```
\begin{figure}
\begin{minipage}{5.8cm}
\begin{tabular}{c}
\includegraphics[height=4.8cm]{totalPPFLeoTrueCSFx3_136.eps} \\
(a)
\end{tabular}
\end{minipage}
%\hfill
\begin{minipage}{4.8cm}
\begin{tabular}{c}
\includegraphics[height=4.8cm]{relativePPFLeoTrueCSFx3_136.eps}\\
(b)
\end{tabular}
\end{minipage}
\caption{(a) Monte Carlo normalized partial pathlength factor calculated versus source-
detector separation in continuous-wave (CW) when using the subject-specific anatomical
model (dotted line) and the atlas anatomical model (continuous line). In red is plotted the
PPF in scalp-skull, in blue the PPF in the brain. The PPF is normalized by the total
sensitivity to all tissue types. (b) Monte Carlo measure of percent relative sensitivity to
scalp-skull layer (top) and brain (bottom) versus separation with respect to PPF$_o$,
which is the Monte Carlo prediction of PPF of the subject-specific head model.}
\label{fig:ppf}
\end{figure}
```


Fig. 3. (a) Monte Carlo normalized partial pathlength factor calculated versus sourcedetector separation in continuous-wave (CW) when using the subject-specific anatomical model (dotted line) and the atlas anatomical model (continuous line). In red is plotted the PPF in scalp-skull, in blue the PPF in the brain. The PPF is normalized by the total sensitivity to all tissue types. (b) Monte Carlo measure of percent relative sensitivity to scalp-skull layer (top) and brain (bottom) versus separation with respect to PPF_o, which is the Monte Carlo prediction of PPF of the subject-specific head model.