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In this paper, we present a robustness study on several popular techniques for
performing fine registration of partially overlapping 2.5D range image pairs, with a
focus on model building. In our first set of tests, we qualitatively evaluate the output
of several iterative closest point (ICP) variants on real-world data. Our second set of
tests expands to include additional ICP variants and an implementation of Chen and
Medioni’s point-to-plane minimizing algorithm. These tests evaluate quantitatively
how well these algorithm variants are able to correct initial simulated rigid rotation
and translation errors. The aim of these variants in both sets of tests is to classify as
outliers particular point pairs containing vertices outside of the region of overlap of
the two range images. In addition to testing these variants with different parameter
settings, we also study how performing topologically uniform subsampling of the
meshes affects the registration quality. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In recent years, there has been growing interest in techniques for building 3D computer
models of real-world objects and scenes without requiring humans to manually produce
these models using laborious and error-prone CAD-based approaches. Using range sensors,
users are able to capture 3D images of objects from different viewpoints that may be
combined to form the final model of the object or scene [2]. These models then may be used
for a variety of purposes such as building 3D maps for robot navigation, providing training
data for computer vision experiments, and digitizing historical buildings for restoration
planning [16, 19].

After acquiring a set of range images, a coarse alignment is generally known—either
from some type of positional sensors or via a feature-matching registration step. After
refining the registration, the data are combined to produce a single surface description
[4, 10, 12, 17]. In this paper, we will study the robustness of algorithms for refining the
initial coarse registration when partially overlapping range image pairs are being registered.
A preliminary study of this problem appears in [5].

The first class of registration algorithms we will consider is based on the iterative closest
point (ICP) algorithm popularized by Besl and McKay [1]. Consider a set of source points,
P, being registered to a set of destination points X by using a rotation matrix R and a
translation vector T. The ICP registration process minimizes the objective function

fn(Rn; Tn) =
∑

in

win

∥∥xin − (
Rnpin + Tn

)∥∥2 =
∑

in

win , (1)

where xin is the closest point in data set X to the point pin , and n is the current iteration
number. Besl uses a unit quaternion-based approach to find the values for Rn and Tn that
minimize this function (for each iteration), assuming win = 1 for all jn at iteration n. These
calculations are performed iteratively by transforming the source points by the calculated
Rn and Tn until the registration converges. This base ICP process is guaranteed to converge
to some (local) minimum for any starting registration when P contains a subset of the points
in X.

Unfortunately, when building new models from range images, P partially overlaps X

instead of being a subset of it. Schütz et al. propose a simple heuristic method of determining
which corresponding point pairs belong to overlapping regions [15]. They theorize that
point pairs whose distance is much greater than the separation of the centers of mass of two
partially registered range images must be outliers. They calculate a binary weighting factor
for each point pair as follows

win =
{

1 if
∥∥xin − (

Rnpin + Tn
)∥∥2

< (c · s)2

0 otherwise,
(2)

where s is the range scanner sampling resolution and c is an empirically determined thresh-
old based on the separation of the centers of mass of the data sets. Those pairs whose two
points are separated by more than a specified value are considered outliers and given a
weight of zero.

Zhang has created a statistical model for classifying outlier point pairs [19]. He theorizes
that the distances between corresponding point pairs are distributed as a Gaussian when the
sample mean of these distances is small. Given a coarse registration of two range images
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with significant overlap, the closer a pair of points is to each other, the more likely that they
belong to the overlapping region. Zhang uses a heuristic method to set a threshold based on
the estimated shape of the Gaussian distribution of the point pair distances. Like Schütz,
Zhang sets the pair weights win to 0 or 1 based on whether a pair’s points are closer than the
threshold.

In addition to ICP-based registration approaches, many researchers use other iterative
whole-surface registration techniques. The most popular variants are based on Chen and
Medioni’s work published the same year as Besl and McKay’s ICP paper [2, 6, 12], which
minimizes the distance along point normals of one surface to tangent planes of another
surface using the following minimization function

gn(Rn; Tn) =
∑

in

win

∥∥nT
in

(
xin − (

Rnpin + Tn
))∥∥2 =

∑
in

win , (3)

where nin is the surface normal at point xin [2]. Under small angle assumptions, the mini-
mization of gn(R; T) may be linearized [3, pp. 125–127].2

In addition to developing novel registration algorithms, several existing comparative
analyses of registration algorithms have been made. Some of the most notable to date
include the following. Lorusso et al. have evaluated four closed-form solutions to Eq. (1)
[11]. Pulli suggests when ICP versus point-to-plane minimization (both to be defined in
the next section) should be used when performing multiview registration and introduces a
few additional outlier classification heuristics [12]. Rusinkiewicz and Levoy have evaluated
registration algorithms [13], focusing on computation efficiency in search of real-time
performance [9]. Their experiments are performed on three synthetic range images being
registered to exact copies of themselves. The primary evaluation metric used was the root
mean squared (RMS) distance between point pairs using the known true correspondences.

2. IMPLEMENTATION

To facilitate making comparisons between different registration algorithms and variants,
we have developed a registration test-bed environment. Our range image registration test-
bed software uses the Visualization Toolkit, an open-source library for the manipulation and
visualization of 2D, 3D, and higher-dimensional data [14]. The library contains an object
hierarchy built to support componentized visualization pipelines. Our software builds upon
the base library by supplying a pairwise ICP registration algorithm with pluggable variants
to the base algorithm. The key ICP variants currently implemented and tested include:

• ICP iteration control: This feature uses Besl’s criterion requiring the change in the
mean squared surface between two ICP iterations to drop below a prespecified level [1].
Throughout the rest of this paper, we will refer to this level as the “exit criterion.”

• Subsampling: As we load the source and destination meshes, we uniformly sub-
sample the vertices topologically. For example, a subsampling factor of 4 means we select
every fourth vertex in each mesh direction, or we evenly select 1/16 of the points.

2 Unfortunately, the rotation matrix produced by a naı̈ve implementation of the method described by Chen is
not orthogonal and shrinks the object if applied directly. To correct for errors introduced by making the small
angle assumptions, we use an intermediate unit quaternion [18] to extract the rotation components of the R and
produce a corrected version which does not scale the object.
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• Outlier point classification: Individual point pairs may be either rejected as outliers
or have their weights (win in Eq. (1)) otherwise adjusted based on some confidence criterion.
To date, we have only explored outlier rejection and not pair weighting.

The following outlier point classification schemes have been implemented and tested:

• Schütz’s distance thresholder: This classifier identifies outliers as those point pairs
that are separated by “too much” space in an attempt to solve the problem of partially
overlapping data sets [15]. The value used for s in Eq. (2) will henceforth be referred to
as the classifier’s parameter. For our experiments, we always set c in Eq. (2) to be the
Euclidean distance between the centers of mass of the source and destination range images.

• Zhang’s statistical outlier classifier: This classifier examines the statistical distribu-
tion of unsigned point pair distances to estimate which pairs are outliers [19]. s is used as
this classifier’s parameter.

In addition to these variant classes, our test-bed contains infrastructure to support addi-
tional ICP variants and other, non-ICP registration techniques. We also ported parts of our
test-bed to Matlab for rapid prototyping of some of the variants. Our current implementation
of the point-to-plane minimization algorithm uses this port.

3. QUALITATIVE EXPERIMENTS

In [5], we evaluated the aforementioned ICP variants to determine the effects of outlier
classifier, uniform subsampling, and exit criterion on registration quality. We have expanded
on that initial set of experiments by evaluating the point-to-plane minimization algorithm
in addition to the ICP variants.

We found that for range image pairs that approximate Besl and McKay’s requirement
of full overlap, using no outlier classifier generally yielded the best results. For those pairs
that had significant nonoverlapping regions, both of the classifiers generally yielded good
results, with the classifier based on Zhang’s work performing slightly better in most cases
than the one based on the work of Schütz. The point-to-plane minimization sometimes
performed even worse than not using an outlier classifier with the ICP minimization and
sometimes was competitive with Zhang’s and Schütz’s classifiers.

We also found that although decimated data could be registered, those registrations tend
to only be “good” in the context of their decimation. Once the range image pair is viewed
undecimated, the registration imperfections readily manifest themselves. The greatest speed
benefits relative to quality degradation occurred when we only decimated the source mesh.
Additionally, we found that modifying the exit criterion had predictable results. As that
criterion is lowered, the sequence simply goes further along the path it is following unless
it first encounters numerical or algorithmic instabilities.

4. QUANTITATIVE EXPERIMENTS

4.1. Experimental Setup

We also wanted to perform some experiments with numerical results because our qualita-
tive results are imprecise. Since the ground-truth registration is unobtainable for physically
scanned range images using our range sensor, we developed a synthetic range image gen-
erator. We first selected two models built using commercially available software and range
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FIG. 1. Renderings of some of the range images used for the quantitative tests. For these tests, the
reddinos1 0000 and YCroc 0000 range images are the destination images.

scans taken with our sensor. We then generated a set of synthetic range images from those
complete models, recording the positions of the virtual camera (see Fig. 1). Table 1 gives
pertinent data about the objects from which the range images were generated.

Next, we randomly introduced perturbations in rotation and translation independently.
These transformations were made by rotating about the centroid of the source range image
followed by translation (see Table 2). We performed tests on all combinations of 0◦, 2◦, and
8◦ of rotation error with 0, 2, and 8 mm of translation error. Five pairs of random vectors
were generated for each combination. The first vector defines the direction of the normal
about which the rotation was introduced, and the second random vector gives the direction
of the introduced translation error. For the cases where no rotation or translation error was
introduced, only one test was performed, not 10. The total number of times a subexperiment
was performed with different error values was 3 · 3 · 5 − 4 = 41. The nonclassifier parameter
settings used for these quantitative tests are tabulated in Table 3.

Based on our qualitative test results and initial quantitative results, we made several
modifications to our experimental setup.

First, our qualitative tests indicated that there is a significantly greater penalty in dec-
imating the destination mesh as opposed to decimating the source mesh. As a result, we
always used only nonsubsampled destination range images.

Second, for the ICP tests we experimented with throwing out any point pair matches
where either point lay on its mesh edge, as suggested by Turk and Levoy [17]. We will refer
to this process as edge pruning in this paper. Surprisingly, we found that this produced only
extremely small differences in our results, as will be discussed in Section 4.3.

Third, we controlled the outlier classifier parameter settings more adaptively for the
Schütz and Zhang implementations. For the base value of s, we used one half the “average
sampling distance” of the destination mesh shown in Table 1. These values were found

TABLE 1

Mesh Statistics for the Destination Range Images Used in the Quantitative Experiments

Range image Number Total surface Sampling Average sampling
object of points area densitya distanceb

YCroc 20,653 5,900 mm2 3.50 points/mm2 0.641 mm (0.641 mm)
reddinos1 14,239 15,178 mm2 0.938 points/mm2 1.18 mm (1.175 mm)

a The sampling density is calculated as the number of points divided by the total surface area. Note that this
density gives a sense of how smooth the original object was before the synthetic range images were generated.

b The average sampling distance is calculated by finding the longest edge in each mesh polygon and averaging
their lengths. The values in parentheses are the average sampling distance of the destination range image generated
from the object.
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TABLE 2

Exit Criterion for All Experiments

Qualitative Quantitative

Criterion name ICP Point-to-plane ICP Point-to-plane

Change in RMS pair distance 0.3, 0.03, 0.003 mm 0.3, 0.03, 0.003 mm N/A N/A
Maximum number of iterations N/A N/A 25 25
Maximum time 30 min 30 min 15 min 30 min

by taking the longest edge of each mesh triangle and averaging these lengths [19]. Mesh
triangles whose surface normals face more than 45◦ away from the camera are not used to
calculate these values. In our experiments that used Zhang’s classifier, we used this value,
one fourth of this value, and four times this value as the parameter settings. For Schütz’s
classifier, we used this value, one half of this value, and two times this value. Additionally,
we ran a batch of tests for the Zhang classifier with edge pruning enabled and the parameter
set to zero to force it into a fall-back histogram peak-finding mode (see [19, pp. 126–127]).

Fourth, we chose a different set of criteria for terminating the registration iterations for
the qualitative tests, as detailed in Table 2. In our initial tests, we found that often a sequence
of ICP iterations would continue to make appreciable progress toward the correct solution,
even when its progress was slow in terms of change in the RMS point pair distance. By
changing the iteration stopping criteria, we allowed the registration to continue to progress.
In all cases, we terminate the iterations when any of the criteria are met. For the quantitative
ICP tests, we lowered the time limit due to increased implementation efficiencies. Our
average running time was 20 s and our maximum running time was 2 min. Implementing
an accelerated ICP algorithm, as described in [1], would be another alternative.

Fifth, for a limited set of additional tests, we experimented with adding isotropic Gaussian
noise to each point in the destination range image to better simulate real-world data. The
noise had a standard deviation proportional to the average sampling distance. Note that in
addition to this Gaussian noise, all tests (even the “noiseless” ones) have quantization noise
when the source and destination range images are different because the range images do
not necessarily sample exactly the same surface locations.

4.2. Analysis Methodology

To evaluate our results, we used an error measure similar to the one employed by
Rusinkiewicz and Levoy [13]. Specifically, we used the RMS distance between the source

TABLE 3

Nonclassifier Settings Chosen for the Quantitative Experiments

Errors introduced
Number of view Source image Number of tests

Object pairs subsampling factors Rotation Translation performed

reddinos1 6 1, 2, 4, 8 0◦, 2◦, 8◦ 0, 2, 8 mm 14,703 (222)a

YCroc 3 1, 2, 4, 8 0◦, 2◦, 8◦ 0, 2, 8 mm 7,360 (136)a

Total 22,063 (358)a

a Values in parentheses represent those which are different for the point-to-plane tests (vs. the point-to-point
minimization tests).
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FIG. 2. Distribution of RMS errors introduced for all of the quantitative tests.

range image points in their final location to the same points in their correct location. Al-
though we could have chosen to find the rotation and translation errors by reversing the
process used to introduce the initial errors, this unified measure allowed us to use a single
number for evaluation. The distribution of RMS errors that were introduced is shown in
Fig. 2.

4.3. Results

We have broken the analysis of our quantitative results into the following sections:

1. Effects of outlier classifier type and parameter settings
2. Effects of subsampling
3. Timing and iteration control
4. Effects of noise

4.3.1. Effects of outlier classifier type and parameter settings. One of the most inter-
esting observations we made was that many of the experiments we performed resulted in
the registration process making the RMS error (see Section 4.2) much worse than it origi-
nally was.

Figure 3 contains a set of histograms showing the distribution of improvement of the
RMS error for four collections of tests using range images from the noiseless YCroc object.
In this graph, we have included one histogram from each ICP classifier type and one for the

FIG. 3. Distribution of the RMS effects of select sets of tests. The vertical axis is the proportion of tests falling
within the given histogram bin.
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point-to-plane minimizer. For Schütz’s and Zhang’s classifiers, we chose parameter settings
of 2s and 0.25s, respectively, because these represented the best results out of all of the
parameter settings chosen for them (refer back to Section 4.1 for a detailed description of
how s is calculated). Histogram bins on the left, shaded portion of the graph represent cases
where the RMS error was made worse. Registration tests contributing to bins to the far left
would have been classified as catastrophic failures in our qualitative tests. Bins on the right,
unshaded side represent cases where the RMS error after registration was better than it was
beforehand.

Using no outlier classifier almost always resulted in a decrease in registration quality, as
we had expected. Also as we expected, using the Schütz classifier generally resulted in an
improved registration. The two most significant features of its distribution are that it was
most likely to have a small improvement, and that there are a significant number of tests
for which the RMS error after registration was much more than four times better than the
initial RMS error before registration.

Somewhat surprising was that using a point-to-plane minimizer often made the registra-
tion worse, but most often resulted in only minor net changes in terms of RMS error.

Even more surprising to us was that Zhang’s classifier performed nearly as poorly as not
using any outlier classifier at all in terms of RMS error for these noiseless tests. This is
in contrast with our findings in our qualitative tests (see Section 3). We believe that this
reversal in performance is due to a number of factors:

1. Noise: Our qualitative tests used only range images taken from an actual, imperfect
physical range sensor, but our quantitative tests used only noiseless synthetic range images.
Section 4.3.4 contains preliminary results for added Gaussian noise.

2. Data warping: Included in our qualitative tests were range images of two human
heads, and humans are not capable of remaining perfectly rigid when repositioning for
different scans.

3. Different error criteria: For the qualitative tests, our evaluations were based on
seeing if there was a high degree of interpenetration for regions of low curvature and if
good visual correspondence of high-curvature feature regions existed. Improvements in
these subjective measures do not always correspond to improvements in an RMS measure.

A second surprising general observation is that performing edge pruning had an almost
imperceptible effect on our results. Sometimes the results improved with edge pruning
enabled, sometimes they became worse. In examining individual test cases, we found that
although the RMS errors were different with and without this feature, the differences were
often in the third or fourth significant digit of the RMS error.

For noiseless data we found that Schütz’s classifier generally performed the best, fol-
lowed by using point-to-plane minimization, then by Zhang’s classifier, and using no outlier
classifier produced the worst results.

4.3.2. Effects of subsampling. After observing general trends based on the outlier clas-
sification method, we examined the effects of subsampling on noiseless data. Tables 4, 5,
and 6 summarize these results, broken down by classifier type and parameter settings. These
tables indicate how often a particular group of tests improved the registration in terms of
the RMS error. Table 4 summarizes the results for all of our tests, Table 5 contains data only
for range images from the YCroc object, and Table 6 is for the reddinos1 object. Note that
the results for the YCroc object are significantly better than those for the reddinos1 object.
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TABLE 4

Percentage of Experiments Where the Registration Algorithm Improved the Actual

Registration for Range Images from All Objects

Source subsampling factor
Edges

Classifier Parameter pruned 1 2 4 8 Total

None N/A Y 0.00% 0.00% 0.00% 1.36% 0.34%
N 0.00% 0.00% 0.00% 1.08% 0.27%

Zhang 0 Y 5.16% 5.69% 7.32% 16.80% 8.75%
s/4 Y 6.78% 9.76% 10.03% 15.99% 10.64%

N 6.78% 9.49% 10.30% 15.18% 10.43%
s Y 7.32% 9.76% 8.40% 15.72% 10.30%

N 7.05% 9.49% 8.67% 14.91% 10.03%
4s Y 4.07% 4.61% 4.35% 6.23% 4.81%

N 4.07% 4.61% 4.07% 5.42% 4.54%

Point-to-plane N/A N/A N/A 33.33% 23.81% 11.68% 13.97%
minimization

Schütz s/2 Y 57.77% 53.28% 52.35% 43.22% 51.73%
N 58.20% 53.55% 50.97% 44.07% 51.76%

s Y 50.95% 52.32% 47.68% 43.60% 48.64%
N 51.23% 52.04% 48.50% 44.69% 49.11%

2s Y 44.44% 43.63% 40.76% 40.65% 42.37%
N 45.26% 44.72% 40.49% 40.92% 42.85%

Note. The largest value in each column has been printed in boldface and the smallest has been italicized.

TABLE 5

Percentage of Experiments Where the Registration Algorithm Improved the Actual

Registration for Range Images from the YCroc Object

Source subsampling factor
Edges

Classifier Parameter pruned 1 2 4 8 Total

None N/A Y 0.00% 0.00% 0.00% 3.25% 0.81%
N 0.00% 0.00% 0.00% 2.44% 0.61%

Zhang 0 Y 7.38% 8.94% 8.13% 16.26% 10.18%
s/4 Y 13.82% 14.63% 15.45% 17.89% 15.45%

N 13.82% 14.63% 15.45% 16.26% 15.04%
s Y 17.07% 17.07% 13.82% 20.33% 17.07%

N 16.26% 17.07% 14.63% 18.70% 16.67%
4s Y 6.50% 6.50% 5.69% 8.13% 6.71%

N 6.50% 6.50% 5.69% 6.50% 6.30%

Point-to-plane N/A N/A N/A N/A 39.39% 28.16% 30.88%
minimization

Schütz s/2 Y 76.42% 77.24% 76.86% 61.21% 73.08%
N 77.87% 77.24% 76.03% 61.21% 73.24%

s Y 79.67% 78.86% 76.42% 69.92% 76.22%
N 79.67% 78.05% 78.86% 73.17% 77.44%

2s Y 76.42% 73.17% 73.98% 63.41% 71.75%
N 76.42% 72.36% 73.98% 62.60% 71.34%

Note. The largest value in each column has been printed in boldface and the smallest has been italicized.
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TABLE 6

Percentage of Experiments Where the Registration Algorithm Improved the Actual

Registration for Range Images from the reddinos1 Object

Source subsampling factor
Edges

Classifier Parameter pruned 1 2 4 8 Total

None N/A Y 0.00% 0.00% 0.00% 0.41% 0.10%
N 0.00% 0.00% 0.00% 0.41% 0.10%

Zhang 0 Y 4.07% 4.07% 6.91% 17.07% 8.03%
s/4 Y 3.25% 7.32% 7.32% 15.04% 8.23%

N 3.25% 6.91% 7.72% 14.63% 8.13%
s Y 2.44% 6.10% 5.69% 13.41% 6.91%

N 2.44% 5.69% 5.69% 13.01% 6.71%
4s Y 2.85% 3.66% 3.67% 5.28% 3.87%

N 2.85% 3.66% 3.25% 4.88% 3.66%

Point-to-plane N/A N/A N/A 33.33% 6.67% 2.66% 3.60%
minimization

Schütz s/2 Y 48.36% 41.15% 40.00% 34.45% 41.04%
N 48.36% 41.56% 38.33% 35.71% 41.04%

s Y 36.48% 38.93% 33.20% 30.33% 34.73%
N 36.89% 38.93% 33.20% 30.33% 34.84%

2s Y 28.46% 28.86% 24.08% 29.27% 27.67%
N 29.67% 30.89% 23.67% 30.08% 28.59%

Note. The largest value in each column has been printed in boldface and the smallest has been italicized.

When no classifier is used, the only times that the registration improved were when one
out of every 64 original vertices were used. We believe that these cases where the registration
improved were “lucky” tests where most of the points outside of the overlapping region were
subsampled out. Interestingly, the same trend applies to our tests that use Zhang’s outlier
classifier: increasing the subsampling factor improves the results. Additionally, we noticed
that for the YCroc tests using s as the parameter yielded the best results. For reddinos1,
using s= 4 was best with low subsampling factors, and at high subsampling factors forcing
the classifier into its fall-back mode using 0 as the parameter yielded the best results.

In contrast, the point-to-plane minimization technique tended to be the most sensitive to
subsampling of the source range image. For the YCroc object, too few tests to be statistically
reliable were successfully completed when a subsampling factor less than four was used.
For a factor of four, the percentage of improved registrations lies between the best results
of Zhang’s classifier and the worst results of Schütz’s. For a factor of eight, the results are
still better than those from Zhang’s classifier, but are significantly worse than those from
the denser mesh. The reddinos object generated similar results, but with more dramatic
penalties for excessively subsampling the source range image. As noted by Rusinkiewicz
and Levoy [13], nonuniform decimation procedures are more appropriate such as normal-
space sampling and feature-based decimation. We believe that using one of these techniques
would greatly improve these results.

Once again, Schütz’s classifier generated results closer to what we expected. For the
range images from the YCroc object, the results remain relatively stable until a subsampling
factor of eight is used. For the reddinos1 object, the results are a little more mixed, but the
general trend of high subsampling resulting in fewer tests with improvements remains.



114 DALLEY AND FLYNN

4.3.3. Timing and iteration control. Although the focus of our experiments was not
on improving execution speed and numerous performance improvements could readily be
made to our implementations, we will briefly discuss the speed characteristics of our ICP
implementation. Our point-to-plane minimization implementation was extremely inefficient
computationally, so we will omit it from our discussion.

For our tests, each ICP iteration took approximately one second to perform on a 450 MHz
Pentium II processor running Linux. Approximately half of that time was spent building a
kd-tree [7] of the destination mesh. A more efficient implementation would only build the
tree once or would use a different method for performing the nearest-neighbor searches.
A few examples of more efficient search techniques are presented by Chen and Medioni
[2], Rusinkiewicz and Levoy [13], and Greenspan and Godin [8]. Because the bulk of the
computational time spent in an ICP iteration is on the nearest neighbor search, the classifier
type had little effect on performance.

In terms of the number of iterations used, all of the classifiers used all 25 allowed
iterations nearly always, except for the Schütz classifier. It virtually always terminated the
ICP loop early due to degeneracies that destabilized eigenvector extraction algorithm used
to minimize Eq. 1 [1, 11].

4.3.4. Effects of noise. After observing that Schütz’s classifier performed better than
Zhang’s for noiseless data, we created a set of experiments on the undecimated YCroc
object. We added Gaussian noise with a standard deviation equal to 1

4 the average sampling
distance to each point in the destination range image. We then tested the ICP variants and
determined what percentage of the tests resulted in an improved registration. We found
that, consistent with the qualitative experiments, Zhang’s classifier performed significantly
better than Schütz’s, and it was also much better than no outlier classifier.

5. CONCLUSIONS

Out of the algorithms we tested, we make the following conditional recommen-
dations:

1. If registering partially overlapping range images from potentially noisy data and
initializing the registration manually, we recommend using Zhang’s outlier classifier with
small parameter values. In our qualitative tests, we found that it was best able to avoid
catastrophic failures and was able to provide a higher degree of interpenetration and match-
ing of important feature areas when compared to using Schütz’s classifier or no classifier
at all.

2. If registering partially overlapping range images from noiseless data with the initial
registration containing small random errors in rigid rotation and translation, we recommend
using Schütz’s classifier with a parameter value near the average sampling distance of the
destination mesh.

3. Irrespective of the technique chosen, the setting of parameters specific to the al-
gorithm must be done with care, as these settings can affect performance significantly.
Moreover, the noise level of the data must be assessed critically through experimentation
prior to commitment to a specific technique. While truly noise-free data are impossible to
obtain from real sensors, some types of sensors can produce much lower noise levels than
others.
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