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ABSTRACT

Gait velocity and stride length are critical health indicators
for older adults. A decade of medical research shows that
they provide a predictor of future falls, hospitalization, and
functional decline among seniors. However, currently these
metrics are measured only occasionally during medical vis-
its. Such infrequent measurements hamper the opportunity to
detect changes and intervene early in the impairment process.

In this paper, we develop a sensor that uses radio signals to
continuously measure gait velocity and stride length at home.
Our sensor hangs on a wall like a picture frame. It does not
require the monitored person to wear or carry a device on her
body. Our approach builds on recent advances in wireless
systems which have shown that one can locate people based
on how their bodies impact the surrounding radio signals. We
demonstrate the accuracy of our method by comparing it to
the gold standard in clinical tests, and the VICON motion
tracking system. Our experience from deploying the sensor
in 14 homes indicates comfort with the technology and a high
acceptance rate.
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INTRODUCTION

The term "gait velocity" refers to the habitual walking speed
adopted by a person in everyday life [21]. Medical research
has shown that gait velocity is an important health metric,
particularly among the senior population [35, 27]. Walk-
ing exercises the nervous, cardiovascular, pulmonary, mus-
culoskeletal and hematologic systems because it requires more
oxygen to contract the muscles. Impairment in one of these
systems impacts the person’s gait velocity [35, 36]. As aresult,
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Sensor

Figure 1. The WiGait sensor is hung on the wall in one of the user’s home.
It transmits low power radio signals and analyzes how people’s motion
disrupts surrounding radio signals. The sensor measures the user’s gait
velocity and stride length from these radio signals and does not require
the user to wear a device on her body.

physicians have called "gait velocity" the sixth vital sign [11].
Multiple papers have shown that gait velocity predicts future
hospitalization for congestive heart failure [30], chronic obtru-
sive pulmonary disease [20], and hemodialysis patients [22].
Degradation in gait velocity and stride length are correlated
with an increase in fall risk and a decline in one’s ability to live
independently [9, 26]. Thus, these measurements are included
in geriatric assessments [16]. Today, these tests are performed
only occasionally during clinical visits. There is a great in-
terest, however, in measuring these metrics more frequently
at home [33, 34, 38, 17, 13, 18]. Such measurements would
enable continuous health tracking and provide the opportunity
for early intervention.

The standard approach for assessing gait velocity and stride
length requires a human (typically a clinician) to observe the
person and time her movements [16]. Developing a design that
is both automated and comfortable for continuous in-home
use is challenging. Older adults typically feel encumbered by
wearable devices and are uncomfortable using them [12, 32].
Furthermore, wearable wristband activity trackers like FitBit
neither measure gait speed nor stride length. Smartphones use
GPS to estimate walking distance; but these measurements are
not sufficiently accurate [41], and GPS does not work indoors
where the elders spend most of their time. Researchers have
looked at using Kinect and depth cameras to monitor gait



speed at home [33, 34]. However, such devices have a limited
field of view and often raise privacy concerns [14].

In this paper, we aim to deliver a new technology for in-home
monitoring of gait velocity and stride length. In particular,
we would like a solution that neither requires people to wear
or carry sensors on their bodies, nor raises the same privacy
concerns associated with visual monitoring via cameras or
Kinect.

We observe that recent advances in wireless systems have
led to devices that can locate a user based on how their mo-
tion disrupts the surrounding radio signals [6, 5, 15]. These
technologies transmit a low-power wireless signal, analyze
its reflections, and output the position of the people in their
vicinity. Since radio signals traverse walls, these systems can
localize people even when they are in a different room or oc-
cluded by furniture. These systems, however, see the whole
body as one point and cannot distinguish body parts or strides.
Also, they are unable to measure meaningful gait since they do
not distinguish different types of motion: walking vs. clean-
ing or dressing. In this paper, we leverage these results and
explore the feasibility of using radio signals for continuous
gait and stride monitoring.

We introduce WiGait, a home sensor that passively and contin-
uously measures gait velocity and stride length by leveraging
how a person’s motion affects the surrounding wireless signals.
The sensor hangs on the wall, like a picture frame (see Figure
1). It does not require the user to wear sensors on her body,
walk on predetermined paths, or change her behavior at all.
The user goes about her normal life, while the device operates
in the background and measures the desired metrics.

The design of WiGait involves the following contributions:

o Identifying walking traces from other activities: Simply
measuring the velocity from changes in location over time
does not yield representative estimates. We need to identify
walking periods and separate them from other activities like
cleaning, dressing or cooking, which involve taking steps
but do not qualify for gait speed measurements.! We intro-
duce a low-complexity streaming algorithm that automati-
cally extracts trajectories of walking from activity-focused
motion. Our algorithm builds on the diameter-of-a-set prob-
lem to analyze the structure of the traveled path and does
not require any prior training.

o Extracting gait velocity and stride length from walking
traces: To extract clinically meaningful gait metrics, it is
important to eliminate periods of acceleration and decelera-
tion at the beginning and end of a walking period. This task
is complicated by the fact that acceleration-deceleration hap-
pens within each step in a walk. We develop an algorithm
that iteratively zooms in on the path, removes the initial
acceleration and final deceleration, and extracts the stable
phase of the walk which it uses to measure the user’s gait
velocity. It then analyzes the periodicity of the stable phase
of the walk to measure stride length.

0ne of the authors is a geriatrician who practices gait assessment.

o Integration with radio hardware: We have implemented
our algorithms and integrated them with a radio design
called WiTrack [6, 5] to deliver a stand-alone sensor that is
easy to deploy and use at home.

To evaluate WiGait’s accuracy we compare it to the clinical
test [16] and the ground truth motion from the VICON sys-
tem [3]. Among the eighteen subjects who participated in this
experiments, the average error rates are 1.9% and 4.2% for
the gait velocity and stride length respectively. To evaluate
acceptance of WiGait monitoring, we deployed the device in
14 homes. During the deployment, we explained to the sub-
jects the operation of the device and the data it outputs, and
asked for their consent. The subjects were receptive and did
not raise privacy concerns, neither during the deployment nor
throughout the later months. In contrast, when asked about
replacing the device with a device that monitors gait using a
camera, only three of the subjects agreed to the monitoring.

We believe that WiGait fills a need for continuous in-home gait
monitoring and allows computing devices to play a bigger role
in ensuring the safety and well-being of older adults, hence
addressing a key problem for modern societies.

BACKGROUND AND RELATED WORK

Interest in gait velocity for geriatric care has surged signif-
icantly over the last decades. In 2011, Studenski et al [35]
published a study that tracked gait velocity of over 34,000 se-
niors over a period of 6 to 21 years. They found that predicted
survival based on age, sex, and gait speed was as accurate
as predicted based on age, sex, chronic conditions, smoking
history, blood pressure, body mass index, and hospitalization.
This has motivated much research into health tracking and risk
assessment based on gait speed. The following years have led
to many papers that point to the importance of gait velocity as
a predictor of degradation and exacerbation events associated
with various chronic diseases including heart failure, COPD,
kidney failure, stroke, etc. [30, 20, 22, 36]. In the US, there are
13 million seniors who live alone at home [1]. Gait speed and
stride length are particularly important in this case since they
provide an assessment of fall risk, the ability to perform daily
activities such as bathing and eating, and hence the potential
for being independent.

Gait velocity is typically measured by a clinician during med-
ical visits. The senior is asked to walk comfortably for a
distance of a few meters (usually 4 to 10 meters) [16]. The
first and last meters are typically ignored to allow for accel-
eration and deceleration. A clinician measures time using a
stopwatch and computes the person’s gait velocity. Normal
walking speeds are around 1m/s. Values lower than 0.6m/s
indicate falls and hospitalization risks, whereas values below
0.4m/s indicate functional impairment, severe fall risk, and
some walking disability [11, 27]. Changes in gait velocity are
particularly important since they indicate a sudden decline or
recent recovery [24]. Changes of 0.05 m/s have been deemed
clinically meaningful [29]. Stride length is typically measured
by counting steps over a particular distance. The value is cor-
related with fall risk, frailty and the ability to age at home [26,
31].



Rehabilitation centers, clinics, and hospitals may also use
automated systems for measuring gait speed and stride length.
Many places have GAITRite [2], which is a pressure mat
attached to a computer system. Some rehabilitation centers
have a VICON motion tracking system, which is a set of
infrared cameras mounted on the ceiling [3]. Tracking is done
by attaching infrared markers to the person’s limbs and body
parts. Some institutions use LEGSys [10] which requires
five inertial sensors attached to the shanks, thighs, and lower
back. None of these systems however, are easy to deploy or
comfortable enough for continuous use at home.

Wristband activity monitors from companies like FitBit and
Jawbone cannot measure gait velocity or stride length. These
devices measure the number of steps. People, however, have
different step sizes. In fact, FitBit explicitly states on its
website that they calculate stride length using a person’s height
and gender, which they multiply by the number of steps to
obtain walking distance.> Smartphones and advanced models
of FitBit use GPS outdoors to measure distance. However,
GPS’s margin of errors is too high for measuring gait velocity
and stride length, particularly for indoor environments where
the elderly spend the vast majority of their time.

There is much interest in continuous monitoring of gait speed
at home. Researchers proposed using Kinect and depth cam-
eras for continuous in-home monitoring of gait [33, 34, 38].
While this approach is easy to use, many people may choose
not to use the device for privacy concerns for themselves
or other family members sharing their living space [14]. Re-
searchers also mounted multiple infrared sensors on the ceiling
in seniors’ homes and tracked when the person crossed the
sensors’ field of view [17, 13]. Such an approach, however,
requires a significant deployment effort. For seniors in as-
sisted living or nursing homes, researchers have used wearable
sensors which exchange beacons with infrastructure sensors
to locate the person [18]. These approaches are possible in
institutionalized settings where the staff can ensure the older
person carries her sensor and the environment is equipped with
the beacon readers.

In contrast to the above work, WiGait infers a person’s gait
by analyzing the radio signals reflected off her body. It builds
on past work on device-free motion tracking using RF signals.
Past work in this domain falls into two classes: The first class
does not measure gait speed or stride length. This includes
work that compares the RF signal against a prior database of
labeled measurements to classify activities [40, 23] or classify
people [42]. It also includes work that measures the user’s
position [6, 5, 15, 7], or her vital signs [8].

The second class measures a form of gait speed and strides,
but only in a restricted setting and with active user participa-
tion [39, 19, 37]. This work does not allow the user to move
freely or perform other activities. It requires the user to walk
on a predefined path in a predefined direction. This limitation
is because the technique relies on Doppler shift, which mea-
sures only the relative speed projected on the line connecting
the user and the sensor. The calculated gait speed and stride

2https ://help.fitbit.com/articles/en_US/Help_article/1135

length become incorrect if the sensor is moved with respect to
the predefined line, or if the user sways from the marked path
due to visual or cognitive impairment.

WiTrack: Finally, WiGait’s algorithms are integrated with
the WiTrack radio to deliver a stand-alone gait monitoring
sensor. We refer the reader to [6, 5] for a detailed description
of WiTrack. For the purpose of this paper, it is sufficient to
know that WiTrack is a device-free location tracking radio
technology. It transmits a low power signal (1000x lower than
WiFi), analyses its reflections, and outputs the locations of the
surrounding people. It works across walls, spans a radius of 30
to 40 feet, and can concurrently locate up to 4 moving people.
It should be noted that WiTrack (as well as other device-free
localization radios) returns only one location for the whole
body. Any motion of the body or its limbs registers as a change
of location. WiTrack outputs a measurement every 0.02s. Its
median accuracy for 3D localization is 13 cm in the x and y
dimension, and 21 cm for elevation measurements [6].

For the rest of this paper, we focus on scenarios with one
person, though the same analysis can be applied to each person
identified by WiTrack.

DESIGN OF WIGAIT

WiGait is a home sensor for monitoring gait velocity and stride
length. WiGait measures these metrics without requiring the
person to carry or wear any sensor. It leverages that body
motion affects the surrounding radio signals. WiGait incorpo-
rates recent advances in radio-based localization, particularly
the ones described in [5] and named WiTrack version 2.0. It
augments RF-based localization with algorithms for separat-
ing walking periods and extracting a person’s gait speed and
stride length. The whole design is built as one sensor, which
hangs on the wall like a picture frame, as shown in Figure
1. The sensor box contains both the radio and a single board
computer that implements the various algorithms. Once the
sensor is turned on, it communicates with an app on the user’s
cell phone via bluetooth. The user can then connect the sensor
to the Internet to allow the data to be stored in the cloud. The
sensor does not need any additional calibration.

In order to extract meaningful gait velocity and stride length,
WiGait operates in three steps as follows:

1. Identify walking periods where the user walks from an ori-
gin to a destination and separate them from other activities
that result in motion (e.g., cleaning, searching, dressing.)

2. Extract the stable phase within each walking period and

separate it from the acceleration and deceleration phases.

3. Analyze the time series data to compute gait velocity and

stride length.

We explain each of these steps below.

Walking Period Identification

At first, it might seem that one can estimate gait velocity by
recording changes in location and dividing by the time taken
to perform the motion. Such an approach, however, does
not yield meaningful gait for two reasons. First, radio-based
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localization abstracts the human body as a single point, i.e.,
a person lifting his hand will be registered as a change of
location. Second, even if we ignore all in-place motion, we
still need to separate pure walking from changes in location
due to other activities.

Thus, our first task is to identify periods of pure walking
and separate them from being stationary, moving in place, or
performing some activities. Our algorithm takes as input a
stream of locations over time from a radio-based localization
system. The algorithm operates in two stages. In the first stage,
the algorithm identifies periods during which the person was
either stationary or moving in place, and ignores them. In the
second stage, the algorithm processes the remaining moving
periods to eliminate the ones that include activities other than
walking.

(a) Identifying stationary periods or in-place motion: To iden-
tify stationary or in-place periods, the algorithm estimates the
diameter of a circle that bounds all the location points within
an observation window. The observation window slides over
the stream of location data. For each window, we consider the
set of location points in that window. If the diameter of the
set of points is less than some threshold B, then the window
is considered as stationary or moving-in-place. We set the
default size of the sliding window to 4s and B to 1.6m because
a walking speed of less than 0.4m/s can be considered as a
severe walking disability [27].

To implement the above logic, we need a streaming algorithm
that takes a stream of location points and computes the diam-
eter of the set of points in a sliding window. Computing the
diameter of a set of points is a standard computation problem
and has both exact and approximate solutions [25]. Since
WiGait has to work continuously, it is important to maintain
low computational complexity. Hence, we use an approximate
algorithm which operates as follows. To compute the diameter
of a set of points in 2D, we first pick k lines in the plane and
project all points on those lines. For each line, we calculate
the maximum distance between any two projected points on
the line. The diameter of the set is approximated as the maxi-
mum of all maximum distances computed for all lines. This
algorithm has a complexity of O(kn), where n is the number

of points in the set and its approximation error decays as /%2

For the streaming version of the algorithm, we can make it
even more efficient by storing the projected points on each
line in a binary search tree. Whenever the window slides by
one location point, we insert the projected point in the tree
corresponding to each projection line and remove the old pro-
jected point from each of the trees. With the tree structure,
we can easily access the min and max projected points along
each projection line for the current sliding window in O(logn).
If no projection has max — min > B, the current window is
labeled as stationary/in-place. Since insertion, deletion, and
finding max and min take O(logn) operations, this stream-
ing algorithm has a complexity of O(klogn) per point. We
provide a pseudo code of the approximate diameter estima-
tion algorithm in Algorithm 1. Figure 2 illustrates how the
estimated diameter increases as the user starts walking and
remains below B when the person is stationary.
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Algorithm 1: Approximate Diameter Estimation

Input :A sequence of 2D points, window size

Output: A sequence of approximate diameters

d=1l

for each new point p do

maxqiff = 0;

for each projection line | do

p1 = project p on line /;

queuer.push(p;);

treej.insert(p;);

if queue,.size > window size then
Piold = queue;.pop();
tree;.delete(plﬁold);

end

dif fi = tree;.max() - tree;.min();

ifdiff; > maxgiff then

| maxgipp = diffy;
end

end
d.append(maxy;rs)

end
return d

(b) Identifying walking periods: By removing the stationary
and in-place periods, we segment the stream of data into mov-
ing periods. In order for a moving period to be a walking
period, it should satisfy two conditions. First, the stretch of
motion should exceed a few meters in order to allow for accel-
eration, stable walking, and deceleration. In our setting, we
require the motion to exceed 4 meters since it is common to
use a 4m walking test indoors [16]. Second, the motion should
be pure walking and no other activities.

Whether the moving period has covered an area that spans
more than 4m can be checked using the diameter set algo-
rithm, as before. However, since each moving period has a
fixed starting point that does not slide, the complexity can
be optimized further. In particular, we do not need to keep
the projected points in a tree. It is sufficient to keep two vari-
ables, the min and max along each projection and update these
variables as we consider each new point in the window. This
makes the computational complexity O(k) per point.

Next, we want to check if the moving period reflects pure
walking as opposed to other activities that involve taking steps
while doing other things. Here we use a heuristic. Our intuition
is that walking is a very systematic and periodic process where
the person repeatedly puts one foot down after the other. Thus,
a trace of pure walking shows a significant periodicity that
corresponds to the movement associated with each step. Thus,
we look at the Fast Fourier Transform (or FFT) of the velocity
over time and expect the FFT to spike at a frequency that
corresponds to the step size. We will elaborate on this point
further as we explain how we compute the stride length.

If the moving period passes all of the above checks, it is
considered a walking period and we use it to measure the
person’s gait. It is possible that we may have some false
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Figure 2. The top graph shows the change in diameter over a period in
the middle of the experiment. Boundary B was shown to cut the walking

period of the person. The other two graphs plot the change of x coordi-
nate and y coordinate over the same time period.

positives and false negatives. However, since a clinician needs
only the average gait over days, we have enough statistical data
to extract the average and deal with some misclassification
errors.

Stable Phase Extraction

After identifying the walking periods, WiGait zooms in on
each such period to extract the stable phase and separate it
from the beginning and the end of a walk. To help explain the
problem, we show the velocity of a user’s walking period in
Figure 3.

A walking period consists of three phases: the acceleration,
stable, and deceleration phase. The velocity increases in the
acceleration phase when the user takes her first few steps, and
decreases in the deceleration phase when she gets closer to
the destination. While the overall trend of the velocity is clear
in these phases, the velocity does not increase and decrease
monotonically as shown in Figure 3. Instead, as the user steps
forward, the velocity oscillates within each step. We often
observe bigger and less stable oscillation of the velocity in the
acceleration and deceleration phases. Between the two phases,
there is a stable period when the velocity oscillates around
a stable value. In clinical tests, the gait velocity of a person
is defined as the velocity during this stable phase of a walk
[28]. Thus, to extract meaningful gait information, we need to
identify the stable phase in each walking period.

WiGait uses an iterative algorithm to identify the stable phase
within a walking period. It starts with the whole walking
period as the initial estimate of the stable phase and refines
the estimation in each iteration until convergence. It assumes
that in the stable phase, the velocity oscillates around a stable
velocity vy that can be bounded by vy —dv and vy +dv. In
each iteration i, it computes the estimated stable velocity v;

by taking the median velocity across the current estimate of
the stable phase and comparing it to v;_;. If the difference is
smaller than &, the algorithm finishes and returns the current
estimate as the stable phase. Otherwise, it takes the longest
consecutive period in the current stable phase estimate that has
a velocity above v; —dv as the new estimation. Our default set-
tings are 6 = 0.001 m/s and dv = 0.45 m/s, which are chosen
based on empirical results with multiple walking traces.

The algorithm converges because the actual stable velocity
is higher than the average velocity in the acceleration and
deceleration phases. The estimated stable velocity v; increases
in each iteration as we zoom in closer to the stable phase,
and eventually converges to the actual stable velocity. On
average it takes around 3 to 4 iterations to converge. Figure 3
shows an example output of this algorithm. In this example
the algorithm converges in the third iteration when |v3 — va| <
0. Thus, the longest period above v, — dv is returned as the
estimated stable phase.

The steps above allow us to identify walking periods of in-
terest and focus on time intervals where the gait information
is meaningful. In the next section, we describe how WiGait
extracts gait velocity and stride length from the data in these
windows.
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Figure 3. This figure shows changes in velocity over time for a walking
period. Our estimated stable walking phase is extracted and highlighted
in the figure.

Gait Velocity and Stride Length Estimation

In this section, we describe how WiGait computes the gait
velocity and stride length from location data in the stable
phase.

Gait Velocity
The velocity of a user at time ¢ is defined as the averaged
displacement of location samples in a 7 second window.

n+m—1
— Zi:n

(xir1 —xi)2+ (Vig1 —yi)?
T b

V(1)



where n is the sample index corresponds to time ¢, m is the
number of samples in a T second window, and x; and y; are
the locations of the user at the ith sample. WiGait uses the
estimated stable velocity of the stable phase as the gait velocity
of a walking period. For the analysis in this paper, 7 = 0.2
seconds is chosen empirically.

In order to estimate the velocity more accurately, one needs to
consider how the signal interacts with the human body. As the
user walks, different parts of the body reflect the signal back
to our setup at different times [4]. Since WiGait builds on
top of a wireless localization system that abstracts the entire
human body as a single point, we observe fluctuations in the

location data that happen at a smaller time scale than the steps.

These variations are due to the fact that the reflection point on
the person’s body switches from one body-part to another in
consecutive measurements (e.g., from the chest to the arm.) In
other words, one location point may refer to the location of the
person’s chest, but the next may be his left leg. To mitigate the
effect of this variation on calculating the gait velocity, WiGait
applies a Gaussian filter with a window size smaller then the
average human step size on the data before calculating the
velocity.

Stride Length

WiGait estimates the stride length by first estimating the stride
frequency. Although the system abstracts the human body as
a single point, we can still measure the stride frequency by
observing how the velocity and location change over time. For
each step taken by the user, the velocity first increases then
decreases. Also, the human body naturally sways as one walks,
which changes the reflection point on the user’s body and thus
the elevation returned by the localization system. Figure 4
shows how the velocity and elevation z of a user changes while
she walks. Note that we can see how each step is correlated
with changes in the velocity and elevation.
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Figure 4. This figure shows the velocity and elevation over time during
a stable phase within a walking period. We estimated and removed the
low frequency trend in this figure.

To calculate the stride frequency, we take the Fast Fourier
Transform (FFT) of both the velocity and elevation values
in the stable phase. We then combine the normalized FFT
responses from both of them:

_ X Xl
VIXUPE  VEXAP

where X,[f], X;[f], and X.[f] are the responses at frequency f
for the velocity, elevation, and combined signal respectively.
The intuition is that both elevation and velocity oscillate at
the same frequency. However noise can cause other frequen-
cies to spike. By averaging the two spectrums, the correct
frequency is emphasized since it is shared, whereas the noise
is de-emphasized. We then choose the strongest periodic com-
ponent in the response as the stride frequency. Figure 5 shows
an example of the combined FFT response. The figure also
compares it with the correct stride frequency as computed
using the VICON motion system (details of the experimental
setup and the VICON system are described in the evaluation
section.) Note that depending on the way the person walks,
there could be an additional low frequency trend in the veloc-
ity and elevation signals. To prevent this from affecting our
estimation of stride frequency, we estimate and remove the
trend of the signals before taking the FFT.

Xe[f]

After the stride frequency f,, is estimated, the stride length L
can be computed by dividing the gait velocity estimated earlier
by the stride frequency.

— WiGait -
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Figure 5. This figure shows the combined FFT of WiGait and FFT taken
from Vicon’s z value. The highest peak in the FFT is recognized as the
subject’s stride frequency.

EVALUATION AND RESULTS

We designed a series of user studies to evaluate the accuracy
of WiGait in measuring gait velocity and stride length, and
the acceptability of using WiGait for continuous monitoring at
home. We recruited a total of 25 participants (16 males and 9
females) for the study. The age of the participants ranges from



from 23 to 89, and 7 of them are over 55. 18 of the subjects
participated in the evaluation of WiGait in the lab, 14 of the
subjects participated in the user acceptability study, and 7 of
them participated in both studies. We obtained IRB approval
for all studies. For experiments done in the lab, except for the
monitored person, we always had another person in the same
room who facilitates the experiments. Since the underlying
WiTrack radio can separate signals from different people, the
presence of a second person in the environment does not affect
the results of the monitored person.

Accuracy of WiGait vs. Clinical Test

First, we would like to evaluate the accuracy of WiGait in
comparison to the standard clinical test. As mentioned earlier,
the clinical test is typically performed by a clinician who asks
the person to walk for a fixed distance, and measures the time
it takes using a stop watch. To run the standard test, we mark
a 7-meter straight line and ask the participant to walk along
the line. As recommended, we measure the gait speed over
the middle 5-meter stretch, ignoring the first and last meters.

To avoid human error, we use the VICON motion tracking
system to accurately measure both walking distance and time.
Note that VICON systems are already used by hospitals and
rehabilitation centers. The VICON system consists of multiple
infrared cameras mounted on the ceiling. It tracks subjects by
attaching infrared-reflective markers on their bodies. It has
an accuracy of sub-millimeter [3]. The VICON system costs
about half a million dollars, and hence it is not appropriate for
in-home tracking.

Participants are asked to wear a helmet with infrared markers
that can be tracked by the VICON system. The location of the
helmet is used as the ground truth location of the user. We also
put infrared markers on the feet of the participants to allow
the VICON system to track stride length. We place WiGait
in the same room as the VICON system. The origin of the
VICON system is calibrated such that it is at the same location
as WiGait. The total walking area is 6 x 5 m?, limited by the
area where VICON cameras can accurately track the target.

Gait Velocity

We plot the accuracy of gait velocity for different subjects
in Figure 6. The accuracy is computed with respect to the
clinical test where time and distance were obtained from the
VICON. For each subject, the results are averaged over 10
runs. Averaging is recommended for the clinical test to reduce
variability across runs. The figure shows that WiGait’s accu-
racy is between 96.0% and 99.8%;, across all subjects. To show
that WiGait measures gait velocity accurately across different
gait speeds, we plot the CDF of gait velocity for all subjects
in Figure 7. The 18 subjects in the experiment have gait ve-
locities that range from 0.75 m/s to 1.15 m/s. The above error
rate yields an average absolute error of 0.015 m/s to 0.023 m/s
in measuring gait velocity, which is accurate enough to detect
clinically meaningful changes, i.e., changes at a scale bigger
than 0.05 m/s [29].

Stride Length
We also compare the stride length measured by WiGait with
the ground truth obtained from the VICON system. Figure 8
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Figure 6. Accuracy of WiGait’s gait velocity estimation across different

subjects in a standard test. The accuracy values are rounded down to
the nearest integer.
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Figure 7. The CDF of the gait velocity of all subjects. The figure shows
both the gait velocity estimated by WiGait, and the ground truth.

plots the accuracy of the stride length for each subject, av-
eraged over 10 runs. Across all subjects, WiGait’s accuracy
varies between 88.4% to 99.3%. The stride length of the in-
dividual subjects ranges from 0.56 meters to 0.76 meters, as
shown in the Figure 9. The results show that WiGait measures
stride length across different ranges with high accuracy.

Accuracy in the Presence of Activity-Based Motion

Next, we would like to evaluate WiGait’s accuracy in scenarios
similar to those in daily living, where a person moves around
and engages in various activities. Ideally, one would like to run
these experiments using the data that we obtain from our home
deployments. However, in those deployments we do not know
the ground truth. Thus, we design an experiment that emulates
moving at home and cleaning the space. To emulate a realistic
home scenario, we setup desks, chairs and different household
items in the same room as the VICON system. The subject
is asked to perform certain tasks that involves movement and
taking steps. In particular, he/she is asked to clean the desk,
sweep the floor, and move items from the desk to the bookcase
next to it. Before the start of each experiment, we ask our
subject to leave their phone on the table on the other side
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Figure 8. Accuracy of WiGait’s stride length estimation across different
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Figure 9. The CDF of the stride length of all sujections. The figure shows
both WiGait’s estimates and the ground truth.

of the room. During the experiment, we call the subject’s
phone at random times, unspecified in advance. The subject is
asked to pick up the phone whenever it rings and answer the
call. Each experiment takes around 15 minutes. The goal of
this experiment is to verify that WiGait can correctly separate
walking traces from other types of activities, and measures
the correct gait speed of the person. The same 18 subjects
that participated in the previous experiment participated in this
one.

Accuracy of Identifying Walking Periods

Figure 10 shows a representative run of the above experiment.
During this period, we called the subject’s phone four times
which correspond to the four big changes in x and y loca-
tions. We can clearly see how these events are reflected in the
changes of the estimated diameter of the motion, as shown in
the middle row of Figure 10. Each time after the phone was
picked up, the subject went back to the other side of the room
to finish the assigned tasks. Thus, for each phone call, we see
two strong peaks in the diameter values, indicating the two
walking periods for picking up the phone and going back to
cleaning the desk. The figure also shows that simply looking at

the velocity during a period does not give an accurate estimate
of walking periods.

We extract walking periods using WiGait’s algorithm de-
scribed in earlier sections. We compare those walking periods
to the ground truth which is obtained manually by having
an observer in the room. Since the extracted periods will
be further analyzed for separating the acceleration and de-
acceleration phases, we consider an identified walking period
to be correct if it contains the actual walking period with a
margin of +/- one second. The recall of identifying walking
periods is 100% and the precision is 95.7%.

In choosing the parameters, we make the algorithm more
lenient to false positives. More work can be done to determine
the best balance between the false positives and false negatives.
However, since clinicians need only the average gait metrics
over days and the change in these metrics, we can deal with
these errors by extracting the average from statistical data
collected from long periods of time.
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Figure 10. Identifying user’s walking periods from activity-based mo-
tion using changes in the estimated diameter .

Accuracy of Gait Metrics Extracted from Walking Periods
After verifying WiGait’s ability to separate the walking periods
from other types of moving activities, we focus on examin-
ing the accuracy of gait velocity and stride length extracted
from the identified walking periods. Again, we use the VI-
CON system to compute the ground truth. Figure 11 and
Figure 12 plot the accuracy of the gait speed and stride length
that WiGait measured during the walking periods. The figures
show that WiGait’s accuracy in computing gait velocity ranges
from 95.3% to 99.8% across subjects, while its accuracy in
measuring the stride length ranges from 85.9% to 99.8%. The
accuracies are overall similar to those obtained from compar-
ing WiGait against the standard test.

Note that in general the accuracy in measuring stride length has
a higher variance compared to that of measuring gait velocity.
The main reason is because measuring stride length requires
estimating the periodicity within each walking trace. The
periodicity in a walking trace has high variability depending
on how the person walks and which parts of her body reflect
the signal back to the setup. We believe the accuracy can be



further improved by taking the average of more walking traces
from longer monitoring time.
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Figure 11. Accuracy of gait velocity in the presence of activity-based
motion. The values are rounded down to the nearest integer.
- 98 97 g5 96 97 98 97 gg g5 96 1) 99 g7 99

5
92 89
85

80

60

10 - -
20 - -
0 | 0

0 5 10 p

15 20
Subject ID
Figure 12. Accuracy of stride length in the presence of activity-based
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User’s Acceptability Study

We would like to evaluate whether users feel comfortable using
WiGait at home. Out of the 25 subjects that we recruited, 14
participated in this study. Their ages range between 23 and
89, and 7 of them are above 55. All of the subjects asked
to participate in the home deployment agreed except for one,
who raised privacy concerns. Since we have only a total of 14
devices, the rest of the subjects were not asked. None of the
subjects was compensated for participating in our experiments.

The study is conducted as follows: we first contact each sub-
ject over the phone to schedule a time to visit the subject’s
home. During the visit, we bring the device and show it to the
subject. We read to the subject a consent form that includes
the following information:

1. What WiGait does and how it operates.
2. What the output data looks like.

3. What data is being collected and how it is stored.

4. Who has access to the data.

Then, the subject is asked to sign the consent form if she is still
interested in participating in the experiment. As mentioned
above, all subjects agreed to participate in the deployment and
sign the consent forms, except for one person due to privacy
issue. For subjects above 70, both the subject and her family
caregiver were present and they both were asked for consent.

Seven of the devices were deployed in the living room, 5
in the bedroom of the subject and 2 in a corridor and the
entrance area. The choice of location was dictated by the need
to maximize the coverage area of the device. None of the
subjects objected to a particular location.

One month after the deployment, we contacted the subjects
to learn their perception of the device. Eleven subjects were
available to take our call, while three were unavailable.> We
asked each subject two questions. First, we asked them if the
device changed the way they normally live. All participants
who answered the call replied negatively indicating that the
presence of the device did not change their routine. Some said
that they were aware of the device in the first couple of days,
but soon afterwards it blended into the background.

We also asked whether they would be comfortable if we re-
place the device with a similar device with one difference:
the new device measures gait speed and stride length with a
camera or Kinect. Some of the older subjects did not know
what Kinect is, so we explained how Kinect works. All sub-
jects except 3 did not agree to replacing WiGait with the new
device citing privacy concerns. Of the three who accepted,
one wanted the device moved from the bedroom to the living
room.

The above results indicate that the device has a high acceptance
level, and better acceptance than a camera or Kinect based
approach.

CONCLUDING REMARKS

This paper presents WiGait, a home sensor that continuously
monitors gait velocity and stride length. It does so by ana-
lyzing the interaction of human motion with the surrounding
wireless signals. Our results show that WiGait is accurate
enough to measure clinically meaningful changes in gait ve-
locity and is capable of measuring gait metrics even when the
person moves freely and engages in various home activities.
Our user study and home deployment indicate high acceptance
of WiGait monitoring at home.

We envision a few directions for future work. First, the algo-
rithms presented in this paper are tested on healthy subjects.
Important extensions of this work would consider people with
walking disabilities (e.g., Parkinson’s Disease and Multiple
Sclerosis). Second, we would like to investigate how to obtain
the ground truth and extend our results to report accuracy in
users’ homes. Finally, in this paper, we do not explore the
issue of user identification —i.e., being able to automatically
identify the monitored person. Some past papers presented
mechanisms for identifying users from radio reflections off

3Some were unavailable for health reasons.



their bodies [4, 39], and hence could be incorporated in WiGait.
However, more work is needed to simplify those methods and
test them in home environments.

We believe our results help develop smart homes that are
health-aware and can monitor the safety and well-being of their
occupants. Also, WiGait enables new interaction capabilities,
and can be incorporated into user interfaces that adapt the
environment as the user’s health changes, e.g., the environment
may encourage the user to exercise more, or alert family and
friends for health emergencies.
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