

Network Topology and Geometry

- Complementary:
 - Topology of the camera graph: connectivity and transitions between cameras
 - Fuel truck #538 was seen in camera 3 at 5:39pm, in camera 4 at 5:41pm,...
 - Geometry: where cameras are looking
 - Fuel truck #538 was heading toward the power plant between 5:39pm and 5:41pm

Note: all images adjusted for presentation purposes

Motivating Scenario

- Large network of cameras
 - *l.e.* hundreds or thousands
 - Location unknown, e.g.
 - Existing installations
 - Very rapid physical installation requirements
- Regular traffic instrumented with GPS receivers (patrols, service vehicles, etc.)

...need to know camera locations

Cameras as Tripwires

- This paper:
 - Narrow field-of-view (relative to GPS resolution)
 - Camera as a tripwire

Input Data (1)

- Time instants when each camera observed a vehicle entering or exiting: $\{(t_{cj})\}$
 - Vehicle identity not known

CSAIL

Input data (2)

- GPS Tracks (5 vehicles): $\{(lat_{vi}, lon_{vi}, t_{vi})\}$
 - Not known: when a particular vehicle is seen in a particular camera

p(vehicle @ lat, lon) abbreviated as p(lat, lon)

Estimation: What We Want

 $\hat{p}(lat, lon|lat, lon \in camera)$

...but, we don't know when a specific instrumented vehicle is visible

Camera location: probability (lat,lon) being in the field of view = p(vehicle being at (lat,lon)) when the camera is tripped)

Estimation: What We Get

$$(1-\alpha) \qquad \qquad +\alpha$$

Camera Sees Nothing

$$(1-\alpha) \qquad \qquad +\alpha$$

- × GPS-instrumented vehicle
- × Non-instrumented vehicle

Camera Sees a GPS Vehicle

- × GPS-instrumented vehicle
- × Non-instrumented vehicle

Camera Sees Nothing

$$(1-\alpha) \qquad \qquad +\alpha$$

- × GPS-instrumented vehicle
- × Non-instrumented vehicle

Camera Sees a Distracter

- × GPS-instrumented vehicle
- × Non-instrumented vehicle

Best Cluster of Peaks

$$\tilde{p}(lat, lon|lat, lon \in camera) = (1 - \alpha)\hat{p}(lat, lon|lat, lon \in camera) + \alpha p(lat, lon)$$

 $\tilde{p}(lat, lon|lat, lon \in camera)$

 $h(\hat{p}) \ll h(p) \to \text{look for peaks}$

Camera 2

Superimposed Results

- Bright red squares: estimated camera fields of view
- Dark red trapezoids: ground truth (rough)
- Light green dots: peaks in $ilde{p}(x,y|c)$
- Dark green dots: non-peak votes in $ilde{p}(x,y|c)$

Conclusions

- No given correspondence
- Topology
 - Tripwire data → network topology and transitions
 - Can model appearance changes
- Geometry
 - Tripwire data + GPS side information → camera locations

Thank you

Extra Slides...

Location + Pose

Voting Spaces

 Conditioned on Traffic Direction

Best Estimate Overlaid on a Satellite Map*

* true satellite image substituted

Sample Simulated Network

- 40 Intersections
- 80 Roads
- 8 Vehicles

- 10 Cameras
- Total road length: 4.2km
- Mean speed: 60kph

Rendering of Network (with one camera circled)

Estimated (red) / Actual (green)
Camera Location

Simulation Results

Calibration

- Traditional calibration:
 - pixels ↔ object coordinates
- Geodetic calibration:
 - pixels ↔ (latitude, longitude)
- This paper:
 - Narrow field-of-view (relative to GPS resolution)
 - Camera as a tripwire

- ...take a GPS reading on the camera?
 - It's hard: GPS signals often blocked
 - It's wrong: Need GPS readings of the imaged area, not of the camera

...manually correspond impreadings?

- Hazardous environments
- Advertises boundaries of
- Does not scale well to hun sensors that may be distr

