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Abstract 

Building 3D models of real-world objects by 
assembling views taken by a range sensor promises to be 
a more efficient method than manually producing CAD 
drawings.  In this technique, a series of range images are 
acquired and then registered or aligned with each other 
to a high degree of accuracy.  Finally, the polygonal 
meshes corresponding to the range images are merged to 
form a complete 3D model consisting of a single mesh. 

Many techniques have been proposed to solve the 
registration problem; however, little work has been done 
to date to compare several registration algorithms with 
the same sets of data.  In this paper, we examine a 
software test-bed built for performing such comparisons.  
Within this test-bed, we have implemented several 
common registration algorithm variants to the baseline 
Iterative Closest Point (ICP) algorithm and tested them 
on partially overlapping range images taken from four 
different objects.  

 

1. Introduction 

In recent years, there has been growing interest in 
techniques for building 3D computer models of real-
world objects and scenes without requiring humans to 
manually produce these models using laborious and error-
prone CAD-based approaches. Using range sensors, users 
are able to capture 3D images of objects from different 
viewpoints that may be combined to form the final model 
of the object or scene [3].  These models then may be 
used for a variety of purposes such as building 3D maps 
for robot navigation, providing training data for computer 
vision experiments, and digitizing historical buildings for 
restoration planning [16], [18].   

The first model-building step is to obtain a set of range 
images.  A variety of techniques exist for dense range 
image acquisition, with time-of-flight, structured light, 
and laser triangulation among the most popular 
approaches [1].  

The range images must next be registered (placed in a 
common coordinate system).  This is essentially an 
alignment process.  Requiring humans to perform these 
very precise alignments is impractical.  Additionally, 
while some sensors provide positional and orientation 
data for each range image, these values are generally too 
inaccurate for the purposes of model building.  Even 
though both of these alignment methods are imprecise, 
either may be used to generate a coarse registration that 
may then be refined through a suitable automatic fine 
registration scheme.  Beginning in Section 2, we will 
discuss fine registration in more detail. 

After alignment, the data are combined to produce a 
single surface description.  This mesh integration step 
prunes the redundant data from the input range images 
and stitches together their surfaces. Various techniques 
have been devised to perform this task such as Turk’s 
point-based zippering [17], several volumetric space-
carving techniques [5], [12], and converting to curve-
based representations [9], [10].  Mesh integration is 
beyond the scope of this paper.   

The remainder of this document is organized as 
follows.  Section 2 describes the most common methods 
used for automatic range image registration and the 
principal approaches that researchers have taken to solve 
the problem.  In Section 3, we describe the rationale 
behind our work in building a software test-bed to 
comparatively study various range image registration 
approaches.  An overview of the test-bed implementation 
follows in Section 4, and the results and conclusions of 
comparing several registration methods using this 
software are given in Section 5.   

2. Prior Work 

Early work in the field generally concentrated on 
extracting and aligning major features of the range 
images.  These techniques were generally used for 
recognition of pre-built models instead of model 
construction [3].  Some researchers have more recently 
had success in adapting feature-based techniques for the 
building of models [4], [16].  Besl and McKay introduced 

0-7695-0984-3/01 $10.00 © 2001 IEEE 



 
  

247

another approach, the Iterative Closest Point (ICP) 
method in [2].  This method iteratively minimizes the 
distance between the range images by finding 
corresponding point pairs.  A significant number of 
researchers use this algorithm in one form or another [16].  
Related to the ICP approach is one that matches surface 
normals with tangent planes [3].  A third group of 
researchers use a “spring-mass” based system which 
simulates a series of damped oscillations on 
corresponding point pairs based on spring-mass physics 
systems [7], [18].  In this chapter, we will describe in 
more detail the non-feature-based approaches.  In 
particular, we will discuss the ICP algorithm and its 
variants in the greatest depth. 

If a range image, P, is being registered to a data set X 
by using a rotation matrix R and a translation vector T, 
then the ICP registration process attempts to minimize the 
objective function 
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where P={pi} is the set of points in the range image being 
registered, X={xi} is the set of points in the reference 
range image to which P is being registered (with xi  the 
closest point in data set X to the point pi) Np is the number 
of points in data set P, R is the 3x3 registration rotation 
matrix, and T is the registration translation vector.  Besl 
uses a quaternion-based approach to find the values for R 
and T that minimize this function [2].  These calculations 
are performed iteratively using the following basic 
algorithm: 

1. Given each point pi, find the closest point, xi, in 
X to pi. 

2. Compute the registration (R, T) such that f(R, T) 
is minimized. 

3. Apply the registration to P. 
4. Go to step 1 if the difference in the registration 

errors, |fn(R, T)− fn-1(R, T)|, has not dropped 
below some threshold. 

This process is guaranteed to converge to some local 
minimum for any starting registration when P is a subset 
of X. 

The basic ICP algorithm has been modified in many 
ways by various researchers in attempts to improve the 
speed and/or quality of the registrations it produces.  For 
example, in [2], Besl and McKay recommend accelerating 
the iterative process by using a parabolic interpolant to 
the three previous iterations.   

Turk and Levoy [16] enhance the registration by 
adding a confidence-weighting factor to each point pair.  
Points whose normal is directed away from the range 
sensor are given a lower confidence value, as are points at 
the edge of the mesh.  These confidence values are used 
to weigh the summed terms of the minimization function 

and enhance the ICP algorithm to be more robust to 
sensor errors. 

The original algorithm requires that a range image be 
registered to a surface that is a superset of the range 
image.  Unfortunately, when building new models from 
range images, no model to which a range image may 
register exists.  Instead, we desire to register multiple 
range images so that their overlapping regions are 
aligned.  Schütz et al. [15] propose a simple heuristic 
method of determining which corresponding point pairs 
belong to overlapping regions and which are actually not 
corresponding points.  They theorize that point pairs 
whose distance is much greater than the separation of the 
centers of mass of two partially registered range images 
must be outliers. They calculate a binary weighting factor 
for each point pair as follows: 
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where s is the range scanner sampling distance, r is the 
subsampling factor, and c is the empiricially deteremined 
threshold based on the separation of the centers of mass of 
the data sets.  Those pairs whose two points are separated 
by more than a specified value d are considered outliers 
and given a weight of zero.  Those point pairs whose 
distance is less than d are considered inliers and have a 
weight of unity.  In this way, those points that are highly 
separated and likely to belong to non-overlapping regions 
are excluded from the registration calculations.  In 
addition, Schütz et al. introduce a “surface coupling” 
measure ε.  This measure indicates the percentage of 
points in a data set that are counted as contributing to the 
overlapping region.  They suggest that when ε drops 
below 30 to 50%, the validity of the ICP step is in 
question.  Thus a program can detect when it has begun 
excluding too many point pairs.  Schütz et al. further 
expand the ICP algorithm by enhancing the convergence 
decision process to include stability of interpoint distance 
variation.   

Zhang has implemented a more extensive and 
sophisticated set of modifications to ICP for the purposes 
of robot navigation [18].    In addition to aligning both 
points and curves, a more theoretically-based method to 
classify outlier corresponding point pairs is used.  Central 
to this method is the assumption that when the mean point 
pair distance µ is on the order of the range image 
sampling distance s, the distances between points in the 
corresponding point pairs will follow a Gaussian density 
distribution.  Given a coarse registration of two range 
images with significant overlap, a point xi not belonging 
to the overlapping region will have large distances to its 
corresponding pi and thus will contribute to a histogram 
bin corresponding to the tail of the Gaussian distribution.  
If both xi and pi belong to the overlapping region, then the 
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distance between them is likely small and generally 
contributes to a histogram bin close to the peak of the 
Gaussian.  Zhang uses a heuristic method to determine a 
threshold such that any point pairs that have distances 
larger than this threshold are considered outliers and 
removed from the registration calculations for that ICP 
iteration.  This threshold is determined based on the range 
image sampling distance, the mean point pair distance, 
and the standard deviation of the distances. 

In addition to ICP-based registration approaches, many 
researchers use other iterative whole-surface registration 
techniques.  The most popular variants are based on Chen 
and Medioni’s work published the same year as Besl and 
McKay’s ICP paper [3],[6],[12], which minimizes the 
distance along point normals in one data set to tangent 
planes in the other data set.  Eggert et al. [7] use a spring-
mass model to perform registration.  

In addition to addressing the issue of pair-wise 
registration of range images, researchers are becoming 
more interested in being able to register large numbers of 
range images to form complete models [3],[6],[7],[12].  In 
the remainder of this paper, we will concentrate on pair-
wise registration because the most popular multi-view 
approaches have critical pair-wise registration 
components to them. 

3. A Registration Test-Bed 

3.1. Rationale and Goals for the Test-Bed 

Many of the papers discussing variants of the ICP 
algorithm and other registration algorithms have only 
been tested on a small set of objects.  Additionally, few 
algorithms have been tested on the same set of data. 
Broader comparative studies to date have been limited in 
scope, such as Lorusso’s studies on four different 
methods of calculating the ICP registration values [11].  
This lack of comparative data makes it difficult to judge 
the true strengths and weaknesses of each algorithm.  A 
test-bed platform, if properly designed, facilitates 
effective comparisons between algorithm variants. The 
following goals serve as the basis for such a design. 

The extensibility of the platform is measured by the 
ease with which it may be extended to include other 
registration algorithms and algorithm variants.  This ease 
translates into decreased development time for new 
variants.  Since there are so many algorithms, variants, 
and sub-variants for registration, this feature is important. 

After implementing the test-bed, it must be used to 
gather data to evaluate the relative fitness of various 
algorithm variants.  A platform is said to be 
instrumentable if a wide range of performance data can 
easily be gathered from it.  At a minimum, the test-bed 

must be able to yield readily the following information 
given a set of registration methods and input data: 

1. Final registration error 
2. Registration transformations 
3. Number of ICP iterations 
4. Total execution time 

The final transforms and registration error provide the 
means for evaluating the validity and quality of a 
particular registration test.  The registration error serves 
as an objective value, and the transformations allow for 
visualization of the results for subjective human 
verification of the registration.  The total number of ICP 
iterations required and the total execution time provide 
the means to evaluate the relative performance of 
registration tests. 

Given a highly instrumentable and extensible set of 
software for supporting the registration of range images, 
the test-bed software should be engineered to be reusable 
in larger applications.  For example, an application that 
merges range images should be able to use the registration 
software built for the test-bed as a pre-processing step. 

3.2. Implementation 

Our range image registration test-bed software uses the 
Visualization Toolkit, an open-source library for the 
manipulation and visualization of 2D, 3D, and higher-
dimensional data [14].  The library contains an object 
hierarchy built to support componentized visualization 
pipelines.  Our software builds upon the base library by 
supplying a pair-wise ICP registration algorithm with 
pluggable variants to the base algorithm.  The key ICP 
variants currently implemented and tested include: 

1. ICP Iteration Control: Uses Besl’s criterion 
requiring the change in the mean squared surface 
between two ICP iterations to drop below a pre-
specified level [2]. 

2. Outlier Point Classification 
a. Schütz’s Distance Thresholder: Identifies 

outliers as those point pairs that are 
separated by “too much” space in an attempt 
to solve the problem of partially–
overlapping data sets [15].   

b. Zhang’s Statistical Outlier Classifier: 
Examines a histogram of unsigned point pair 
distances to estimate which pairs are outliers 
[18]. 

In addition to these variant classes, our test-bed 
contains infrastructure to support additional ICP variants 
and other, non-ICP registration techniques.  Also, we 
have written additional software to aid in the visualization 
and in the numerical evaluation of registrations.  
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4. Experimental Analysis and Results 

In the absence of actual “ground truth” registrations 
against which comparisons may be made, we used a 
combination of qualitative and quantitative measures to 
analyze the experimental results.  Qualitatively, we 
examined a sampling of the test data to verify trends and 
give meaning to the numerical results. We used the 
numerical data to guide this sampling process and 
produce additional statistics on the registration results. 

4.1. Experimental Setup 

We selected several views from four real-world objects 
(Figure 1) as a test database.   From this set of views, 
pairs from an object were selected, then we used the GUI 
to produce an initial registration.  For the tests we 
performed, we attempted to produce “good”, realistic 
initial registrations that visually appeared to only need a 
small amount of fine registration.   

Once the initial registration was created, we saved the 
base test configuration file to disk.  This configuration file 
was then duplicated and modified for each registration 
variant permutation desired.  The variables upon which 
these permutations are based for our tests are data set, 
view pair, decimation factor, outlier classifier, and loop 
exit criterion threshold. 

Our tests are named according to which values for 
these parameters were chosen.    The remaining 
subsections will give details on the permutations chosen.  
The final subsection of this section summarizes the 
permutations and briefly describes our registration test 
environment. 

For this paper, we acquired range images from the 
“Angel”, “Buddha”, “FacesPat1”, and “FacesPat2” data 
sets.  All of the range images on which we gathered data 
are shown in Figure 1.  We used a Minolta Vivid 700 
range sensor to acquire these range images.  Most of the 
tests included the 000 image as one of the two images in 
the pair.  The narrowest view angle used in these tests was 
20 degrees and the widest view angle was approximately 
126 degrees.  The most important feature of “Angel” data 
set is that the main view shown in Figure 1 is, for all 
intents and purposes, a superset of all of the other views.  
The large wings on either side of the body block the 
camera’s view of the side and back of the angel.  In the 
“Buddha” data set, the Buddha head is quite round and 
has some very nice 3D texture in the hair.  The ears 
served as one of the locations in which it was easiest to 
find misregistrations.“FacesPat1” and “FacesRick1” 
proved to be smoother data sets than the Buddha images, 
however they provided more prominent noses and more 
complex ear structures.  All of the range images plus 
many others are available in our range image database 

located in the OSU SAMPL web site at 
http://sampl.eng.ohio-state.edu/.   

We tested our experiments at different uniform 
decimation factors, including 1, 2, 4, 8, 16, and 32.  
Larger decimation factors indicate smaller tested images 
(a 200x200 range image decimated by a factor of 4 is 
50x50). 

Three main algorithms were used for our tests to 
perform outlier classification of corresponding point 
pairs.  First, the base, parameter-less algorithm introduced 
by [2] that classifies no points as outliers was used.  
Additionally, classifiers based on [15] and [18] were also 
used.  These latter two were provided the same set of 
values for the expected registration error.  We used a base 
value of 3.5492mm for each of these, plus several 
multiples of this value.  This base value was obtained 
from the mean edge length of several initial data sets at a 
decimation factor of 2.   

The loop exit criterion threshold is the maximum 
difference between successive registration errors required 
to consider an ICP sequence to have converged.  We 

Angel Buddha

FacesPat1 FacesRick1
  

Figure 1: Selected texture-mapped rendering of 
the range images used in our experiments. 
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chose the loop exit criterion values of 0.3, 0.03, and 
0.003 somewhat arbitrarily because they yielded good 
results with initial tests.  Except when analyzing the 
effects of the criterion value, the tightest threshold, 
0.003 was generally used for qualitative tests. 

After generating the test configuration files, four 
450MHz Pentium II™ machines with 256MB of RAM 
were used to perform batch experiment runs.  We 
collected data from a total of 7,699 tests for analysis, 
which consists of four different input objects with a total 
of 18 view pairs.  For each of these tests, we recorded the 
configuration, key data from each ICP iteration, and the 
total execution time.  From the results files, we compiled 
a database of the final registration information, the 
execution time, and the number of iterations required for 
each test. 

4.2. Analysis Methodology 

After performing batch run tests of our registration 
experiments, we collected the results and examined key 
individual tests in the GUI.  Most of the examinations 
performed in the GUI were made to characterize how the 
outlier classifier choices affect the quality of the 
registration.  Typically, the no-outlier results were viewed 
as a baseline, then results from the two classifiers were 
viewed.  The following criteria were generally used to 
judge the quality of a registration in the GUI: 

1. Are there any gross registration errors?  
2. Are there any mismatched edges?  
3. Are there “splotchy” sections? 

Gross registration errors consist of registrations that 
are completely wrong.  For example, Figure 2 shows two 
face range images where the nose from one is pointing out 
the ear of the other.   Occasionally, obvious registration 
errors such as these correspond to very low registration 
error values because, even though the registration is 
incorrect, the registration produces a low mean squared 
error.   

If the entire registration is not obviously incorrect, we 
next looked for key feature areas such as ears and noses 
on the face images because they were easy to examine 
with polygonal rendering.  Generally these feature areas 
would have edges in one or more range images allowing 
us to more easily see between the two range images.   
Often, we instructed the GUI to draw lines connecting the 
corresponding point pairs.  Figure 3 shows a case where 
the angel’s right wing is misregistered.  The pink edge of 
the wing intersects the cyan edge instead of being aligned 
with it. 

Finally, if there were no problems found in these 
feature areas, we examined large areas with relatively 
constant curvature.  Given a perfect registration of range 

images that have Gaussian noise, we expected that the 
two surfaces would cross over each other often, creating a 
“splotchy” surface as in Figure 4.  A worse registration 
would not have this characteristic because the two 
surfaces would be too far away to have this interleaving, 
as shown in Figure 5.  Thus, we generally considered 
slightly splotchy surfaces to have a better registration than 
registrations displaying large expanses of non-
interweaving  range image sections. 

Using these criteria, we qualitatively analyzed the 
registration results to determine which algorithm variants 
worked the best, and under what conditions.  Additional 
quantitative results were analyzed.  Key findings from 
those analyses are found in section 4.3.  

4.3. Experimental Results 

Upon examining our results, we determined the key 
effects of each of the experiment permutation variables.  
We have broken down the results of these tests into the 
following categories: 

1. Effects of Outlier Classifier Type and Parameter 
Settings 

2. Effects of Decimation 
3. Effects of the Loop Criterion Threshold Value 

For each of these effects sections detailed below, we 
will highlight key similarities and differences with the 
data sets we tested. 
 
4.3.1. Effects of Outlier Classifier Type and Parameter 
Settings.  One aspect that significantly affects the number 
of iterations and the total execution time of a test is 
whether the ICP process is deemed invalid before it 
converges.  When no classifier is used, 84% of the tests 
converged before an ICP iteration resulted in a worse 
registration than the previous iteration.  When either of 
the two outlier classifiers were used, this rate drops 
dramatically to approximately 25%.  We hypothesize that 
the following is happening:  

1. The outlier classifier marks outlier point pairs 
based on a registration. 

2. The next registration is calculated and applied 
given the set of inlier pairs.  This registration 
results in a small movement of the range image. 

3. The outlier classifier marks outlier points, but 
this time it selects a significantly different set of 
pairs as outliers. 

4. The next registration is calculated and applied on 
the new set of inlier pairs.  The different set of 
inliers results in a registration error greater than 
that calculated in step #2. 
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Figure 2: Rendering that demonstrates a 
catastrophic failure of the registration when 
large non-overlapping regions exist and no 
corresponding point pairs are classified as 
outliers 
 

 

 
 

Figure 3: Rendering that demonstrates a mis-
registration at the edge of the wing in the 
circled region.   

 

 
 

Figure 4: Rendering of a registration that 
demonstrates good “splotching.” 

 

 
 

Figure 5: Rendering of a registration that 
demonstrates poor “splotching.” 
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We have found that often if we do not check that each 
ICP iteration’s error value is less than the previous 
iteration’s, the ICP cycle enters an infinite loop, 
apparently jittering between different sets of inliers and 
outlier alternately pulling the registration different 
directions upon different ICP iterations. 

Regardless of whether the ICP sequence was deemed 
to have converged, we found the effects of using an 
outlier classifier to be generally as expected.  When 
nearly the entire surface from the range image being 
registered overlaps the other range image, we found that 
not using any classifier produced the best results.  We 
found this situation to be the case for the “Angel” test set 
as well as for range image pairs that were only separated 
by a small angle.   

The “Angel” test set approximated Besl and McKay’s 
original requirement of always registering a subset of an 
object to the object in the following way.  The base range 
image to which the other range images were registered 
was the frontal view of the angel.  This view captures the 
face, wings, and front of the body, only missing some of 
the sides of the body that form oblique angles to the 
camera.  All other views could not see much more of the 
original data because the wings blocked the sides and the 
back.For the other data sets, as the amount of non-
overlapping data increases, the classifiers become more 
important.  For most of the tests examined, we found that 
the classifier based on Zhang’s work [18] performed the 
best, though for many tests, it was only slightly better 
than the one based on Schütz et al. [15]. 

A major deficiency in the algorithms we tested was 
that they generally had difficulty registering certain 
human-identifiable features of high curvature changes and 
edges of range images.  For example, the tips of the ear 
lobes in the face tests would generally be closely 
registered for the most successful tests, but often the 
curves at those tips did not match correctly.  We expect 
that including the smoothed normals as [7] suggests 
would assist in obtaining better results.   
 
4.3.2. Effects of Decimation.  In general, we found that 
lower decimation factors produced better results, though 
they required greater execution time.  In particular, the 
simplistic brute-force nearest-neighbor search used for 
finding closest point pairs proved particularly slow for 
undecimated data sets due to its O(N2) complexity.  For 
example, one of the Buddha tests took approximately 1 
minute, 45 seconds to load into the GUI.  The bulk of this 
time was spent performing the nearest neighbor search. 
After breaking up the input points into uniformly sized 
bins to improve search speed, we saw this loading time 
decrease to 40 seconds.  In order to not skew the timing 
results for later tests, the original O(N2) algorithm was 
used for all tests and the enhanced search was only used 
for the GUI visualization.  We believe that a more 

sophisticated search such as a kd-tree based search [8] 
would yield much faster results. 

As for the registration quality, when each test is 
viewed with the decimation factor used to perform the 
registration, the results tend to be quite good.  
Unfortunately, the uniform decimation is sub-optimal for 
preserving the original shape.  If a registration performed 
on decimated data is viewed with undecimated data, the 
more subtle features of the shape show up and expose 
mis-registration problems.  We found that because the 
initial course hand registrations were close enough to the 
correct registration that decimation factors above 2 
produced unsatisfactory results.  Higher decimation 
factors generally resulted in fine registrations that were 
qualitatively worse than the original course registration, 
when viewing the results with undecimated data. 

We did not find any strong correlation between the 
decimation factor and how the outlier classifier 
parameters affected whether an ICP iteration terminated 
successfully or became invalid  

 
4.3.3. Effects of the Loop Criterion Threshold Value.  
Modifying the loop criterion produced predictable results.  
As tighter criteria were used, we noticed greater 
refinement in the registration path being followed.  If the 
ICP algorithm was moving toward an incorrect 
registration, a tighter criterion simply allowed it to move 
in closer to that incorrect registration.  Additionally, the 
tighter the criterion, the greater chances there were that 
the ICP sequence would become invalidated. 

5. Summary and Conclusions 

In this section, we have described our test setup and 
the generation of the 7,699 tests for our experiments.  We 
have proposed a method of analyzing the quality of range 
image registrations, and given our analysis of our 
experiments using this method.    

In that analysis, we found that for range image pairs 
that approximate Besl and McKay’s requirement of full 
overlap, using no outlier classifier generally yielded the 
best results.  For those pairs that had significant non-
overlapping regions, both of the classifiers generally 
yielded good results, with the classifier based on Zhang’s 
work performing slightly better in most cases than the one 
based on the work of Schütz. 

We also found that although decimated data could be 
registered, those registrations tend to only be “good” in 
the context of their decimation.  Once the range image 
pair is viewed undecimated, the registration imperfections 
readily manifest themselves.  On the flip side, due to our 
rather brute-force approach to finding closest point pairs, 
decimation had an extremely significant impact on the 
execution time required.  Additionally, we found that 
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modifying the threshold for determining convergence of 
an ICP sequence had predictable results.  As that 
threshold is lowered, the sequence simply goes further 
along the path it is following unless it first encounters 
numerical or algorithmic instabilities. 

Through performing the tests and analyses, we 
benefited from the design goals that we followed.  The 
hooks for instrumentation allowed us to gather the 
required data from our experiments.  Further, we were 
able to add new variants as necessary to our test-bed due 
to its extensible nature.  Internally, we reused code as we 
developed classes such as one that creates lines to visually 
connect closest point pairs.  That class shares the point 
correspondence filters with the master ICP registration 
class, and as we built multiple applications that shared the 
library classes discussed in this paper.   
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