_0(s.rd_0())

rule dyn_abort =

 if r.rd_0() == 0 then

 t.wr_0(0b1);

 if s.rd_0() == 0 then

 t.wr_0(0b1)

Core language

Registers r Variables x External functions f Constants b

Ports p ∈ {0, 1}

Actions a ⩴
$b $x $f($a, …, $a) skip let $x := $a in $a

$r.rd_$p() $r.wr_$p($a) if $a then $a else $a

…

Semantics

Rich speci�cations serve as a contract between hardware de-
signers and compiler writers and enable veri�ed designs and

veri�ed compilation.

One-rule-at-a-time abstraction

Theorem OneRuleAtATime init schedule:

 exists rules ⊂ schedule,

 interp_s init schedule =

 foldl interp_r init rules.

∈

ORAAT property enables local, modular reasoning

Proof mechanization enables semantics exploration

Compilation to RTL

Sequential semantics
↓

Concurrent RTL with deferred checks

Veri�ed circuit optimizations (constant propagation, mux elim-
ination, partial evaluation) reduce the overhead of dynamic

scheduling & con�ict resolution.

Compiler correctness

Theorem CompilerCorrectness init schedule:

 interp_s init schedule =

 interp_rtl init (compile schedule).

≡

Output and downstream synthesis

 Kôika outputs code in
a safe subset of
Verilog.

 Downstream tools
perform further op-
timizations and can
generate FPGA and
ASICs designs.

Hardware artifacts so far

 Arithmetic-pipeline performance proof (on paper)

 Kôika port of a simple BSV RISCV core (most of RV32i&e, crit-
ical path and area overhead ≤ 10%)

Next steps

 Kôika-level simulation, leveraging high-level structure for
performance

 Veri�cation of performance (pipelining behavior) and timing
properties of the RISCV core

 Multi-core systems & enclaves, with proofs of safety from
timing side-channels

 Further language design, including native modularity

https://github.com/mit-plv/koika {bthom, cpitcla, adamc, arvind}@csail.mit.edu

(wr1, r, ∗) ∉ L (wr0, r, ∗) ∉ L

Γ ⊢ (ℓ, r. rd0 ↓ (ℓ ++ [(rd0, r)],R [r])
RD0

Γ ⊢ (ℓ, a) ↓ (ℓ′, v) (wr1, r, ∗) ∉ L ++ ℓ′

Γ ⊢ (ℓ, r. wr1 ()) ↓ (ℓ′ ++ [(wr1, r, v)], tt)
WR1

https://github.com/mit-plv/koika
https://mit.edu/
https://github.com/mit-plv
https://github.com/mit-plv/koika

