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Abstract

In the traditional mixture of Gaussians background

model, the generating process of each pixel is modeled as a

mixture of Gaussians over color. Unfortunately, this model

performs poorly when the background consists of dynamic

textures such as trees waving in the wind and rippling wa-

ter. To address this deficiency, researchers have recently

looked to more complex and/or less compact representa-

tions of the background process. We propose a general-

ization of the MoG model that handles dynamic textures.

In the context of background modeling, we achieve better,

more accurate segmentations than the competing methods,

using a model whose complexity grows with the underlying

complexity of the scene (as any good model should), rather

than the amount of time required to observe all aspects of

the texture.

1. Introduction

A typical approach in current scene analysis systems is

to build an adaptive statistical model of the background im-

age. When a new frame is presented, pixels that are un-

likely to have been generated by this model are labeled as

foreground. Stauffer and Grimson [11] represent the back-

ground as a mixture of Gaussians (MoG). At each pixel, a

collection of Gaussians emits values in RGB (red, green,

blue) or some other colorspace. When a pixel value is

observed in a new frame, it is matched to the Gaussian

most likely to emit it. The Gaussian is then updated with

this pixel value using an exponential forgetting scheme that

approximates an online k-means algorithm. This allows

online adaptation to changing imaging conditions such as

shifts in lighting or objects that stop moving. Pixel values

are labeled as foreground when they are associated with un-

common Gaussians or when they do not match any Gaus-

sian well. This approach lends itself to realtime implemen-

tation and works well when the camera does not move and

neither does the “background.” However, for most appli-

cations, objects such as branches and leaves waving in the

wind, and waves in water, should be considered as back-

ground even though they involve motion. Because these

dynamic textures cause large changes at an individual pixel

level, they typically fail to be modeled well under a fully

independent pixel model. In the middle column of Fig. 5,

we see how the MoG foreground mask not only (correctly)

includes both pedestrians and the vehicle, but also includes

many other pixels due to image noise and moving trees.

More recently, Mittal and Paragios [5] used the most re-

cent T frames to build a non-parametric model of color and

optical flow, with care taken to handle measurement uncer-

tainty when estimating kernel density bandwidths. Uncer-

tainty management is especially important here due to the

inherent ambiguities in local optical flow estimation. While

their approach still models the image as a collection of in-

dependent pixels, they produce impressive results when the

same motions are observed many times in every block of

T frames. Challenges are likely to occur when infrequent

motions occur, such as trees rustling periodically (but not

constantly) due to wind gusts. Better classification perfor-

mance results in a cost linear in T . For a 200-frame window,

their highly optimized implementation is one to two orders

of magnitude slower than typical MoG implementations.

Sheikh and Shah [10] have also developed a kernel-based

model of the background using the most recent T frames.

Their kernels are Gaussians over the pixel color and loca-

tion. By allowing observed pixels to match kernels cen-

tered at neighboring pixel locations, they are able to inter-

pret small spatial motions such as trees waving in the wind

as being part of the background. Like Mittal and Paragios,

they must maintain a long enough kernel history to repre-

sent all modes in the local background distribution. For-

tunately, for many types of scenes, this history length will

be shorter for Sheikh and Shah since information can be

“shared” by kernels spawned by nearby pixels. We will

show that our approach is able to achieve similar sharing

benefits, and we do so by including a small set of easily



implemented modifications to any standard MoG system.

Nam and Han [6] recently published a background sub-

traction method that uses particle filtering to track the posi-

tions of the generative model’s pixel processes. They use a

constant velocity (plus Gaussian noise) motion model, and

they represent the appearance distribution of an individual

pixel process as a color histogram. In order to make the

problem tractable, they make several simplifying assump-

tions that allow for independent decisions in the inference

and update stages. Limited quantitative results are given.

Zhong and Sclaroff [15] use an autoregressive moving

average model for scenes with highly regular dynamic back-

ground textures. For training clips of 96 frames, they retain

80 eigenimages.

Jojic and Frey [3] have taken a radically different ap-

proach, extending a model proposed by Wang and Adel-

son [13]. They consider an image to be generated by a col-

lection of layers, where near layers occlude far ones. Their

model assumes that the number of layers and their depth or-

dering are known and fixed. Each layer is free to translate

across the image. Extensions include Winn and Blake’s [14]

affine motion model. Because finding the optimal solu-

tion is intractable, they employ variational approximations

to their model. Unlike the other methods mentioned, their

approach is batch-mode, so it cannot be used as-is on con-

tinuous video feeds.

Our work is most closely related to that of Stauffer and

Grimson and of Sheikh and Shah. We combine the usage of

a spatial neighborhood in background likelihood estimation

with the compactness of a semi-parametric MoG represen-

tation. In §2, we describe our generative model and how

we perform inference on it. In §3, we then highlight exper-

iments we have performed on our algorithm. We conclude

in §4.

2. Our model

We model the image generation process as arising from

a mixture of components that have a Gaussian distribution

in color and some spatial distribution:

p
(

ci Φ
)

∝
∑

j∈Ni

wjN (ci;µj ,Σj) , (1)

where ci is the observed color at pixel location i, Φ =
{wj , lj , µj ,Σj}j

is our model, and Ni is the set of indices

of mixture components that lie in the local spatial neigh-

borhood of pixel i. Each component j in our model has an

associated mixture weight wj , a discrete pixel location lj ,

mean color µj , and color covariance matrix Σj . We assume

that each observed pixel value is sampled from our model

independently. This same assumption is made with nearly

all non-layered approaches, including ones that have a spa-

tial component (e.g. Sheikh and Shah [10]).

Note that we are not restricted to the RGB colorspace

for observations. As with other models, we are free to use

other colorspaces (such as YCrCb) or build an observation

space over more exotic features such as spatio-temporal

gradients [7] or optical flow [5]. In our experience we

have found that when a proper neighborhood size is cho-

sen, the background-foreground labeling is less sensitive to

the choice of colorspace or the inclusion of optical flow fea-

tures.

2.1. Foreground-background classification

The primary purpose of most background models is to

determine the likelihood that each pixel was generated from

the background process. In classic MoG approaches, the

model is the same as Eqn. 1, with the constraint that the

neighborhood function is degenerate and only selects mix-

ture components at the same location where the colors are

sampled, i.e. when Ni =
{

j lj = i
}

. A collection of mix-

ture components is maintained, where only those with the

highest weights are considered part of the model and used

in the likelihood evaluation. Under the assumptions that all

Gaussians have similar covariances, all background Gaus-

sians have comparable weights, and that they do not overlap

significantly, the squared Mahalanobis distance

dij = (ci − µj)
T Σ−1

j (ci − µj) (2)

serves as a good proxy for the negative log likelihood, and

it can be computed much more efficiently than the precise

likelihood value. For the experiments presented in this pa-

per, we have followed this tradition and used the squared

Mahalanobis feature for foreground-background classifica-

tion.

After the model returns the pixelwise likelihood esti-

mates, a higher-level procedure is responsible for classi-

fying each pixel as foreground or background. Common

choices for the external classifier often include some combi-

nation of a simple thresholder, a Markov Random Field op-

timizer to perform uncertainty-aware label smoothing, mor-

phological operations to remove isolated foreground detec-

tions and merge disjoint blobs, and higher-level detection,

tracking, or explicit foreground modeling to filter the re-

sults. The external classifier choice is outside the scope of

the model itself; we will discuss our choice in §3.

2.2. Model update

A model consisting of a single Gaussian may be updated

online as new observations are obtained in an optimal man-

ner by retaining its sufficient statistics. Mixture distribu-

tions add the complexity of needing to know which obser-

vations were generated from which mixture components.

Stauffer and Grimson [11] use an online approximation of

expectation maximization. Given a pixel location i, they



find the observation likelihood N (ci;µj ,Σj) for each mix-

ture component j, and then update its sufficient statistics by

assuming an evidentiary weight of (1−ρ) for the old statis-

tics and ρ for the new data point, where ρ = αN (ci;µj ,Σj)
for some exponential learning rate α. Typical hard EM-

like implementations simplify this further by only updating

the most likely Gaussian using 1 − α and α as evidentiary

weights. Depending on initialization and the order of online

updates, the second approach tends to yield tighter Gaussian

distributions that overestimate the covariance less. More re-

cently, Porikli and Thornton [8] used a richer prior model

with a greedy update scheme to improve the updates and

reduce the effects of the order of updates. All three of these

update mechanisms have been used on likelihood models

essentially equivalent to Eqn. 1, with the neighborhood size

restricted to only consider Gaussians and observations at the

same pixel location.

In our model, we allow pixels to be generated from

nearby Gaussians. This means each Gaussian has the pos-

sibility of independently generating multiple observations

and thus potentially needs to be updated from multiple si-

multaneous measurements. One way of accomplishing this

is to retain the time-weighted sample sum s
(t)
j , squared sam-

ple sum corr
(t)
j , and total effective sample size e

(t)
j as fol-

lows:

s
(t)
j = (1 − α)s

(t−1)
j + α

∑

i∈Nj

ρ
(t)
ij c

(t)
i (3)

corr
(t)
j = (1 − α)corr

(t−1)
j + α

∑

i∈Nj

ρ
(t)
ij c

(t)
i

(

c
(t)
i

)T

(4)

e
(t)
j = (1 − α)e

(t−1)
j + α

∑

i∈Nj

ρ
(t)
ij , (5)

where α recursively downweighs old samples, ρij is the

contribution of the observation at pixel i to Gaussian j, and
∑

j ρij = 1, and our model parameters are derived as

µ
(t)
j = s

(t)
j /e

(t)
j (6)

Σ
(t)
j = corr

(t)
j /e

(t)
j − µ

(t)
j

(

µ
(t)
j

)T

(7)

w
(t)
j = e

(t)
j /

∑

j′

e
(t)
j′ . (8)

The question at this point is how to assign the update

weights ρij . There are several logical possibilities, includ-

ing:

• Pure Soft: For each observation, ci, we update all mix-

ture components that could have generated it, weight-

ing by the likelihood of being generated by that Gaus-

sian, i.e.

ρij ∝

{

N (ci;µj ,Σj) if j ∈ Ni

∧

dij < τ

0 otherwise
(9)

where τ is some threshold that allows us to avoid up-

dating poor matches. If no mixture components pass

the τ test, we assume some previously-unseen mix-

ture component generated the pixel and we instantiate

a new component j′ at lj′ = i instead of performing

an update.

• Pure Hard: We choose the single mixture component

which was most likely to have generated the sample

and update it alone, i.e.

ρij =







1 if j = arg max
j′:j′∈Ni

N (ci;µj′ ,Σj′)

0 otherwise.
(10)

If dij ≥ τ for the selected component, we perform the

new component instantiation as was done for pure soft

updates.

• Soft Local: We perform Stauffer- and Grimson-style

soft updates by only updating mixture components at

the same location as the observation, i.e.

ρij ∝

{

N (ci;µj ,Σj) if lj = i
∧

dij > τ

0 otherwise,
(11)

handling outliers in the usual fashion.

• Hard Local: We perform Stauffer- and Grimson-style

hard updates, handling outliers in the usual fashion, i.e.

ρij =







1 if j = arg max
j′:lj′=i

N (ci;µj′ ,Σj′)

0 otherwise.

(12)

While the pure soft scheme is appealing from a Bayesian

perspective, it (and soft local) also requires that we

actually evaluate the likelihoods, N (ci;µj ,Σj). The

hard approaches only require evaluating the much more

computationally-efficient squared Mahalanobis distances.

In Fig. 1, we have plotted the relative computational

costs of the various update methods, relative to the base-

line standard MoG approach (hard local with W = 1).

These plots aggregate the results from running with a va-

riety of parameter settings on several different machines

while processing the traffic sequence from Mittal and Para-

gios [5]. The local approaches are relatively unaffected by

the neighborhood size, W , since they do not iterate over the

whole neighborhood during the update phase. It is clear that

the pure soft approach incurs a significant additional per-

formance penalty due to its requirements of full likelihood

evaluation and that potentially all mixture components in

the local neighborhood about a pixel must be updated.

For the same set of experiments, we show in Fig. 2 the

costs of producing the Mahalanobis distance maps required
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Figure 1. This plot shows the relative length of time required to up-

date the background model after background subtraction has been

performed. All times are multiples of the fastest: pure hard up-

dates with a neighborhood of size W = 1, which is equivalent to

the standard optimized MoG approach.
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Figure 2. This plot shows the relative length of time required to

compute the Mahalanobis distance map used as an input to the

foreground/background classification (see §2.1). All times are

multiples of the fastest: pure hard updates with a neighborhood

of size W = 1, which is equivalent to the standard optimized

MoG approach.

by the foreground/background classifier. Given an update

scheme, we expect the the computational cost to rise lin-

early with the neighborhood size. The update schemes are

independent of this step, so it is interesting to note that by

either choosing hard updates and/or local updates, the Ma-

halanobis calculations become faster. When we do hard

updates, we force each sampled pixel to effect exactly one

mixture component. Similarly, local updates can only af-

fect a smaller pool of components. The net affect is that

a slightly more compact model can be learned. This more

compact model is more computationally efficient as well

because fewer Mahalanobis distance calculations are nec-

essary.

3. Experiments

To test our algorithm, we selected several videos from

recent publications which attempt to provide better back-

ground subtraction in the face of waving trees and/or rip-

pling water. We then hand-labeled all foreground pixels

in an evenly-spaced set of frames. Pixels that are ambigu-

ous or are alpha blends of foreground and background are

marked as “don’t-care” in our labeling and are ignored in

our evaluation. Sample frames from the videos are given in

Fig. 5.

Like many modern background subtraction systems, we

first compute the background squared Mahalanobis distance

map

mi = min
j∈Ni

dij (13)

and process it with a Markov Random Field (MRF) to clas-

sify pixels as foreground or background (see [2], [4]). Our

MRF minimizes a standard Potts energy function:

E

(

{

l
(t)
i

}

∣

∣

∣

∣

{

l
(t−1)
i

}

)

= (14)

∑

i

(

Di

(

l
(t)
i

)

+ U
(

l
(t)
i , l

(t−1)
i

)

+
∑

k∈Ni

V
(

l
(t)
i , l

(t)
k

)

)

where

Di

(

l
(t)
i

)

= mi

(

1 − l
(t)
i

)

+ λDl
(t)
i , (15)

U
(

l
(t)
i , l

(t−1)
i

)

= λT

∣

∣

∣
l
(t)
i − l

(t−1)
i

∣

∣

∣
, (16)

V
(

l
(t)
i , l

(t)
k

)

= λS

∣

∣

∣
l
(t)
i − l

(t)
k

∣

∣

∣
, (17)

l
(t)
i is the label of pixel i in frame t (background= 0,

foreground= 1), Ni is the set of pixel locations in the neigh-

borhood of pixel i, λD is the energy applied for choos-

ing a foreground label, λT is the energy applied for each

temporally-mismatched labels, and λS is the energy ap-

plied for each pair of 8-connected spatial neighbors with

disagreeing labels. There are readily-available implementa-

tions which efficiently find the global minimum for Eqn. 14

[1].

3.1. ROC Analysis

If we vary the MRF parameters over the course of a col-

lection of experiments and record the per-pixel classifica-

tion rates, we are sampling points in the receiver-operator

characteristics (ROC) curve. We then may estimate the

overall ROC characteristics of the system by taking the con-

vex hull of these points [9].

In Fig. 3, we show the ROC curve for a collection of

experiments on the Wallflower waving trees video clip [12].

Each curve uses a different neighborhood size. For this clip,

our method shows a clear advantage over the standard MoG

in foreground detection rates. Using a 3 × 3 window is

sufficient in this case because the tree motion is limited to a

few pixels.
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Figure 3. ROC curve for various neighborhood sizes for the

Wallflower waving trees clip. Ñ
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Figure 4. Exploiting repetitive texture under large inter-frame mo-

tion to allow smaller windows: Consider a background model with

one Gaussian per pixel learned from a stationary pair of leaves

against the blue sky (leftmost image). We will be concentrating on

what happens at the pixel location with the bold outline. Suppose

a sudden gust of wind moves the top leaf down and right, as shown

in the middle-left image. We now wish to find the best matching

background Gaussian for the pixel outlined in brown. To match

the Gaussian that actually generated it, we would need to have a

9×9 window (middle-right image); however, a smaller 3×3 win-

dow allows matching to a similar leaf in the model and labeling

the pixel as background.

For videos where background objects move several pix-

els between pairs of frames, larger windows can provide

additional benefits; however, they are often unnecessary.

There is no expected benefit for choosing a window size

greater than W = max (|dx|, |dy|) where (dx, dy) is the

largest expected motion vector arising from the dynamic

texture. Fortunately, many types of dynamic textures are

spatially repetitive and allow us to use much smaller win-

dows, as illustrated in Fig. 4. For most scenes, we have

found that a 3 × 3 window lowers the false positive rate of

foreground detection without unduly raising the false nega-

tive rate or becoming too computationally expensive.

3.2. Experiments on Various Scenes

In Fig. 5 we show comparative results from a few se-

lected video frames of our test videos. In the first two rows,

we have the input frames and the best known results to

date. The third and fifth rows show the Mahalanobis dis-

tance to the closest matching appearance model when us-

ing a MoG and our model, respectively. The images are

thresholded and intensity-scaled for visualization purposes.

The fourth and sixth rows are final masks after applying

an MRF and morphological operations to the Mahalanobis

distance map. The final row contains hand-labeled ground

truth where each object is given a different hue and don’t-

care pixels are shown in a lighter shade. The video clips are

ordered from left-to-right as easiest to hardest.

The first column is from the classic wallflower paper by

Toyama et al. [12]. For 200 frames, the scene is empty and

an off-camera person vigorously and continuously shakes

the tree, producing a semi-regular dynamic texture. A per-

son enters the scene and a single frame is labeled with

ground truth. The “Best Published” results are the best re-

sults from the original paper. For the MoG and our method,

we used the same parameter settings (except the neigh-

borhood size). When looking at the Mahalanobis distance

maps, our approach suppresses the waving trees much more

effectively than the traditional MoG and is still able to pick

up the person very well.

The second and third columns are from frames 410 and

150 of Mittal and Paragios’ traffic video [5] and we present

their results in the second row. The graded appearance of

these results suggests they have used higher-level modules

to detect the vehicles and suppress any noise not corre-

sponding to a vehicle detection. Also note that the detected

foreground regions are significantly smaller than the entire

vehicle. An MoG model is unable to fully suppress the false

positives due to waving foliage, even as we allow its param-

eters to be optimized independently. Our model is able to

suppress all false positives in these two frames and can even

correctly detect the two pedestrians in frame 150.

The fourth column is from frame 766 of a very challeng-

ing sequence courtesy of Sheikh and Shah. We are unaware

of any existing published results on the sequence. The scene

consists of rippling water, large-leafed tropical plants blow-

ing in the wind, and two small ducks swimming by that are

very close in color to the water. Our model is able to pro-

duce cleaner silhouettes and have fewer blob-level mistakes

than the best MoG results.

The final column is from frame 36 of a Zhong and

Sclaroff dynamic texture clip [15]. Our foreground detec-

tions are cleaner and more fully capture the bobbing jug.

In practice, we have found the performance of our

method to be consistent with these results as it has been

employed in traffic surveillance, indoor activity monitoring,

and coastal ship tracking (with mild to moderate waves).

For more challenging water scenery or places with very

consistent dynamic textures, we have found the usage of

optical flow and/or spatio-temporal derivatives to be useful



as additional modeling features.

4. Conclusions

In this paper, we have introduced a new image gener-

ation model that takes into account the spatial uncertainty

of dynamic background textures. Our model is much more

compact than recent methods ([15],[10],[5]) that have been

introduced to handle this problem. Ours can be readily im-

plemented in the familiar mixture of Gaussians framework

and it performs better than competing methods.
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Figure 5. Selected background subtraction results comparing the best existing methods with a standard MoG model and our extended MoG

model. For the Wallflower example, the “best published” result refers to the result from the proposed method in that paper [12]. Refer to

the text in §3 for a discussion of these images.


