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INTRODUCTION

Transmembrane b-barrels (TMBs) constitute an important class

of proteins typically found in the outer membrane of Gram-nega-

tive bacteria, mitochondria, and chloroplasts. These proteins dis-

play a wide variety of functions and are relevant to various aspects

of cell metabolism. In particular, outer-membrane proteins (omps)

are used in active ion transport, passive nutrient intake, membrane

anchors, membrane-bound enzymes, and defense against mem-

brane-attack proteins.

Since omps were discovered relatively recently and are difficult

to crystallize, there are currently only about one hundred TMBs in

the Protein Data Bank, and only 19 after the removal of homolo-

gous sequences. Some in vitro and in vivo mutation studies of

omps1,2 have been performed, but compared with the overwhelm-

ing amount of data on globular proteins, outer membrane proteins

remain a biologically important but technically difficult area of

research.

Since omps play a major role in cellular biology, computational

efforts have in recent years focused on secondary structure predic-

tion for these proteins, despite the paucity of data.3–7 Almost all

current methods use traditional machine learning approaches such

as hidden Markov models (HMMs) and neural networks (NNs).

However, these algorithms fail to incorporate the long-range inter-

actions that are thought to be important in the folding of TMBs,

as described in the 4-stage model.8 Hence, new methods that eval-

uate the effect of residue interactions over long distances during

the omp folding process are essential for studying this class of

proteins. To address this issue, we recently introduced a novel

model for TMBs9 that uses a simplified representation of these

structures and incorporates long-range pairwise residue contacts in

multitape S-attribute grammars. This allowed us to compute the

TMB supersecondary structure with the global minimum folding

energy (m.f.e.). Our program, transFold, accurately predicts TMB
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ABSTRACT

Transmembrane b-barrel (TMB) proteins are em-

bedded in the outer membrane of Gram-negative

bacteria, mitochondria, and chloroplasts. Despite

their importance, very few nonhomologous TMB

structures have been determined by X-ray diffrac-

tion because of the experimental difficulty encoun-

tered in crystallizing transmembrane proteins. We

introduce the program partiFold to investigate the

folding landscape of TMBs. By computing the Boltz-

mann partition function, partiFold estimates inter-

b-strand residue interaction probabilities, predicts

contacts and per-residue X-ray crystal structure B-

values, and samples conformations from the Boltz-

mann low energy ensemble. This broad range of

predictive capabilities is achieved using a single,

parameterizable grammatical model to describe

potential b-barrel supersecondary structures, com-

bined with a novel energy function of stacked amino

acid pair statistical potentials. PartiFold outperforms

existing programs for inter-b-strand residue contact

prediction on TMB proteins, offering both higher av-

erage predictive accuracy as well as more consistent

results. Moreover, the integration of these contact

probabilities inside a stochastic contact map can be

used to infer a more meaningful picture of the TMB

folding landscape, which cannot be achieved with

other methods. Partifold’s predictions of B-values are

competitive with recent methods specifically designed

for this problem. Finally, we show that sampling

TMBs from the Boltzmann ensemble matches the X-

ray crystal structure better than single structure pre-

diction methods. A webserver running partiFold is

available at http://partiFold.csail.mit.edu/.
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supersecondary structure and can be used to reproduce

in silico the observations of in vivo mutation studies.1,2

One reason investigating the conformational landscape

for a protein is important is because the native state may

be quite different from the predicted minimum energy

conformation; indeed, Zhang and Skolnick10 have shown

that the native state is often closer to the centroid of the

largest cluster of low energy conformations obtained by

Monte Carlo sampling. There has been substantial work

on characterizing globular protein folding landscapes for

lattice and nonlattice models—see Levitt and cow-

orkers,11–13 Mirny and Shakhnovich,14 and Dill and

coworkers.15–19 Chiang et al.20 have recently computed

the partition function for simple two-helix bundles to

study conformational changes in a 2D lattice model.

Morozov has also investigated ways of computing a parti-

tion function to characterize DNA occupancy of nucleo-

somes and DNA-binding proteins.21

In this article, we characterize the folding landscape of

TMBs by drawing parallels with RNA secondary structure

prediction. The first RNA secondary structure prediction

algorithm computing the minimum folding energy struc-

ture in the nearest neighbor energy model was intro-

duced by Zuker and Stiegler.22 Following this, McCaskill

greatly advanced RNA structure prediction by developing

algorithms capable of computing the Boltzmann partition

function and the base pair probability of an RNA mole-

cule.23 Recently, a significant extension has been pro-

posed by Ding and Lawrence, who described an algo-

rithm for sampling RNA secondary structures according

to their weight in the Boltzmann ensemble.24 The trans-

Fold algorithm that we recently introduced to compute

the minimum folding energy structure of TMBs is similar

in spirit to the original Zuker/Stiegler algorithm, though

it uses a more powerful grammatical model, a multitape

S-attribute grammar. We show now that the powerful

techniques established by McCaskill, Ding, and Lawrence

can be adapted and applied to TMB structure prediction,

thus establishing a bridge between RNA and TMB struc-

ture exploration. To do this, we take advantage of the

planarity imposed on a TMB by the cell membrane to

derive a model that allows the computation of the parti-

tion function to be performed in polynomial time. A

related approach was suggested by Istrail who proved

that the partition function of an Ising model can be

computed in polynomial time given a 2D lattice.25

Here, we describe the first polynomial-time, recursive

algorithm to compute the Boltzmann partition function

of all b-barrel structures for a given outer membrane

protein. From the partition function, we show how to

compute the Boltzmann pair probabilities P(i,j) that resi-

dues i, j form an inter-b-strand contact, and rigorously

sample conformations from the Boltzmann low energy

ensemble. Additionally, from the partition function we

estimate statistical mechanical parameters such as ensem-

ble free energy, average internal energy, heat capacity, etc.

Rigorously defined stochastic contact maps, sampling,

and thermodynamic parameters give us insight into the

folding landscape of outer membrane proteins—an

insight which cannot be gained by methods solely dedi-

cated to the prediction of the native state conformation.

This approach also provides a unified framework that

allows us to tackle a wide variety of structural prediction

problems which were previously addressed by independ-

ent algorithms. This unified approach achieves a clear

gain in accuracy, precluding the problem of contradictory

predictions encountered when interpreting the results of

multiple, independent algorithms.

In addition, we extend the state-of-the-art BETAWRAP

energy model26,27 already used with success for TMBs,9

by introducing the notion of interstrand residue stacking

pairs (stacking of two pairs of adjacent residues). This

results in a certain improvement in predictive results,

allowing our algorithms to benefit from a significant sta-

tistical signal, to our knowledge never before used for

protein structure prediction.

In our results, we illustrate these advances by demon-

strating (i) how stochastic contact maps can be used to

perform accurate, state-of-the-art b-strand contact pre-

diction, (ii) how X-ray crystal per-residue B-values can

be predicted with an accuracy rivaling that of leading

specific B-value prediction algorithms, and (iii) how

Boltzmann distributed structure sampling can be used to

improve the accuracy of whole structure prediction over

classical minimum folding energy approaches. In address-

ing this set of challenging structural prediction problems,

we wish to underscore the strength and potential of this

approach.

MATERIALS AND METHODS

Two-tape representation of
transmembrane b-barrels

We provide a simple and unambiguous representation

of transmembrane protein structure by modeling them

with multitape context-free grammars.9,28 In the case of

TMBs, this modeling explicitly separates each of the anti-

parallel b-strand pairs involved in the barrel. The com-

plete structure can then be described as a sequence of

individual antiparallel pairings, including the closing

strand pair. While the algorithmic concepts and routines

presented in this article can be equally described without

multitape context-free grammars, this representation pro-

vides a more concise conceptual description that still

lends itself toward an efficient computational solution.

Grammars provide a versatile framework that can be

easily adapted to match the needs of experimentalists.

Indeed, experimental observations of putative residue

contacts, for instance, can be used to constrain the

ensemble of folds to respect some specific structural
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features. Obviously, many others types of constraints can

be designed, as was done by Waldispühl et al.9 where

some residues known to be present in extracellular loops

were excluded from transmembrane strands.

To accurately represent TMBs using grammars (to

agree with Schulz’s summary29) we must describe three

fundamental features of these structures: (i) the overall

shape of the barrel (the number of TM b-strands and

their relative arrangement), (ii) an exact description of

the antiparallel b-strand pairs which explicitly lists all

residue contacts and their orientation (side-chains

exposed toward the membrane or toward the lumen) as

well as possible strand extensions, and (iii) the inclina-

tion of TM b-strands through the membrane plane. The

modeling is based on an individual schematic representa-

tion of these features which will be merged hereafter.

This decomposition of the structure into elementary

units is illustrated in Figure 1.

A TMB must be decomposed into individual blocks of

antiparallel b-strands, where each b-strand is involved in

two distinct pairings—an exception being the ‘‘closing’’

strand pair involving the first and last b-strand. To han-

dle this distinctly non-context-free feature, we employ a

representation where the sequence is duplicated on a sec-

ond tape, and pairings are made from one tape to the

other. Figure 2 illustrates this representation, which is the

foundation of the modeling introduced in Refs. 9 and 28
and motivates the designation of the ‘‘2-tape representa-

tion.’’

In this article, we introduce a new notation that allows

us to generalize these models to compute critical features

of the folding landscape. Each block can be represented

as a 4-tuple i1; j1
i2; j2

� �
, where i1 and j1 (s.t. i1 < j1) are the

indices of the strand on the first tape and i2 and j2 (s.t.

i2 < j2) are those on the second tape.

We now consider an antiparallel pairing and the corre-

sponding 4-tuple i1; j1
i2; j2

� �
. The left strand corresponds to

the subsequence [i2 1 1, i1], the right strand corresponds

to [j2 1 1, j1], and a loop to the subsequence [i1 1 1, j2].

Additionally, we assume that the rightmost amino acid at

index i1 of the left strand is paired with the leftmost resi-

due at index j2 1 1 of the right strand.

Although TM b-strands are not necessarily of

the same length, the length of the residues in contact is

Figure 1
Structure decomposition of transmembrane b-barrel. (a) The full structure of a transmembrane b-barrel, (b) overall shape of the channel, (c) antiparallel b-strands, and
(d) inclination of TM b-strands across the membrane plane.

Figure 2
2-tape representation of a transmembrane b-barrel. The original input tape is duplicated and pairings are only allowed from one tape to the other. All pairings are

antiparallel and indicated with arrows. The closing pair connects the first and last strands and is represented by the exterior block.

Modeling Ensemble of Transmembrane b-barrel Proteins
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Lc 5 min(i1 2 i2, j1 2 j2) and the length of the strand

extension is Le 5 |(i1 2 i2) 2 (j1 2 j2)|. To avoid invalid

configurations, only one strand from each pair can be

extended. When an extension is done on the left strand, the

right strand becomes shorter and the extension is then

called a reduction; when an extension occurs on the right

strand, the latter is longer and the operation is an extension.

The set C of residue–residue contacts involved in strand

pairing can be defined as follows: C 5 {(i1 2 k, j2 1 1 1
k) | 0 � k < Lc}. The side-chain orientation alternates

strictly around the strand backbone and can be labeled:

outwards, that is facing toward the membrane, or inwards,

that is facing toward the inside of the barrel, or channel

(which can vary from entirely aqueous to mostly filled).

Thus, we distinguish the subsets of residue contacts

exposed to the same environment by C0 ¼
�ði1 � 2 � k;

j2 þ 1þ 2 � kÞ �� 0 � k < bLc
2
c� and C1 ¼

�ði1 þ 1� 2 � k;
j2 þ 2 � kÞ �� 1 � k � bLc

2
cg Assuming the location of the

closest contact is known, we can also assign the nature of

the milieu (i.e. membrane or channel).

For each block i1; j1
i2; j2

� �
representing each distinct antipar-

allel pairing, we integrate these features by annotating

each residue appropriately. b-strand residues with side-

chains oriented toward the membrane are annotated with

M, while those with side-chain oriented toward the chan-

nel are annotated with C. Unpaired b-strand residues are

simply annotated E. An example of this modeling is

given in Figure 3.

The inclination of strands through the membrane is

modeled using a shear number. This feature is imple-

mented with the help of strand extension. Indeed, strictly

alternating reductions and extensions in consecutive

strand pairs allows us to obtain the desired configuration.

Without loss of generality, and in conjunction with ex-

perimental observations,29 we assume that (i) the N-ter-

minus is located on periplasmic side and that (ii) the

shear number is positive. It follows that the first loop

(between the first and second TM strand) is on the

extracellular side. Then, we restrict reductions to occur

around periplasmic loops and extensions around extrac-

ellular loops. Figure 3 illustrates how to proceed.

It is worth note that, in principle, a similar 2-tape rep-

resentation could be used to include other classes of b-
barrel proteins domains as long as their structures fol-

lowed similar topological rules. TMBs are well suited to

the methodology given since the cell membrane restricts

the number of possible structural conformations that can

arise, reducing the complexity of the representation.

However, soluble b-barrel proteins can allow more flexi-

bility in the barrel forming b-sheet, and would thus

Figure 3
(a) Representation of a TM b-strand pair with extension on left strand (i.e. extension). Residues annotated by M [resp. C] have side-chain facing the membrane [resp.

channel], while those with E are unpaired b-strand residues which extend or reduce the strand. Dots ‘‘.’’ represent the amino acids in the loop connecting the two strands,

while dashes ‘‘-’’ are empty characters used to model the space available for the next pairing. (b) Representation of strand inclination using shear number. Reductions and

extensions alternate around periplasmic loops (bottom) and extracellular loops in order to preserve the coherence of the orientation. The N-terminus of the protein

sequence on the left diagram is at the right extremity.
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require more complicated rules (such as consecutive

strands which are out of sequence order). These changes

to the representation would affect the computational

speed and tractability of our later techniques.

Energy model

Here we introduce a novel pseudo-energy model

inspired by the classical RNA nearest neighbors model.30

To describe this, we first introduce the notion of a stack-

ing pair in a pair of b-strands. Intuitively, this consists

of the stacking of two spatially adjacent pairs of H-bond-

ing residues that have the same side-chain orientation.

Figure 4 depicts such an arrangement. More specifically,

consider an antiparallel b-strand pair and two residues,

indexed i and j, such that i corresponds to an amino acid

in the first strand and j to an amino acid in the second

one. Then, assuming both pairs are H-bonded, the 2-

tuple ((i,j), (i 1 2, j 2 2)) is said to be a stacking pair of

b-strand residues. The choice of the pair (i 1 2, j 2 2)

(as opposed to (i 11, j 2 1)) ensures that residues on

the same face of the b-sheet are grouped since these are

much closer in physical space and more likely to interact

with one and another.

Using this idea, we say that the energy of a confor-

mation is related to the sum of the knowledge-based sta-

tistical potentials associated with every unique stacking

pair found within that structure. By this definition,

stacking pairs improve upon the individual amino acid

pairing potentials that have been used successfully in

transFold9 and BETAWRAP.26,27

Determining stacking potentials

To obtain statistical potentials for all possible amino

acid stacking pairs, we compute the probability of

observing adjacent pairs of stacked amino acids in solved

b-sheet structures with characteristics closely matching

those found in TMBs. Similar to prior meth-

ods,9,26,27,31 we take the 50% nonredundant set of pro-

tein structures (PDB50) from the PDB32 (taken April 4,

2007), and use STRIDE33 to identify secondary structure

features, solvent accessibility, and hydrogen bonds. Natu-

rally, all solved structures of TMBs are removed as to not

corrupt our testing (leaving 11,359 proteins in our set).

However, instead of simply counting the occurrences of

b-sheet amino acid pairings in all known proteins, we

restrict our search to better match the environment nor-

mally associated with TMB proteins. Namely, the barrel

fold of TMBs are thought to consist of only antiparallel,

amphipathic b-sheets, with a hydrophobic environment on

the outer membrane side of the barrel and a hydrophilic

environment commonly existing within. Therefore, we

count the frequency of stacking pairs after extracting quad-

ripeptide regions of antiparallel bonded b-strands that ex-
hibit an amphipathic pattern. Alternating buried/exposed

residues define amphipathicity, where a buried residue is

required to have less than 4% the solvent accessible area as

when that residue is in an extended G-X-G tripeptide,34

and an exposed residue is required to have an area greater

than 15%. For our data set, this results in approximately

143,000 unique experimentally observed stacking pairs that

match a TMB environment. Using the stacking pairs fre-

quency count, we estimate the conditional probability

P((X,Y)|(U,V)) of observing the amino acid pair (X,Y)

given an adjacent stacked pair (U,V). For consistency and

to avoid parameter fitting, specific statistical bonuses have

not been included in these potentials (e.g. special treatment

of proline residues). Finer granularity information such as

side-chain rotomers or atomic coordinates were also not

included in this model, but may be integrated into a more

sophisticated stacking potential model in the future.

Since a table of amino acid specific stacking pair

potentials would require 204 entries, the only way to

extract meaningful information from the PDB50 is to

determine potentials based on a reduced residue alpha-

bet. We investigated a number of reduced alphabet sets

and decided upon the Wang and Wang 5-letter reduced

alphabet35 (cf. Section ‘‘Results and Discussion’’ for a

description of the rationale behind this choice).

Energy calculation

Let i, j, (i 1 2), and (j 2 2) be the indices of two

stacked amino acid pairs that are in contact, and let x [
{0,1} be a variable which represents the type of environ-

ment in which such a contact occurs (which side of the

amphipathic sheet). Specifically, x 5 0 (resp. x 5 1) when

side-chain orientation is toward the channel interior (resp.

Figure 4
Stacking pairs of residues in antiparallel b-strands.
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membrane). Let E(i, j, x | i 1 2, j 2 2) denote the energy

of the contact between residues xi and xj, with the envi-

ronment x, given the adjacent stacked pair xi12 and xj22.

Pairwise frequencies are transformed into an energy

potential using the standard procedure (taking the nega-

tive logarithm—see Refs. 36 (pp 223–228) and 37 for

details). Specifically, if pi,j,x | i12,j22 is Boltzmann distrib-

uted, then E(i, j, x | i 1 2, j 2 2) 5 2RT log(pi, j, x | i12, j22)

2 RT log(Zc). Here log(Zc) is a statistical recentering con-

stant that is chosen as a parameter. Further, although RT has

no effect when computing the minimum folding energy

structure,9 this is not the case when computing the partition

function for b-barrel structures. For this reason, our current

software allows the user to stipulate an arbitrary Boltzmann

constant.

The folding pseudo-energy of the structure is the sum

of all contact potentials. Formally, we have:

E ¼
X

ði;jÞ2C0
Eði; j; 0 j i þ 2; j � 2Þ

þ
X

ði;jÞ2C1
Eði; j; 1 j i þ 2; j � 2Þ ð1Þ

At the present time, our model does not contain any

energy contribution for periplasmic or extracellular loops,

although future work will indeed consider such loop

energies. The method presented here to compute the b-
barrel partition function can easily be adapted to handle

loop energies in an extension of our pseudo-energy

model, hence our approach has no intrinsic limitation.

Computing the partition function

Since a TMB structure can be represented as a

sequence of antiparallel TM b-strand pairs, given any

four indices i1, i2, j1, j2 and the environment x of the clos-

ing TM b-strand pair contact (i.e. ‘‘membrane’’ or

‘‘channel’’), we can compute the energy E(i1, i2, j1, j2, x)

for the antiparallel b-strand pairing of xi1
,. . .,xi2

with

xj1
, . . . ,xj2

. For all possible values of i1, i2, j1, j2, and x, we

store the Boltzmann value exp(2E(i1, i2, j1, j2, x)/RT) in

the array Qap. Since the length of TM strands, as well as

those of strand extensions are bounded, the array can be

filled in time O(n2),� where n represents sequence length.

Qapði1; i2; j1; j2; xÞ

¼
YLc
k¼1

exp � E½i1 � k þ 1; j2 þ k; x þ k þ 1 mod 2�
RT

� �
ð2Þ

Since the energy function is additive, we can decompose

the energy of a TMB as the sum of the energy associated

with each distinct antiparallel TM b-strand pair. Let ns
be the number of TM b-strands of the TMBs and let i2

k

[resp. i1
k 2 1] denote the index of the leftmost [resp.

rightmost] residue of the k-th strand.y To simplify

the algorithm description, in the following we will omit

the parameter x used to indicate the environment of the

first contact of an antiparallel TM b-strand pair. There-

fore, the energy E(s) of a given TMB structure s can be

written as:

EðsÞ ¼ Eðins1 ; ins2 ; i11; i12Þ þ
Xns�1

k¼1

Eðik1 ; ik2 ; ikþ1
1 ; ikþ1

2 Þ ð3Þ

The Boltzmann partition function is defined as the sumP
s e

�EðsÞ
RT taken over all the TMB structures s. To compute

the partition function, we first introduce a dynamic table

Qsheet to store the partition function values for b-sheets
built from concatenating antiparallel TM b-strand pairs,

i.e. a TMB without closure. This table can be dynamically

filled using the following recursion:

Qsheet
i1;j1
i2;j2

� �
¼

X
ðk1;k2Þ

Qsheetði1;i2;k1;k2Þ�Qapðk1;k2;j1;j2Þ

ð4Þ

Once filled, we use this array to compute the partition

function Qtmb over all TMBs. This operation consists of

adding the contributions of the antiparallel b-strand
pairs which close the extremities of the b-sheet. For this,
we could use the values stored in Qap; however, in prac-

tice, we use a special array which is better suited to the

special rules for this last b-strand pair.{

Qtmb¼
X
ði1;i2Þ

X
ðj1;j2Þ

Qsheetði1;i2;j1;j2Þ�Qapðj1;j2;i1;i2Þ ð5Þ

Note that in order to respect the pairwise orientation

as well as strand inclination, the indices i1, i2 and j1, j2
are swapped. Finally, it should be mentioned that in

computing the partition function, the dynamic program-

ming must ensure an exhaustive and non-overlapping

count of all structures; in particular, the cases treated

must be mutually exclusive, as is clearly the case in our

algorithm.

Using formulas from classical statistical mechanics, a

number of important thermodynamic parameters can be

computed immediately from the partition function.

These parameters, including ensemble free energy, heat

capacity, average internal energy, etc. (see Ref. 38),

� Note that this bound can be decreased to O(n) if we bound the length of loops.

However, since we use this table to compute the contribution of the closing

strand pair, this feature is not considered.

y This notation is designed to respect the notation used for the strand pair

block
�
i1; j1
i2; j2

�
.

{ The rules for the closing pair, explicitly described in Ref. 9, mainly consist of

relaxing some constraints, and allowing extensions on both sides of the strand.
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permit a better understanding of the folding landscape.

For example, as shown in Ref. 39, average internal energy

of the structures hE(s)i can be computed by

hEðsÞi ¼ RT 2 � @

@T
logQðsÞ; ð6Þ

while the standard deviation can be computed with a simi-

lar formula. Such thermodynamic parameters provide in-

formation on the stability of folds for a given sequence.

Computing the residue contact probability

In this section, we address the problem of computing

the Boltzmann pair probabilities from the dynamic tables

filled when computing the partition function value Qtmb.

First of all, we need to characterize the antiparallel b-
strand pairs which contain a given contact.

Property 1. Let i and j (i < j) be two residues of two

distinct consecutive antiparallel b-strands, and m and n

(s.t. i � m < n � j) the two residues at the extremities of

the connecting loop. Then, (i,j) are brought into contact if

and only if m 1 n 5 i 1 j.

It follows from this proposition that (i, j) is a valid

contact if and only if the antiparallel b-strands i1; j1
i2; j2

� �
verify

i 1 j 5 i1 1 j2 1 1 and i2 1 1 � i � i1 < j2 1 1 � j � j1.

To evaluate the residue pair probability p(i, j), we must

compute the partition function value over all TMB Q(i, j)

which contain this contact. Such TMB can be decomposed

into two, three, or four parts, depending on the strand

pair where the contact occurs (i.e. in the the closing strand

pair, the first and last pair of the sheet or in an intermedi-

ate one). All these cases are illustrated in Figure 5.

Let i1; j1
i2; j2

� �
be an index of a block modeling an antipar-

allel TM b-strand pair. Then, we define Qclose i1; j1
i2; j2

� �
,

Qfirst i1; j1
i2; j2

� �
, Qlast i1; j1

i2; j2

� �
, and Qinter i1; j1

i2; j2

� �
to be the partition

functions over all TMB structures which contain this anti-

parallel TM b-strand pair as, respectively, the pair closing

the barrel (Fig. 5(a)), the first pair of the TM b-sheet

(Fig. 5(b)), the last pair of the TM b-sheet (Fig. 5(c)), or
any other intermediate pair (Fig. 5(d)). Formally:

Qclose i1; j1
i2; j2

� �
¼ Qsheet

i1; j1
i2; j2

� �
� Qap

j1; i1
j2; i2

� �
ð7Þ

Qfirst i1;j1
i2;j2

� �
¼
X
ðy1;y2Þ

Qap
i1;j1
i2;j2

� �
�Qsheet

j1;y1
j2;y2

� �
�Qap

y1;i1
y2;i2

� �
ð8Þ

Qlast i1;j1
i2;j2

� �
¼
X
ðx1;x2Þ

Qsheet
x1;i1
x2;i2

� �
�Qap

i1;j1
i2;j2

� �
�Qap

j1;x1
j2;x2

� �
ð9Þ

Qinter

�
i1;j1

i2;j2

�
¼
X
ðx1;x2Þ
ðy1;y2Þ

�
Qsheet

�
x1;i1

x2;i2

�
�Qap

�
i1;j1

i2;j2

�
�

Qsheet

�
j1;y1
j2;y2

�
� Qap

�
y1;x1

y2;x2

��
ð10Þ

Finally, using these functions, the partition function

Qði; jÞ ¼ P
S e

�EðSÞ
RT , where the sum is over all TMB which

contain the residue contact (i, j), is computed as follows:

Qði; jÞ ¼
Xiþj¼i
1
þj

2
þ1

ði1 ;i2Þ
ðj1 ;j2Þ

�
Qclose

j1; i1

j2; i2

� �
þ Qfirst

i1; j1

i2; j2

� �

þ Qlast
i1; j1

i2; j2

� �
þ Qinter

i1; j1

i2; j2

� ��
ð11Þ

Finally, the Boltzmann probability p(i, j) of a contact

between the residues at indices i and j can be obtained

by computing the value pði; jÞ ¼ Qði;jÞ
Qtmb

. The contact

map of a TMB can be immediately derived from this

Figure 5
Decompositions of the transmembrane b-barrel, which allow us to isolate the antiparallel TM b-strand pair which contains the residue contact. The 2-tape block which

corresponds to this strand pair is crosshatched. The blocks in dark and light gray respectively represent a TM b-sheet (i.e. a sequence of antiparallel TM b-strands) and
the closing strand pair (i.e. the antiparallel b-strand pairs which close the sheet an form the barrel).
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equation. However, we note that an extra field counting

the number of strands in Qsheet is required to ensure that

the minimal number of strands in a TMB is not violated.

Assuming that the length of TM b-strands and loops,

as well as the shear number value is bounded, the time

complexity is O(n3), where n is the length of the input

sequence. When the maximal length of loop is in O(n),

this complexity should approach O(n4). Similarly, the

complexity in space can be bounded by O(n2).

Improved computing of the stochastic
contact map

The formidable time requirement for a brute force

algorithm to compute Eq. (10) prevents any immediate

efficient application. Indeed, naively applying this equa-

tion to the O(n2) possible residue pairs results in an

overall time complexity of O(n5). In this section, we

present a simple strategy using additional dynamic tables,

which allows us to reduce the time complexity by a fac-

tor of O(n2).

Two basic observations lead to a natural improvement

over a brute force algorithm. First, when the TM b-
strand pair which contains the residue contact is not

involved, the product of the partition function of two

substructures is realized over all possible configurations

(i.e. Qx
i1; k1
i2; k2

� � � Qy
k1; j1
k2; j2

� �
is computed over all possible

pairs of indices (k1,k2)). In Eq. (10), the pairs of indices

(x1, x2) and (j1, j2) are used for different residue contacts

since the pair (i1, i2) varies. Thus, we can precompute the

values of Qsheet
y1; j1
y2; j2

� � � Qap
j1; i1
j2; i2

� �
over all possible (y1, y2)

and store them in a dynamic table for later retrieval.

Given (i1,i2) and (j1,j2), let Qtail be the array storing the

values
P

ðk1;k2Þ Qx
i1; k1
i2; k2

� � � Qy
k1; j1
k2; j2

� �
. This table can be filled

in time O(n3). Then, in place of Eq. (10), we now have

Eq. (12).

Qinter i1;j1
i2;j2

� �
¼
X
ði1;i2Þ

Qsheet
x1;i1
x2;i2

� �
�Qap

i1;j1
i2;j2

� �
�Qtail

j1;x1
j2;x2

� �
:

ð12Þ

Equations (8) and (9) need not be improved, since there is

no redundancy in those cases. The time complexity for

computing the entire contact map p(i, j) is now O(n4).

However, an additional observation allows us save an addi-

tional factor n in the time complexity: when a TMB struc-

ture is considered in one of the Eqs. 7–10, the TM b-
strand pair which contains the contact (i, j) also involves

many other contacts. Hence, instead of using these equa-

tions to compute the values Q(i, j) (and p(i, j)) separately,

we consider each possible b-strand pair and immediately

add its contribution to the partition function. From these

improvements, we now have an algorithm to compute the

contact map of a TMB, which runs in time O(n3).

Although not explicitly mentioned thus far, we should

emphasize that we can also compute the contact proba-

bility px(i, j) for a specific environment x—that is mem-

brane or channel (cf. Section ‘‘Energy Model’’ for expla-

nation of environment). To do so, we simply need to

duplicate the dynamic tables in order to take into

account the side-chain orientation for extremal TM b-
strand pairs.

Rigorous sampling of transmembrane
b-barrels

Ding and Lawrence24 introduced a powerful technique

to sample RNA secondary structures according to their

weight in the Boltzmann ensemble. This method has

been successfully applied to uncover critical features of

the distribution of structures over the RNA folding land-

scape, as well as in biologically important applications

such as gene knock-down experiments.§

Inspired by this work, we design a rigorous sampling

algorithm for TMBs. Given an amino acid sequence s, we

are able to randomly generate, according to the distribu-

tion of structures in the Boltzmann ensemble, low energy

TMB structures for s. By sampling, we expect to be able

to efficiently estimate nontrivial features concerning the

ensemble of potential TMB folds, with the long-term

goal of contributing to drug design engineering.

The sampling algorithm uses the dynamic table filled

during the computation of the partition function. It

essentially proceeds in two steps illustrated in Figure 6.

First, The ‘‘closing’’ antiparallel strand pair is sampled

according to the weight of all TMBs that contain it over

all possible TMB. Then, we sample each antiparallel

strand pair of the TM b-sheet from left to right (or alter-

natively from right to left) until the last one, according

to the weight of that structure over all possible TM b-
sheets. The correctness of the algorithm is ensured by

construction of the dynamic table in Eqs. (4) and (5).

RESULTS AND DISCUSSION

The partiFold algorithms use the Boltzmann partition

function to predict the ensemble of structural conforma-

tions a TMB may assume instead of predicting a single

minimum energy structure. From this ensemble experi-

mentally testable TMB properties are computed that

describe the folding landscape and suggest new hypotheses.

In the following, we demonstrate the flexibility of the

approach and evaluate the reliability of these predictions

by comparing individual contact predictions and B-value

predictions against known X-ray crystal structures. We fur-

ther perform whole structure sampling to show the benefits

of ensemble modeling over single structure prediction, and

the possibilities for structural exploration provided by these

techniques. A fully-functional web server is available at

§ By analyzing Boltzmann samples of messenger RNA (mRNA), likely single-

stranded regions of mRNA can be determined. Such single-stranded regions are

good targets for hybridization by small interfering RNAs (siRNA).
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http://partiFold.csail.mit.edu which displays the compre-

hensive set of our input data and results, as well as gener-

ates the same predictions and visuals for arbitrary TMBs.

Dataset

Very few TMBs have experimentally-derived structures

deposited in the PDB. After removing homologous

sequences, and focusing on monomeric, amphipathic

TMBs without any plugging domains, we find in our test

set 8 proteins with known X-ray crystal structures (PDB

codes: 1QJ8, 1P4T, 1QJP, 1THQ, 1K24, 1QD6, 1TLY, and

1I78—Figure 7). Larger omps such as porins have been

excluded since they typically exist in trimer, and can con-

tain short a-helical loops which are critical for stabiliza-

tion. Similarly, a number of TMBs are found to

have large plug domains within the barrel itself, likely

stabilizing the structure in an irregular, possibly dynamic

Figure 6
Sampling procedure: First, the first and last TM b-strands of the barrel are sampled (left box). Then, we sample the remaining TM b-sheet by iteratively sampling the

rightmost antiparallel b strand of the remaining sequence, until we finally sample the first b-strand pair of the sheet.

Figure 7
3D structures of the eight known monomeric, amphipathic, plug-domain-free TMBs as shown from the side and top. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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fashion. Given a priori knowledge of such configurations,

it may be possible to adjust our model to provide accu-

rate predictions, however, the current energy function

has not been formulated with this goal.

This paucity of experimental structural information is

in fact recurrent in TMB structure prediction research.

For instance, only eight structures were used to train and

evaluate PROFtmb, a state-of-the-art genomic-level TMB

existence predictor.5

We further divide our test set of eight to distinguish

short (<200aa: 1QJ8, 1P4T, 1QJP, 1THQ) and long

(>200aa: 1TLY, 1K24, 1I78, 1QD6) proteins, and apply

two different choices of grammar constraints in a similar

manner as was done by Waldispühl et al.9 (A full listing is

available on the webserver.) This matches an observed link

between the length of the peptide sequence and the length,

number, and sheer of the strands that make up the barrel.

How to evaluate predictions of ensembles

The class of predictions enabled by partiFold embody

whole-ensemble properties of a protein. The stochastic

contact map generated (cf. Section ‘‘Computing the Resi-

due Contact Probability’’) reflects the likelihood of two

b-strand amino acids pairing in the (estimated) Boltz-

mann distribution of conformations, and not one single

minimum structure. Figure 8 depicts two ways to view

information from a stochastic contact map. On the left,

the full contact map of 1P4T is shown, identifying the

probability of contact for all possible pairs of residues

across all conformations in the Boltzmann distribution.

On the right, a single structure is chosen (in this case the

X-ray structure of 1QJ8), and displayed as an unrolled

2D representation of the b-barrel strands and their adja-

cent residue contacts. Using the stochastic contact map,

residue contact pairs are then colored to indicate a high

(red) or a low (cyan) probability in the Boltzmann dis-

tributed ensemble. From this, substructures may be iden-

tified from their relative likelihood of pairing.

Unfortunately, validation of our results is limited by

the availability of a single solved X-ray crystal structure

for each test protein. Therefore, we focus validation on

the task of single contact prediction of X-ray crystal

structures even though much more information can be

obtained from our results about the nature of the folding

landscape, suggesting future experimental directions.

Nonetheless, single contact prediction remains an impor-

tant concern when reconstructing 3D models,40–42 and

partiFold still performs well in this capacity.

We define a set of single contact predictions by select-

ing all pairwise contacts that have a probability greater

than a given threshold pt in the stochastic contact map,

and compare those against the corresponding contacts

found in X-ray crystal structures as annotated by

Figure 8
Illustrative representations of stochastic contact predictions. Left: Stochastic contact map for 1P4T. Horizontal and vertical axes represent residue indices in sequence

(indices 1 to 155 from left to right and top to bottom), and points on the map at location (i,j) represent the probability of contact between residues i and j (where darker

gray implies a higher probability). The X-ray crystal structure contacts of 1P4T are shown in red. Right: 2D representation (unrolled b-barrel) of 1QJ8 X-ray crystal

structure showing only those residues involved in b-strands (shown vertically and successively numbered) and their associated, in-register H-bonding partners. Computed

contact probabilities indicated by color hue (highly probable in red, low probability in cyan). The leftmost b-strand is repeated on the right to allow the barrel to close,

labeled dup.
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STRIDE.33 To evaluate our contact predictions we rely

on three standard measures: the coverage (i.e., sensitiv-

ity), where coverage ¼ number of correctly predicted contacts
number of observed contacts

, the

accuracy (i.e., positive predictive value), where accuracy ¼
number of correctly predicted contacts

number of predicted contacts
, and the F-measure, where

F-measure ¼ 2 � Coverage � Accuracy
Coverage þ Accuracy

.

To demonstrate how these metrics would apply to this

type of contact prediction, we refer to Figure 9 depicting

the accuracy of contact prediction for 1QJ8 as a function

of the size of the predicted set (e.g. pt). Here one finds a

high predictive accuracy (� 60–70%) when the number of

contact predictions made is roughly the number of con-

tacts in the X-ray crystal structure (� 100–120 pairs). The

flatness of the curves further indicates a good separation

between accurate, highly probable contacts, and back-

ground predictive noise. This type of result could suggest a

good scaffold of likely contacts when constructing a 3D

model of an unknown structure.

Stacking pairs outperform
single pair potentials

Here we justify our choice for using the Wang and Wang

5-letter reduced alphabet35 for the amino acid stacking pair

potentials described in Section ‘‘Determining Stacking

Potentials’’. Following preliminary study, five alphabets were

Figure 9
Predicting residue contact probabilities in 1QJ8. Plot of prediction accuracy as a

function of size of predicted contact set.

Figure 10
Above: Amino acid groupings for reduced alphabets selected and tested. Below: Smoothed F-measure/coverage/accuracy plots for the 1QJ8 protein across five reduced

alphabets, plus the non-reduced, non-stacking energy potential previously used in Ref. 9 for comparison.
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selected to represent a broad range of residue classifications,

and their predictive abilities were fully tested on our avail-

able protein structures. We present results for the protein

1QJ8 in Figure 10. The original energy parameters from

Waldispühl et al.9 are also included for comparison.

These plots show that the Wang and Wang alphabet

offers the highest combination of coverage and accuracy

for contact prediction, though a few other alphabets offer

decent accuracy for a smaller coverage. The exact statisti-

cal potentials derived using the Wang and Wang alphabet

can be found on the web server previously mentioned.

The (i, j, k, l) tuples had a mean value of Avg[ln(p(i, j,

k, l))] 5 21.15 for membrane facing residues and

Avg[ln(p(i, j)] 5 20.78 for channel facing residues, while

the standard deviations were 2.75 and 1.77, respectively.

Interestingly, the majority of stacking pair potential

alphabets outperformed the nonstacking pair potentials used

by Waldispühl et al.,9 supporting the hypothesis that stack-

ing pairs better describe the energy potential of TMBs.

Experimentation on other proteins revealed varied results,

though the Wang and Wang alphabet tends to remain the

best candidate. One reason for this may be the biophysically

important segregation of aspartic and glutamic acids into

their own residue classes, reducing stacking charge clashes.

Ensemble approach improves individual
contact prediction

To test the accuracy of our algorithm, in Figure 11 we

compare its residue contact prediction abilities (cf. Sec-

tion ‘‘Computing the Residue Contact Probability’’) in
matching the contacts of solved X-ray crystal structures
with the abilities of BETApro,43 a recent stochastic sec-
ondary and super-secondary structure predictor made
specifically for b-sheets (although not precisely for TMBs
since the graph-based approach used does not support
the barrel closure created by the pairing of the extremal
b-strands of the b-sheet). This algorithm was arguably
the top performer of the CASP7 inter-residue contact
predictions competition,41 and most closely resembles
partiFold ’s ability to stochastically predict b-strand
contacts. Other general contact predictors, such as
SVMcon44 showed reduced average performance when
compared with BETApro on our particular test set, and
offered many more high probability contacts than can
exist in real structures.

It should be noted that while BETApro does provide a

stochastic contact map of b-strand interactions, its inter-

action probabilities are not related to a Boltzmann distri-

bution of conformations, but rather based on a sophisti-

cated neural network and graph algorithm that aims to

predict a single structure. Its energy model also appears

to not be common across all proteins, and, unlike parti-

Fold, incorporates secondary structure and solvent acces-

sibility profiles of the target amino acid sequence. Finally,

BETApro was designed for, and trained on, globular pro-

teins, and it does not support important aspects of b-
barrel architectures such as circular b-sheets. Thus, dur-
ing comparison, one must keep in mind that BETApro

was not designed specifically for TMBs.

Figure 11
F-measure scores (y-axis) comparing partiFold (black) and BETApro (gray) as a function of number of contacts predicted (i.e. all contacts with contact probability greater

than any threshold pt along x-axis). Bold entries in table show higher performance.
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A comparison of F-measure scores (cf. Section ‘‘How

to Evaluate Predictions of Ensembles’’) is plotted in Fig-

ure 11. The range of peak scores shown varies from

0.16–0.66, which indicates good coverage and accuracy

when considered against F-measure scores reported for

CASP7 inter-residue contact predictions of 0.02–

0.09.41,44 For all but two proteins tested, our predictor

strictly improves upon the results of BETApro, with a

median peak score of 0.33 versus 0.19. More importantly,

partiFold provides more consistent results across all pro-

teins, and maintains flattened curves, indicative of good

separation between high probability contacts and noise.

The performance of 1K24 and 1QD6 can be directly

attributed to their inclusion of extracellular structural

components outside of the barrel (see Figure 7). Since

our current model focuses only on the barrel fold of a

TMB, extra b-sheets and a-helices can be missed, as in

1K24 and 1THQ, degrading performance (the latter

much more strikingly due to its already short sequence).

In 1QD6, a large number of 310 and a-helical structures
cap the b-barrel and partially interact with the b-sheet
walls, creating an small environment inconsistent with

our energy model and interfering with partiFold predic-

tions. Alteration of constraints as in Waldispühl et al.9

results in an improved peak score (0.30–0.40), but would

require a priori evidence of such a configuration. BETA-

pro uses a more complicated and less transparent model

that uses secondary structure annotation to identify such

regions. Future versions of partiFold may include this as

an option.

Consistent with prior predictors (including BETApro),

our algorithm does not yet model bulges in b-sheets,
and suffers slightly in performance where bulges exist.

However, of the proteins tested, only 8 of 76 b-strand
pairs contained bulges (type C or W45). Across b-sheets
in general, only 14% of paired strands have bulges, and

of those, 90% have only a single bulge.43 Therefore, the

impact of bulges on Figure 11 should be minimal. How-

ever, the possibility that our approach can aide in bulge

discovery is a subject of ongoing research.

Residue flexibility can be predicted from
contact probability profile

We show in Figure 12 how the stochastic contact map

(cf. Section ‘‘Computing the Residue Contact Probabil-

ity’’) generated by partiFold can be used to predict per-

residue flexibility and entropy. To a first approximation,

this flexibility can correlate with the Debye-Waller factor

(a.k.a. the B-value) found in X-ray crystal structures.46

This demonstrates an important purpose of computing

the Boltzmann partition function: to provide a biologi-

Figure 12
Contact probability profile (black, y-axis) and normalized B-value curve (red, y-axis) for partiFold as a function of residue index from left to right (x-axis). Because of

the simple shape of most TMBs, experimental B-values tend to oscillate from high to low. Regions of B-value curves which are flat at 0 represent residues missing from

the X-ray crystal structure (e.g. 1QJP residues 146–159, 1THQ residues 38–47, etc.). Bold entries in table show higher performance.
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cally-relevant grounding for the prediction of experimen-

tally testable macroscopic and microscopic properties.

Predicting residue B-values is important because it

roughly approximates the local mobility of flexible

regions, which might be associated with various biologi-

cal processes, such as molecular recognition or catalytic

activity.47 In our context, flexible regions are strong can-

didates for loop regions connecting antiparallel TM b-
strands that extend either into the extracellular or intra-

cellular milieu.

We define the contact probability profile of every

amino acid index i in a TM b-barrel to be Pc(i) 5 2 2P
j51
n pi,j, and in Figure 12 compare this against the normal-

ized B-value, Bnorm ¼ B�hBi
r , a ratio commonly used for

such a comparison.47 Since a residue may be involved in

two contacts in a b-sheet the value of Pc(i) can range

between 0 and 2 where higher values indicate a greater

chance for flexibility. Similarly, residues with a positive

B-value are considered flexible or disordered while others

are considered rigid.

Computing the cross-correlation coefficient between

the Pc and B-value of our test proteins, we find that parti-

Fold compares well against PROFBval,47 a leading edge

algorithm tuned specifically for B-value prediction. In

fact, the more generally applicable partiFold method

improves upon or matches 4 of the 8 TMBs. We have

computed the per-residue contact entropy (defined as Si
5

P
j51
n 2 pi,j log(pi,j)) for the same test proteins and

found similar results.

Boltzmann sampling improves whole
structure prediction

To demonstrate how ensembles of structures can charac-

terize protein structure better than the minimum folding

energy (m.f.e.) structure, we perform stochastic conforma-

tional sampling (cf. Section ‘‘Rigorous Sampling of Trans-

membrane b-barrels’’) to map the landscape defined by

the Boltzmann partition function. This also illustrates how

partiFold can be used to explore the space of all possible

TMB structures. By clustering a large set of full TMB struc-

ture predictions, a small distinguishable collection of

unique conformations are exposed. In this set of clusters,

we show in Figure 13 that some individual clusters tend to

match the X-ray crystal structure better than the single

minimum folding energy (m.f.e.) structures.

In this examination we sample 1000 TMB structures

and group them into 10 clusters according to hierarchical

clustering. Similar to prior methods,24 for each cluster

we designate a centroid representative conformation that

is chosen as the structure with the minimal total distance

to all other structures in the set. To facilitate this cluster-

ing, we introduce a metric of contact distance: dc(S1, S2)

5 |C1| 1 |C2| 2 2 � |{C1 \ C2}|, where C1 and C2 are the

sets of contact in S1 and S2 (which represents the mini-

mal number of contacts to be removed and added to

pass from S1 to S2 or vice versa).

Figure 13 reports the coverage and accuracy of contact

predictions for the largest cluster produced and for the

cluster who’s centroid structure best matches the X-ray

crystal structure contacts (minimizing dc(), labeled

‘‘best’’), ignoring clusters smaller than 15. Both centroid

scores and scores for the highest coverage and accuracy

sample (‘‘top sample’’) within that cluster are listed.

Comparing coverage and accuracy scores, surprisingly the

centroid structures of both the largest and ‘‘best’’ cluster

usually outperform the scores obtained by the minimum

folding energy structure. This is despite the fact that in

five of the cases the ‘‘best’’ cluster is not the largest clus-

ter produced (e.g. 1THQ and 1I78). From this we see

that the minimum folding energy structure does not

always best describe the structure found by X-ray crystal-

lography. This might even suggest that alternate confor-

mations might be found in the Boltzmann distribution

with high probability, although a more sophisticated

energy model, including, for instance, an explicit term

Figure 13
Coverage and accuracy of contacts when compared against X-ray crystal

structure. Centroid representative structure scores are given as well as the top

performing sample in that given cluster. Bold numbers show the trend of

improvement in the centroid structure’s coverage and accuracy over that of the

m.f.e. structure. Above: Largest cluster produced when sampling 1000 TMB

structures. Below: ‘‘Best’’ cluster produced, as defined by the cluster containing

the centroid conformation with the minimal dc(), but no fewer than 15 samples.
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for the entire connecting loops, would be required to

understand this result. In future work, we intend to

improve upon these simple clustering techniques and fur-

ther explore these implications on the folding landscape.

CONCLUSIONS

In this article, we present the first set of algorithms for

computing the Boltzmann partition function and sto-

chastic contact maps of TMBs. From these calculations

we establish techniques to perform individual contact

prediction, B-value prediction, and whole structure sam-

pling from the Boltzmann low energy ensemble. Unlike

other approaches that aggregate numerous, complex tech-

niques for a single predictive goal, the algorithms pre-

sented here use a simple, biophysically meaningful model

that is capable of generating predictions for a broad

range of molecular properties. This gives our method the

important benefit of transparency when interpreting

results. Accompanying these new algorithms, we intro-

duce an energy model for TMBs that incorporates the in-

formation present in intrastrand stacked pairs of amino

acids, resulting in higher predictive accuracy than prior

nonstacked pair models.

The reliability and accuracy of our method is verified

to be good by comparing its individual contact and B-

value predictions against two of the forefront algorithms

that are exclusively designed to handle these tasks. Specif-

ically focusing on the study of omps, partiFold is able to

offer significant improvement in accuracy over BETApro

in our tests. The only cases where partiFold does not out-

perform BETApro can be attributed to extracellular non-

b-barrel regions that BETApro distinguishes using addi-

tional information. This same method is also able to per-

form quite comparably to PROFBval for B-value predic-

tion; a fact that speaks to the generality of the Boltzmann

ensemble approach. Indeed, grounding these predictions

on a unified model provides a framework for dependable

results, whereas independent algorithms might present

unresolvable contradictions.

Notably, the results presented also show that sampling

from the Boltzmann distribution of conformations can

lead to a much better characterization of the X-ray crystal

structure than by computing the minimum folding energy

structure alone. Sampling can also suggest alternate struc-

tures that might exist in vivo. This highlights our intention

that partiFold also serve as a useful exploratory tool. To

this end, the software has been designed to allow experi-

mental observations to constrain the ensemble of folds that

can be adopted, providing a natural way to combine exper-

imental techniques with theoretical predictions when inves-

tigating omp structures or substructures.

The partiFold suite of tools is still in development and

freely available online at the URL http://partiFold.csail.

mit.edu. In future work, we expect to provide efficient

methods for applying these algorithms to larger multi-

meric outer-membrane proteins, and to expand the range

of environmental parameters that can be manipulated

within the algorithm.
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