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ABSTRACT 

Building 3D models of real-world objects by assembling views taken by a range sensor promises to be 

a more efficient method than manually producing CAD drawings.  A series of range images are acquired, 

then registered, or aligned with each other to a high degree of accuracy.  Finally, the range images are 

merged to form a complete 3D model.   

Many techniques have been proposed for solving the registration problem; however, little work has 

been done to date to compare several registration algorithms with the same sets of data.  In this thesis, we 

examine a software test-bed built for performing such analyses.  Within this test-bed, we have implemented 

several common registration algorithm variants and tested them on four different sets of range images.   

Through a set of quality criteria we propose, we show several features of the variants we have 

implemented.  For example, a base Iterative Closest Point (ICP) algorithm performs very well when nearly 

all of the data is overlapping in the range images.  For range image pairs that have large non-overlapping 

regions, an outlier classifier is required for better results.  We also examine the effects of uniform 

decimation and ICP exit criteria values. 

Our test-bed is extensible and allows researchers to add new registration algorithms and variants.  

Given the distribution of closest point pair distances we observed we propose extending this test-bed with 

novel approaches to produce better registration results through proper outlier classification. 
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CHAPTER 1: 

INTRODUCTION 

In recent years, there has been a growing interest in techniques for building 3D computer models of 

real-world objects and scenes without requiring humans to manually produce these models using laborious 

and error-prone CAD-based approaches. Using “range sensors”  instead, users are able to capture 3D 

images of objects from different viewpoints that may be combined to form the final model of the object or 

scene.  These models then may be used for a variety of purposes such as building 3D maps for robot 

navigation, providing training data for computer vision experiments, and digitizing historical buildings for 

restoration planning [12], [14].  Figure 1.1 shows the steps involved in building a model.  The following 

paragraphs discuss the steps in more detail. 

1.1 Range Images 

The first step in building such models is to obtain a set of range images.  A range sensor scans an 

object or scene, producing a 2D array of distance values called a range image. Figure 1.2a represents the 

distance array.  The numbers in each cell of the table represent a distance from the sensor while distances 

that cannot be quantified appear as crosses.  These numbers are used as the values for the z coordinate of 

points on a polygonal mesh.  The x and y coordinates are implicit in the positioning of a grid point in the 

range image. Figure 1.2b shows a rendered view of the range image in Figure 1.2a. 

1.2 Registration 

In order to obtain a complete model, these individual range images must be combined into a single data 

set.  Before this final mesh integration can be performed, the range images must first be aligned, or 

registered.  Just as having humans generate the CAD models is impractical, so is requiring them to perform 
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the very precise alignments that are needed.  Additionally, while some sensors provide positional and 

orientation data for each range image, these values are generally far too approximate for the purposes of 

model building.  Instead, either human-assisted or this a priori sensor-produced registration is used as a 

first-cut registration.  This coarse registration is then refined through an automatic registration scheme. 

1.3 Mesh Integration 

Once the range images have been registered, they are combined to produce a single surface description.  

This mesh integration step prunes the redundant data from the input range images and stitches together 

their surfaces. Mesh integration is another large area of study that will not be discussed in detail in this 

report.   

1.4 Organization of the Thesis 

The remainder of this document is organized as follows.  Chapter 2 describes the most common 

methods used for automatic range image registration and the principal approaches that researchers have 

taken to solve the problem.  In Chapter 3, we describe the rationale behind our work in building a software 

test-bed to comparatively study various range image registration approaches.  An overview of the test-bed 

implementation follows in Chapter 4, and the results and conclusions of comparing several registration 

methods using this software are given in Chapter 5.  Chapter 6 describes additional future work that may be 

performed to enhance the studies presented here. 
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Figure 1.1: Steps in building a 3D model using a range sensor  
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Figure 1.2: Simple range image.  (a) is a 2D ar ray of the z-values for  each gr id point. The x and y 
coordinates are implicitly defined by the row and column position of each gr id point.  (b) is a 
render ing of the range image.  
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CHAPTER 2: 

RANGE IMAGE REGISTRATION: PRIOR WORK 

There are three main classes of algorithms commonly used to register range image pairs, shown as 

leaves in the tree in Figure 2.1.  Early work in the field generally concentrated on extracting and aligning 

major features of the range images, and some researchers use feature-based methods for registration [12].  

Besl and Jain introduced the Iterative Closest Point (ICP) method in [4].  This method iteratively 

minimizes the distance between the range images by finding corresponding point pairs.  A significant 

number of researchers use Besl’s algorithm in one form or another [12].  A second large subgroup of 

researchers use a “spring-mass”  based system which iteratively performs a series of damped oscillations on 

corresponding point pairs based on spring-mass physics systems [6], [14].  In this chapter, we will describe 

the ICP algorithm and its variants in more detail. 

2.1 Iterative Closest Point Registration 

If a range image, P, is being registered to a data set X by using a rotation matrix R and a translation 

vector T , then the ICP registration process attempts to minimize the function given in Figure 2.2.  [4] uses 

Registration Algorithms

Feature-Centric General Point/Curve-Centric

Iterative Closest Point Spring-Mass Model

 

Figure 2.1: Tree classifying the most common types of registration algor ithms 
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a quaternion-based approach to find the values for R and T  that minimize this function.  These calculations 

are performed iteratively using the following basic algorithm: 

1. Given each point 
ip , find the closest point, 

ix , in X to 
ip . 

2. Compute the registration (R, T ) such that ),( Tf R  is minimized. 

3. Apply the registration to P. 

4. Go to step 1 if the difference in the registration errors, ),(),( 1 TfTf nn RR −− , has not dropped 

below some threshold. 

This process is guaranteed to converge to some local minimum for any starting registration when P is a 

subset of X. 

This base algorithm has been modified in many ways by various researchers in attempts to improve the 

speed and/or quality of the registrations it produces.  For example, in [4] itself Besl and Jain recommend 

accelerating the iterative process by using a parabolic interpolant to the last three iterations.  Others have 

made recommendations on weighting the point pairs, on classification of outlier corresponding pairs, on 

more robust methods of detecting convergence, and on methods of detecting descents into non-global 

registration minima. 
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Figure 2.2: Registration er ror function to be minimized dur ing ICP registration 
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Turk and Levoy [12] enhance the registration by adding a confidence weighting factor to each point 

pair.  Points whose normal is directed away from the range sensor are given a lower confidence value, as 

are points at the edge of the mesh.  These confidence values are used to weigh the summed terms of the 

minimization function and enhance Besl’s algorithm to be more robust to sensor errors. 

The original algorithm requires that a range image be registered to a surface that is a superset of the 

range image.  Unfortunately, when building new models from range images, no model already exists to 

which a range image may registered.  Instead, we desire to register multiple range images so that just their 

overlapping regions are aligned.  Schütz, Jost, and Hügli propose a simple heuristic method of determining 

which corresponding point pairs belong to overlapping regions and which are actually not corresponding 

points [11].  They theorize that point pairs whose distance is much greater than the separation of the centers 

of mass of two partially registered range images must be outliers. As shown in Figure 2.3, they calculate a 

binary weighting factor for each point pair. Those pairs whose two points are separated by more than a 

specified value d are considered outliers and given a weight of zero.  Those point pairs whose distance is 

less than d are considered inliers and have a weight of one.  In this way, those points that are highly 

separated and likely to belong to non-overlapping regions are excluded from the registration calculations. 

Schütz also expands the ICP algorithm by enhancing the convergence determination and validating 

that too many point pairs have not been classified as outliers using the equations in Figure 2.4.  To 

determine convergence, they require the change in the mean distance �  and the standard deviation, �  to be 

below user-specified threshold values.  Additionally, if the “surface coupling”  given by �  drops below 30 to 

50%, the validity of the ICP step is in question.  Thus a better estimation of convergence is obtained and a 

program can detect when it has begun excluding too many point pairs. 

Zhang has implemented a more extensive and sophisticated set of modifications to ICP for the 

purposes of robot navigation [14].    In addition to aligning both points and curves, he has developed a 

more theoretically-based method of classifying outlier corresponding point pairs.  Central to his method is 

the assumption that for sufficiently registered range image pairs, the distances between points in the 

corresponding point pairs will be Gaussian distributed.  This Gaussian is due to mis-registration and noise 
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in the input data from quantization and sensor error. A range image is considered to be sufficiently 

registered when the mean point pair distance is on the order of the range image sampling distance.   

A different number of standard deviations from the mean are considered inliers depending upon how 

close the registration is to this expected error (see Figure 2.5).  For example, suppose that the expected 

error is 2mm, but the actual mean distance error is 5mm and the standard deviation is 4mm.  According to 

the algorithm in the Figure 2.5, this means that we should include as inliers all pairs whose distance is less 

than the mean distance plus two standard deviations (2mm < 5mm < 3*2mm).  All pairs whose distance 

between its two points is greater than 13mm are then classified as outliers and do not enter in the 

registration calculations. 

If the registration is outside this range, then a fallback method is used to classify the outliers.  A 

histogram of the distances is generated which is examined for the first valley beyond the highest peak.  This 

valley is found by searching for the first histogram point 60% below the peak that is less than the previous 
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Figure 2.3: Schütz’s method for  classifying outlier  cor responding point pairs. 
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histogram point.  All point pairs whose distance falls beyond this valley are classified as outliers and 

removed from the current iteration’s registration calculations. outlines this classification scheme.   

The ICP algorithm originally presented by Besl [4] provides a means for iteratively performing a least 

squares registration.  This registration is guaranteed to converge when there are no errors in the data and 

when a range image is being registered to an existing model that wholly contains the surface described by 

the range image.  Researchers have expanded on this base algorithm in attempts to provide better 

performance and to make it more robust to errors and non-overlapping regions. 

2.2 Spring Mass 

Instead of the ICP algorithm, Eggert et al. [6] use a spring-mass model to perform registration. 

Although the implementation of the project documented in this thesis focuses on ICP, certain concepts 

from this non-ICP work can be applied to ICP. In the spring-mass approach, registration begins by finding 

the corresponding point pairs, as is done in ICP.  Between each pair, a damped spring is logically set up 

whose undamped force is proportional to the distance between the points.  These individual forces are 

combined to calculate the overall forces and torques on the rigid range image meshes.  Motion is then 

calculated for a small time step.  This motion is applied and the force calculations are revisited without 

performing the computationally expensive point correspondence search again.  The oscillating motions are 
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iteratively performed until they cease to move the data by a significant distance.  Once these oscillations 

settle down, the corresponding point pair search is performed again.  With the new correspondence data, a 

new set of spring-mass calculations are performed until they converge.  The process of finding 

corresponding point pairs and performing damped oscillations is repeated until the overall motion is 

sufficiently small.  At this point, the range images are registered.  One feature of Eggert’s approach that can 

be applied to ICP is that during the nearest neighbor search, matching points are required to be both close 

to each other and to have similar smoothed normals. 
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CHAPTER 3: 

RATIONALE AND GOALS FOR THE TEST-BED 

Many of the papers discussing new variants to the ICP algorithm and other registration algorithms 

have only been tested on a small set of objects.  Additionally, few algorithms have been tested on the same 

set of data. Broader comparative studies to date have been limited in scope, such as Lorusso’s studies on 

four different methods of calculating the ICP registration values approach [8].  This lack of comparative 

data makes it difficult to judge the true strengths and weaknesses of each one.  A test-bed platform 

facilitates the making of effective comparisons between algorithm variants if properly designed. The 

following goals serve as the basis for such a design: 

1. Extensibility 

2. Instrumentality 

3. Reusability 

3.1 Extensibility  

The extensibility of the platform is measured by the ease with which it may be extended to include 

other registration algorithms and algorithm variants.  This ease translates into decreased development time 

for new variants.  Since there are so many algorithms, variants, and sub-variants for registration, this 

feature is important. 

3.2 Instrumentality 

After implementing the test-bed, it must be used to gather data for evaluating the relative fitness of 

various algorithm variants.  At a minimum, the test-bed must be able to readily yield the following 

information given a set of variants and input data: 
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1. Final registration error 

2. Registration transformations 

3. Number of ICP iterations 

4. Total execution time 

The final transforms and registration error provide the means for evaluating the validity and quality of 

a particular registration test.  The registration error serves as an objective value, and the transformations 

allow for visualization of the results for subjective human verification of the registration.  The total number 

of ICP iterations required and the total execution time provide the means to evaluate the relative 

performance of registration tests. 

3.3 Reusability 

Given a highly instrumentable and extensible set of software for supporting the registration of range 

images, the test-bed software should be engineered to be reusable in larger applications.  For example, an 

application that merges range images should be able to use the registration software built for the test-bed as 

a pre-processing step. 

3.4 Summary 

To better evaluate the relative strengths and weaknesses of the various registration methods available, 

we have implemented a test-bed environment.  In addition to being able to collect raw results data, this test-

bed can serve longer-term purposes by its extensibility and reusability features.  In the next chapter, we will 

examine the design and implementation of the test-bed software. 
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CHAPTER 4: 

IMPLEMENTATION 

In order to fulfill the design goals of extensibility, instrumentality, and reusability, we used object-

oriented design methodologies and tools.  In particular, the Strategy Pattern described in [7] was used 

extensively.   The bulk of the test-bed code was written in C++ using the Visualization Toolkit (VTK) 

version 2.4 [3], [9], [10].  Additional tools such as those used in visual modeling of the software design and 

those used in the development of the user interfaces are mentioned in Appendix A.   

Our test-bed applications perform the functions shown in Figure 4.1.  The GUI application reads in 

range images that were produced by our range sensor, passes them through the registration process, then 

performs the required visualization functions.  After performing the registration on the input range images, 

our batch-processing application outputs timing and registration information. 

Saved,
unregistered
range images

Registration
Algorithm

Algorithm Helpers
and Variants

Visualization
Filters

Registration
results and

timing

GUI Application

Batch ProcessorUsed by GUI and Batch Processor
 

Figure 4.1: Test-Bed Application Components 
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Section 4.1 introduces VTK and describes in general how the toolkit was used.  Section 4.2 describes 

the classes written to support basic range image registration.  Section 4.3 shows hooks for variants of the 

ICP algorithm, and Section 4.4 details the instrumentation hooks.  Section 4.5 describes the visualization 

support and gives screenshots of the most important windows in the graphical user interface (GUI) 

application.   

4.1 Integration with Visualization Toolkit (VTK) 

A large body of multi-dimensional data-set manipulation and visualization software has already been 

created.  Our test-bed software is built upon the Visualization Toolkit (VTK).  To the base toolkit, we 

added classes to assist in the automatic registration process, and we built classes to aid in the visualization 

of the registration results.  In this section we will give an overview of VTK, then we will explain in greater 

detail the classes which we have written to support registration. 

4.1.1 Overview of VTK 

VTK is an open source software system supported by Kitware that supports the processing and 

visualization of 2D, 3D, and high-dimensional data [3], [9], [10].  The toolkit ships with over 500 C++ 

classes that can be used as-is or extended in either C++ or through several popular scripting languages. 

At the core of a VTK application is the implicitly executed data pipeline.  In general, there are two 

types of objects in a pipeline: data objects and process objects. Data objects store the data to be processed 

and visualized such as sets of polygons or implicit 3D data.  Process objects may supply, use, or modify the 

content of these data objects.   

A graphical view of a portion of a simple pipeline is shown in Figure 4.2.  At the head of a pipeline is a 

source, such as the vt kSpher eSour ce shown in the figure.  A source outputs some sort of data object 

such as the vt kPol yDat a that holds 3D polygonal data sets.  Between the source and the rendering 

portion of the pipeline, any number of filters may be used.  The figure shown contains a 

vt kTr ansf or mFi l t er  that performs a 4x4 rigid matrix transformation on the input data.  The 

rendering portion of the pipeline contains various data objects and process objects to set up lighting 



 14 

conditions, perform the 3D-to-2D mapping, etc.  More complex pipelines, such as the ones used in the 

range image registration test-bed follow this same basic structure, but may contain more filters, and may 

have several pipelines logically in parallel. 

VTK pipelines operate “ implicitly,”  meaning that downstream process objects request the newest data 

whenever it is required, and the upstream objects implicitly perform only whatever execution is necessary 

to guarantee current results.  This process requires two steps, an update step and an execution step.  The 

update step consists of downstream process objects requesting current information from upstream objects.  

The execute step happens when upstream objects process their data and produce new data in their output 

for the downstream objects to use.   

For example, consider Figure 4.3 adapted from the discussion on pages 92-97 of [9].  If A is modified 

and then the output from E is requested, then the update step is performed on the chain E- D- B- A.  When A 

is updated, it recognizes that it must regenerate its results and calls Execut e( )  on itself, updating its 

output.  This updated output means that B must now regenerate its output through a call to Execut e( ) .  

This execution step continues for D and E.   

vtkSphereSource

Rendering portion 
of pipeline

vtkTransformFilter

Source (Process Object)

Data Object

Filter (Process Object)

Data ObjectvtkPolyData

vtkPolyData

 

Figure 4.2: Section of a VTK Pipeline for  Displaying a Sphere.  Arrows represent direction of data 
flow via Execute(). 
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In the second example, C is modified and has its output requested.  The chain C- B- A has updates 

requested, but since nothing has changed for A or B, their Execut e( )  methods are not called.  Since C 

has changed, its Execut e( )  method is called, producing current output. 

An explicit execution model requires an independent object, called an executive, to keep track of when 

which portions of the pipeline need to be updated and explicitly cause those updates to occur.  Although 

explicit execution can be more flexible, it often suffers from complex executive implementations.  The 

registration test-bed software uses the implicit execution scheme favored by VTK, but has limited hooks 

for explicit execution where necessary for instrumentation and algorithm evaluation purposes. 
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A

B

C D

E

Execution of E: Full Execution
1. A parameter modified
2. E output requested
3. Chain E-D-B-A back propagates Updat e( )  method
4. Chain A-B-D-E executes via Execut e( )  method

Execution of C: Partial Execution
1. C parameter modified
2. C output requested
3. Chain C-B-A  back propagates Updat e( )  method
4. No modifications made to A or B so Execut e( )  method not called for them
5. C executes via Execut e( )  method

 
(a) 

 

Exec ut e( )

Updat e( )

A

Execut e( )

Updat e( )

BC

Execut e( )

D

Updat e( )

Exec ut e( )

Updat e( )

E

 
(b) 

 

Updat e( )

Updat e( )

ABCDE

Updat e( )

Execut e( )

 
(c) 

Figure 4.3: Implicit Network Execution.  (a) The diagram shows five pipeline process objects.  
Ar rows represent direction of data flow via Execute().  The top text section descr ibes the 
interaction diagram in (b).  The lower  text section desr ibes the interaction diagram in (c).  Adapted 
from 94 of [9].   
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4.1.2 vt kMul t i I nOut Pol yDat aFi l t er  and vt kFi l t er Al gor i t hm Classes 

Nearly all of the built-in VTK filter classes have a single input data object and a single output object.  

A few support an arbitrary number of inputs, but these still only have a single output object.  The task of 

registration requires sets of input-output data object pairs.  The input objects are the range images before 

registration, and the output objects are copies of the inputs transformed so they are registered with each 

other.  To support this functionality, we have created the vt kMul t i I nOut Pol yDat aFi l t er  class (see 

Figure 4.4). 

The vt kMul t i I nOut Pol yDat aFi l t er  handles the simultaneous updates and execution of all of 

its “pipeline branches.”   A pipeline branch is an input-output data object pair, plus any internal filters used 

to produce the output.  When its Execut e( )  method is called to make the outputs current, it delegates the 

execution to its vt kFi l t er Al gor i t hm, employing the Strategy Pattern [7].   
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Figure 4.4: vtkMultiInOutPolyDataFilter  and vtkFilterAlgor ithm Class Diagram 
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The vt kFi l t er Al gor i t hm base class (see Figure 4.4) defines the following responsibilities with 

respect to its associated vt kMul t i I nOut Pol yDat aFi l t er : 

1. Creation of the output data objects used internally by the vt kMul t i I nOut Pol yDat aFi l t er  

2. Regulating internal pipeline branches when new inputs are added or removed 

3. Performing the necessary work to move data into the output objects 

These responsibilities have been separated out from the vt kMul t i I nOut Pol yDat aFi l t er  class 

to allow greater dynamic flexibility when experimenting with the pipeline setup.  For example, suppose that 

the test program begins by using one particular registration algorithm and then the user wishes to test 

another algorithm on the same set of input data.  With the existing design, the new 

vt kFi l t er Al gor i t hm subclass can be substituted in for the old registration algorithm without 

disturbing the structure of the pipeline.  If the vt kMul t i I nOut Pol yDat aFi l t er  and 

vt kFi l t er Al gor i t hm classes were merged, then the new filter would need to have all of its inputs 

added back in manually and all of its outputs reconnected to the rest of the pipeline.  

4.2 Basic Registration 

To actually perform the range image registration, we have created a subclass of vt kFi l t er -

Al gor i t hm called vt kRegi st r at i onAl gor i t hm (see Figure 4.5).  This base class creates internal 

pipeline branches that perform rigid transformations for each of the inputs to the associated 

vt kMul t i I nOut Pol yDat aFi l t er  (see Figure 4.6).  Although this base class performs little actual 

work in and of itself, it acts as a reusable base class from which a wide variety of 

vt kFi l t er Al gor i t hms  may be created that simultaneously perform rigid transformations on a series 

of inputs. 

Currently, the most interesting subclass of vt kRegi st r at i onAl gor i t hm is vt kI CP-

Al gor i t hm.  When executed, this algorithm uses Besl’s Iterative Closest Point (ICP) algorithm described 

in section 2.1 to set the internal pipeline transformations in its associated vt kMul t i I nOut Pol yDat a-

Fi l t er .   
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vtkRegistrationAlgorithm

vtkFilterAlgorithm
Filter : vtkMultiInOutPolyDataFilter

vtkTransformPolyDataFiltercreates

Inheritance Hierarchy for

vtkICPAlgorithm vtkCenterAtOriginAlgorithm vtkPointCorrespondenceAlgorithm

 

Figure 4.5: Internal pipeline branch structure for  the vtkMultiInOutPolyDataFilter with a 
vtkRegistrationAlgorithm 
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Figure 4.6: Class Diagram for vtkRegistrationAlgorithm and vtkICPAlgorithm 



 20 

4.3 Hooks for Variants 

With the purpose of developing the test-bed being to evaluate different range image registration 

methods, several hooks for algorithm variants have been added to the vt kI CPAl gor i t hm class.  These 

hooks are grouped into three major categories: loop exit criteria, point correspondence analyzers, and 

registration acceleration.  Figure 4.7 gives pseudo-code for the execution loop of vt kI CPAl gor i t hm, 

indicating how each of the three variant hooks are integrated into the loop.  Figure 4.8 gives a class diagram 

of the interfaces that the variants use. 

4.3.1  v t kI CPLoopCr i t er i on Cl ass  

The loop exit criteria are implemented as subclasses of vt k I CPLoopCr i t er i on.  There is always 

exactly one criterion used per vt kI CPAl gor i t hm instance, and that criterion is responsible for 

indicating the validity and convergence of the current ICP iteration.  Implementations of 

vt kI CPLoopCr i t er i on may declare an ICP iteration sequence either because the point 

correspondence analyzers have introduced fluctuations in the registration error descent or they may use 

some more sophisticated methods to perhaps detect descent into a local, non-global minimum. 

At the present time, only one subclass, vt kLi near Thr eshol dCr i t er i on, has been implemented 

(see Figure 4.9).  This class examines the present iteration and previous ICP iteration to determine validity 

and convergence, as shown in Figure 4.10.  If the change in the registration errors is less than the 

Thr eshol d value, then the current iteration is deemed to have converged.  Thresholds closer to zero 

generally require more ICP iterations and yield registrations with a smaller mean squared distance error 

value.  This class also determines validity by verifying that the previous iteration’s registration error is 

greater than or equal to the error for the current iteration.   



 21 

whi l e t he l oop cr i t er i on i ndi cat es t hat  mor e I CP  
i t er at i ons ar e necessar y 

begi n 
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  cal cul at e t he r egi st r at i on f or  each br anch usi ng Besl ' s al gor i t hm 
  per f or m r egi st r at i on accel er at i on t o t weak t he  
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Figure 4.7: Pseudo-Code for  vtkICPAlgorithm::Execute() 
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Figure 4.8: Class Diagram for Registration Tweaks 
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Figure 4.9: Loop Cr iter ion Class Diagram 
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4.3.2  vt kPoi nt Cor r espondenceAnal yzer  Class 

The point correspondence analyzers are implemented as subclasses of vt kPoi nt Cor r es-

pondenceAnal yzer , and there may be any number of analyzers sequentially used by a particular 

vt kI CPAl gor i t hm instance.  These analyzers are responsible for determining specific information 

about corresponding point pairs, as shown in Figure 4.11.   At the present time, the analyzers shown in 

Figure 4.12 have been implemented. 

4.3.2.1  vtkClosestPointFinder Class 

By default, a vt kCl osest Poi nt Fi nder  object is used as the first analyzer for a 

vt kI CPAl gor i t hm.   This object creates or replaces the Cl osest Poi nt . Br anch, 

Cl osest Poi nt . I D, Cl osest Poi nt . Di st ance, and Cl osest Poi nt . Pai r Wei ght  point fields 

for all branches.  To determine these values, the object loops through all points in all branches.  Inside this 

double loop, it calculates the distance from the given point to all other points in all other branches.  The 

other point that has the smallest distance is selected as the closest point.  The pair weight is simply set to 

1. 0 for every point.  More sophisticated implementations could use more efficient nearest-neighbor search 

techniques such as kd-tree based searches. 

0 if

 if

0 if

0 if

    

F)(F,

T)(F,

F)(T,

T)(T,

   valid),(converged

 thresholdeConvergenc 

iteration ICP previousfor  Error 

iteration ICPcurrent for Error 

<∆
∆≤

<∆<
=∆

¶

·
=

−=∆
≡
≡
≡

ε
ετ

τε
ε

εεε
τ
ε
ε

cp

p

c

 

Figure 4.10: Truth Table for  vtkL inearThreshold Cr iter ion 
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4.3.2.2  vtkMaxDistancePointWeightAnalyzer Class 

Once the Cl osest Poi nt . Br anch, Cl osest Poi nt . I D, Cl osest Poi nt . Di st ance, and -

Cl osest Poi nt . Pai r Wei ght  point fields have been calculated, a vt kMaxDi st ancePoi nt -

Wei ght Anal yzer  object modifies the Cl osest Poi nt . Pai r Wei ght  field.  Based on the method 

introduced in [11], it identifies outliers as those point pairs that are separated by “ too much”  space.  As 

discussed in section 2.1, this method attempts to solve the problem of partially overlapping data sets.  The 

original paper suggests that the distance threshold be linearly proportional to the center of mass separation 

of the point set and its corresponding closest points, but leaves out details on how to properly choose the 

proportionality constant.  By default, in the test-bed setup and visualization application, the constant is set 

to the average estimated triangle edge length.  Any point pairs whose separation is greater than this 

constant times the center of mass separation are considered outliers and have their weight set to zero.  If the 

Cent er Of Mass  and Cl osest Poi nt sCent er Of Mass  data set fields have not been set for a branch, 

this class internally uses an instance of vt kCent er Of MassCal cul at or  to perform the calculation 

(see below). 
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Required Calculations for a Set of Point Correspondence Analyzers

ClosestPoint.Branch ID of the branch that has the point closest to a 
given point

ClosestPoint.ID ID of the point that is closest to a given point
ClosestPoint.Distance Distance between a given point and its closest 

point not in its own branch
ClosestPoint.PairWeight "Weight" or "mass" of the point pair when 

viewed from the perspective of the given point

CenterOfMass Center of mass of the weighted points in a 
particular internal pipeline branch

ClosestPointsCenterOfMass Center of mass of the points closest to those 
in a particular branch

TotalWeight Total mass of a particular branch

Data About Each Internal Pipeline Branch

Data About Each Point in Each Internal Pipeline Branch

 

Figure 4.11: Required Calculations for  a Set of Point Cor respondence Analyzers 
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Figure 4.12: Point Cor respondence Analyzers Class Diagram 
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4.3.2.3  vtkVariancePointWeightAnalyzer Class  

A vt kVar i ancePoi nt Wei ght Anal yzer  object performs the same function as a vt kMax-

Di st ancePoi nt Wei ght Anal yzer  object: estimating which points are from overlapping sections of 

the original object.  It uses the more statistically sophisticated method introduced on pages 123-125 of [14].   

4.3.2.4  vtkCenterOfMassCalculator Class 

The vt kCent er Of MassCal cul at or  class is responsible for calculating the center of mass of a 

range image.  It does so using the standard method shown in Figure 4.13. 

 If the Cl osest Poi nt . Pai r Wei ght  point fields do not exist, all points are given a weight of 1. 0.  

If the Cl osest Poi nt . Br anch or Cl osest Poi nt . I D point fields do not exist, then the center of 

mass of the closest points is not calculated.  The results are placed in the Cent er Of Mass and Cl osest -

Poi nt sCent er Of Mass  data set fields. 

4.3.3  vt kI CPAccel er at or  Class 

Registration acceleration can be provided through concrete implementations of the vt kI CP-

Accel er at or  class.  If not accelerator is provided to a vt kI CPAl gor i t hm, then the registration 

vectors generated by the base ICP algorithm are used directly to calculate the registration transforms.  At 
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Figure 4.13: Equations for  vtkCenterOfMassCalculator  
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the present time, no concrete accelerators have been implemented. 

4.4 Instrumentation 

Registration evaluation is facilitated by the instrumentation built into the test-bed software.  This 

instrumentation can provide runtime approximation about how much work remains to complete the 

registration.  More importantly, key information is stored for each ICP iteration to allow more thorough 

analysis.  Coupled with this instrumentation is a serialization mechanism that can be used with the test-bed 

applications and may also be easily processed by shell scripts and loaded directly by popular spreadsheet 

programs. 

4.4.1 Progress Callback 

Primarily to facilitate the inclusion of GUI progress meters for long operations, VTK has a built-in 

method for filters to report an approximate fraction of the work they have completed while executing their 

Updat e methods.  For example, if a filter’s Pr ogess is 0. 75, then the filter estimates that 75% of its 

work has been completed.  If the user has supplied one, the filter may periodically call a 

Pr ogr essMet hod to report changes in the progress estimate.  The vt kI CPAl gor i t hm class takes 

advantage of this mechanism by calling the Pr ogr essMet hod after each ICP iteration. The current test-

bed implementation utilizes this mechanism for progress bars, as originally intended, though its use could 

easily be extended to provide additional information such as timing the length of each individual ICP 

iteration through a callback. 

4.4.2  vt kI CPHi st or yI t em Class 

The primary means for analysis of the registration steps is through examining a stack of vt kI CP-

Hi st or yI t em instances associated with a vt kI CPAl gor i t hm (see Figure 4.14).  For every ICP 

iteration, a vt kI CPHi st or yI t em is created.  As new key portions of data become available, they are 

placed into the history item.  Certain information, such as whether the ICP iteration was valid or had 
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converged is stored as single elements in the history item.  Other information such as the registration error 

and center of mass data is conceptually stored in an array, with one element per internal pipeline branch. 

A vt kI CPAl gor i t hm object can rollback to the state specified by a vt kI CPHi st or yI t em via its 

Rol l backToHi st or y  method.  Additionally, whenever any input data object to the 

vt kMul t i I nOut Pol yDat aFi l t er  is modified, the existing registration history can no longer be 

considered valid.  Upon execution, the vt kI CPAl gor i t hm maintains the previous final registration, but 

flushes the old history and begins a new history stack. 

4.4.3  CCSVFi l e Class 

In order to allow the batch processing of registration tests and saving of their results, a relatively 

simple serialization mechanism is used.  Under the current architecture, a parent object acts as a builder for 

its sub-objects using token-based commands in a Comma-Separated Variable (CSV) file.  For example, if a 

vt kI CPAl gor i t hm object is being built and two successive cell values, “GenCent er sOf Mass”  and 

“Y” , are read, then the owning object would make the following C++ call: al gBei ngBui l t -

>GenCent er sOf MassOn( ) .  A CCSVFi l e utility class performs the CSV parsing and encoding. 
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Figure 4.14: vtkHistoryI tem Class Diagram 
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4.5 Visualization 

For sensor data, there is no precisely known “ground truth”  range image registration.  Additionally, 

each algorithm variant that has a different method of classifying outliers produces different numerical 

registration error values for exactly the same transform on a particular set of range images.  Because of this, 

naïve objective tests that simply compare registration errors cannot be used alone.  Specifically, the 

registration needs to be viewed subjectively to determine what types of high-level errors it produces and/or 

avoids.  For example, consider a common occurrence when registering human face range images.   

Although the reported registration error may have been quite low, features such as the nose or ears would 

be so mismatched that the registration could not be considered valid, even though a local minimum was 

apparently reached (see Figure 4.15).  To account for these difficulties, we developed a graphical user 

interface (GUI) for the test-bed and several visualization support classes. 

4.5.1 The Test-Bed Graphical User Interface 

Although VTK has been instrumental in the implementation of the registration algorithm, its true 

strength is in visualization of data that have been processed.  We have created a visualization application 

that performs the following basic tasks: 

1. Initial registration 

2. Configuration of registration variants  

3. Reading and writing of  the CSV configuration and output files 

4. Analysis of the registration history  

The actual registration may be performed directly using the visualization program, or a configuration 

file may be output for later batch processing.  At the present time, the batch programs must be used if 

timing information is required. 
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The initial registration may be specified by one of two methods.  First, the user may manually 

manipulate each range image object with the mouse, using all six degrees of freedom.  This method 

generally results in extremely poor initial registrations.  For better initial registrations, the user may open a 

dialog that allows the user to pick corresponding point pairs (see Figure 4.16).  Once all of the pairs are 

chosen, the dialog is closed, and the ICP algorithm is run with a single iteration to register that small set of 

corresponding points. 

Other dialog boxes may be used to configure the registration variants.  For example, the user may 

specify which point correspondence analyzers to use and their parameter values.  Once an initial 

registration and the registration parameters have been specified, the GUI may be used to output a 

configuration CSV file of the type described in section 4.4.  These files may also be read back into the GUI 

at any time for visualization or modification purposes. 

In addition to assisting with the setting up of test files, the test-bed may be used to visually evaluate the 

 

Figure 4.15: Close-up view of the nose for  theFacesPat1_000U02-108U02_V70984_0003 test.  The 
lines shown connect closest point pairs.  
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results of a registration.  Through its main GUI dialog shown in Figure 4.17, many visualization options are 

available such as modifying the rendering style, mouse-based view interaction, and inclusion of data such 

as lines connecting closest point pairs.  A histogram of the distances between corresponding point pairs is 

also available, as is a window that outputs the state of the current registration as MATLAB source code.  A 

separate dialog may also be launched which allows for detailed numerical and graphical inspection of each 

step in the registration process (see Figure 4.18).  These visualization facilities are enhanced through 

several additional classes that we developed. 

4.5.2  vt kCent er At Or i gi nAl gor i t hm Class 

The built-in mouse interaction in VTK manipulates the scene based on the scene’s 3-D center.  

Unfortunately, the ranges images being registered may be placed in arbitrary places in 3-D space.  The 

vt kCent er At Or i gi nAl gor i t hm class solves this mismatch by calculating the center of mass of an 

entire set of inputs and transforming that center to the origin (see Figure 4.19).  In the test-bed GUI, this 

algorithm is applied at the end of the pipeline so as to preserve the registered range images in space close to 

their original location. 

4.5.3  vt kPoi nt Cor r espondenceAl gor i t hm Class 

The vt kPoi nt Cor r espondenceAl gor i t hm class is a relatively simple subclass of the base 

vt kFi l t er Al gor i t hm (see Figure 4.19).  Just as the vt kI CPAl gor i t hm does, it stores a list of 

vt kPoi nt Cor r espondenceAnal yzer s that attach extra data fields to points in the pipelines upon 

execution.  Unlike the vt kI CPAl gor i t hm however, the output data objects do preserve this extra 

information.  This class is generally used in conjunction with another such as the vt kCl osest Poi nt s-

Connect or Al gor i t hm. 

4.5.4  vt kCl osest Poi nt sConnect or Al gor i t hm Class  

When the Cl osest Poi nt . Br anch and Cl osest Poi nt . I D point fields have been specified, a 

vt kCl osest Poi nt sConnect or Al gor i t hm object (see Figure 4.19)may be used to construct lines 
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that connect closest point pairs, such as those shown in Figure 4.15.  This ability facilitates understanding 

which points have been selected as outliers by a point correspondence analyzer and better gauging local 

registration errors visually. 
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Figure 4.16: User  manually selecting corresponding point pairs for  initial registration of the 
Buddha_000U01-020U01 tests.   The yellow dots represent the points picked and have been enlarged 
for  this document.  This figure shows the second point in the 5th pair  being selected.   

 

Figure 4.17: The main GUI window for  setting up and analyzing registration tests 
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Figure 4.18: The history dialog give in-depth information about each ICP iteration and allows for  
visualization of the registration at each iteration. 
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Figure 4.19: Class Diagram for the Visualization vtkFilterAlgorithms 
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CHAPTER 5: 

EXPERIMENTAL ANALYSIS AND RESULTS 

In the absence of actual “ground truth”  registrations against which comparisons may be made, we used 

a combination of qualitative and quantitative measures to analyze the experimental results.  Qualitatively, 

we examined a sampling of the test data to verify trends and give meaning to the numerical results. We 

used the numerical data to guide this sampling process and produce additional statistics on the registration 

results. 

In Section 5.1, we describe the ways in which we have setup our experiments, and in Section 5.2 we 

propose several ways to analyze the quality of a range image registration.  Section 5.3 gives the key results 

that we found through our experiments.   At the end of this chapter, in Section 5.4 we will summarize our 

work and give our conclusions. 

5.1 Experimental Setup 

In setting up our experiments, we selected several views from four real-world objects, as shown in 

Figure 5.1.   From this set of views, pairs from an object were selected, then we used the GUI to produce an 

initial registration, as discussed in the Section 4.5.  For the tests we performed, we attempted to produce 

“good” , realistic initial registrations that visually appeared to only need a small amount of fine registration.   

Once the initial registration was created, we saved the base test configuration file to disk.  This 

configuration file was then duplicated and modified for each registration variant permutation desired.  The 

variables upon which these permutations are based for our tests are:  

• Data set 
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Angel_000 Angel_020 Angel_040 Angel_060

Buddha_000 Buddha_020 Buddha_040 Buddha_060

Buddha_120 Buddha_300 FacesPat1_000 FacesPat1_036

FacesPat1_072 FacesPat1_108 FacesPat1_144 FacesPat1_180

FacesPat1_216 FacesPat1_252 FacesRick1_000 FacesRick1_036

FacesRick1_072 FacesRick1_108
 

Figure 5.1: Texture-Mapped Rendering of the Range Images Used in Our  Exper iments.  Labels 
under  each image indicate the data set name followed by the range image name.  For  the “ Angel”   
and “ Buddha”  images, this number  is approximately equal to the number  of rotational degrees.  For  
the “ FacesPat1”  and “ FacesRick1”  images, this number  is roughly twice that angle. 
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• View Pair  

• Decimation Factor :  

• Outlier  Classifier  

• Outlier  Classifier  Parameter  

• Loop Exit Cr iter ion Threshold 

Our tests are named according to which values for these parameters were chosen.  For details on the 

naming conventions we used, see Appendix B.  Throughout this thesis, we have followed this convention 

when labeling figures and referring to specific experiments.   The remaining subsections will give details 

on the permutations chosen.  The final subsection of this section summarizes the permutations and  briefly 

describes our registration testing environment. 

5.1.1 Data Sets and View Pairs 

For this paper, we used range images from the “Angel” , “Buddha” , “FacesPat1” , and “FacesPat2”   data 

sets.     All of the range images on which we gathered data are shown in Figure 5.1. Most of the tests 

included the 000 image as one of the two images in the pair.  The narrowest view angle used in these tests 

was 20 degrees and the widest view angle was approximately 126 degrees.  Note that for the “FacesPat1” 

and “FacesRick1”  data sets, the numbers used to name the range images are actually double the 

approximate angle  (e.g. the 126 degree view of “FacesPat1”  is labeled as 252).   

The “Angel”  data set was supplied with our Minolta Vivid 700 range sensor, shown in Figure 5.2.  The 

most important feature of this data set is that the Angel_000 view is, for all intents and purposes, a superset 

of all of the other views.  The large wings on either side of the body block the camera’s view of the side 

and back of the angel.   

The next data set, “Buddha,”  was also supplied with our sensor.  The Buddha head is quite round and 

has some very nice 3D texture in the hair.  The ears served as one of the locations that was easiest to find 

misregistrations. 
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We acquired “FacesPat1” and “FacesRick1”  with our sensor.  Both of these proved to be smoother 

data sets than the Buddha images, however they provided more prominent noses and more complex ear 

structures. 

All of the above range images plus many others are available in our range image database located in 

the OSU SAMPL web site at http://sampl.eng.ohio-state.edu/.   

5.1.2 Decimation Factor 

We tested our experiments at different uniform decimation factors, including 1, 2, 4, 8, 16, and 32.  

Larger decimation factors indicate smaller tested images.  For example, a 200x200 range image decimated 

by a factor of 4 becomes a 50x50 range image where every fourth row and column from the original is 

selected. 

5.1.3 Outlier Classifiers and Parameters 

Three main point weight analyzer variants were used for our tests to perform outlier classification.  

First, the base algorithm introduced by [4] that classifies no points as outliers was used.  It requires no 

parameters.  The vt kMaxDi st Poi nt Wei ght Anal yzer  and the vt kVar i ancePoi nt Wei ght -

Anal yzer  based on [11] and [14], respectively, were also used.  These latter two were provided the same 

 

Figure 5.2: Photo of the Minolta Vivid 700 Range Sensor  [1] 
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set of values for their Expect edEr r or  and GoodRegi st r at i onDi st ance values, respectively.  We 

used a base value of 3. 5492mm for each of these, plus several multiples of this value.  This base value was 

obtained from the mean edge length of several initial data sets at a decimation factor of 2.   

5.1.4 Loop Exit Criterion Threshold 

As described in section 4.3, the loop exit criterion threshold is the maximum difference between 

successive registration errors required to consider an ICP sequence to have converged.  We chose the loop 

exit criterion values of 0. 3, 0. 03, and 0. 003 somewhat arbitrarily because they yielded good results 

with initial tests.  Except when analyzing the effects of the criterion value, the tightest threshold, 0. 003 

was generally used for qualitative tests. 

5.1.5 Experiment Runs 

After generating the test configuration files, four 450MHz Pentium II™ machines with 256MB of 

RAM were used to perform batch experiment runs.  The vast majority of the tests were performed on three 

machines configured specifically for performing the tests and had minimal software installed.  We collected 

data from a total of 7,699 tests for analysis, which consists of four different input objects with a total of 18 

view pairs.  For each of these tests, we recorded the configuration, the registration history described in the 

section 4.4, and the total execution time.  From the results files, we compiled a database of the final 

registration information, the execution time, and the number of iterations required for each test. 

5.2 Analysis Methodology 

After performing batch run tests of our registration experiments, we collected the results and examined 

key individual tests in the GUI.  Most of the examinations performed in the GUI were made to characterize 

how the outlier classifier choices affect the quality of the registration.  Typically, the no-outlier results were 

viewed as a baseline, then results from the two classifiers were viewed.  The following criteria were 

generally used to judge the quality of a registration in the GUI: 

1. Are there any gross registration errors?  
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2. Are there any mismatched edges?  

3. Are there “splotchy”  sections? 

Gross registration errors consist of registrations that are completely wrong.  For example, Figure 5.3 

shows two face range images where the nose from one is pointing out the ear of the other.   Occasionally, 

obvious registration errors such as these correspond to very low registration error values because, even 

though the registration is incorrect, the registration produces a low mean squared error.   

If the entire registration is not obviously incorrect, we next looked for key feature areas such as ears 

and noses on the face images because they were easy to examine with polygonal rendering.  Generally 

these feature areas would have edges in one or more range images allowing us to more easily see between 

the two range images.   Often, we instructed the GUI to draw lines connecting the corresponding point pairs 

via a vt kCl osest Poi nt sConnect or  filter such as was shown in Figure 4.15.  Figure 5.4 shows a 

case where the angel’s right wing is misregistered.  The pink edge of the wing intersects the cyan edge 

instead of being aligned with it. 

Finally, if there were no problems found in these feature areas, we examined large areas with relatively 

constant curvature.  Given a perfect registration of range images that have Gaussian noise, we expected that 

the two surfaces would cross over each other often, creating a “splotchy”  surface as in Figure 5.5.  A worse 

registration would not have this characteristic because the two surfaces would be too far away to have this 

interleaving, as shown in Figure 5.6.  Thus, we generally considered slightly splotchy surfaces to have a 

better registration than registrations displaying large expanses of non-interweaving  range image sections. 

Using these criteria, we qualitatively analyzed the registration results to determine which algorithm 

variants worked the best, and under what conditions.  Additional quantitative results were analyzed.  Key 

findings from those analyses are found in section 5.3.  

5.3 Experimental Results 

Upon examining our results, we determined the key effects of each of the experiment permutation 

variables.  We have broken down the results of these tests into the following categories: 

1. Effects of Outlier Classifier Type and Parameter Settings 
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2. Effects of Decimation 

3. Effects of the Loop Criterion Threshold Value 

For each of these effects sections detailed below, we will highlight key similarities and differences 

with the data sets we tested. 
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Figure 5.3: Snapshot of the FacesPat1_000U01-
144U01_N_0003 test.  Demonstrates a 
catastrophic failure of the registration when 
large non-over lapping regions exist and no 
cor responding point pairs are classified as 
outliers 

 

 

Figure 5.4: Snapshot of the Angel_000U02-
060U02_M08873_0003 test.  Demonstrates a mis-
registration at the edge of the wing in the circled 
region.   

 

 

Figure 5.5: Snapshot of the FacesRick1_000U01-
036U01_V01109125_0003 test.  Demonstrates 
good “ splotching.”  

 

Figure 5.6: Snapshot of FacesRick1_000U01-
036U01_M0221825_0003 test.  Demonstrates 
poor  “ splotching.”  
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5.3.1 Effects of Outlier Classifier Type and Parameter Settings 

One aspect that significantly affects the number of iterations and the total execution time of a test is 

whether the ICP process is deemed invalid before it converges.  When no classifier is used, 84% of the tests 

converged before an ICP iteration resulted in a worse registration than the previous iteration.  When either 

of the two outlier classifiers were used, this rate drops dramatically to approximately 25%.  We hypothesize 

that the following is happening:  

1. The outlier classifier marks outlier point pairs based on a registration. 

2. The next registration is calculated and applied given the set of inlier pairs.  This registration results 

in a small movement of the range image. 

3. The outlier classifier marks outlier points, but this time it selects a significantly different set of 

pairs as outliers. 

4. The next registration is calculated and applied on the new set of inlier pairs.  The different set of 

inliers results in a registration error greater than that calculated in step #2. 

We have found that often if we do not check that each ICP iteration’s error value is less than the 

previous iteration’s, the ICP cycle enters an infinite loop, apparently jittering between different sets of 

inliers and outlier alternately pulling the registration different directions upon different ICP iterations. 

Regardless of whether the ICP sequence was deemed to have converged, we found the effects of using 

an outlier classifier to be generally as expected.  When nearly the entire surface from the range image being 

registered overlaps the other range image, we found that not using any classifier produced the best results.  

We found this situation to be the case for the “Angel”  test set as well as for range image pairs that were 

only separated by a small angle.   

The “Angel”  test set approximated Besl’s original requirement of always registering a subset of an 

object to the object in the following way.  The base range image to which the other range images were 

registered was the frontal view of the angel.  This view captures the face, wings, and front of the body, only 

missing some of the sides of the body that form oblique angles to the camera.  All other views could not see 

much more of the original data because the wings blocked the sides and the back. 
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For the other data sets, as the amount of non-overlapping data increases, the classifiers become more 

important.  For most of the tests examined, we found that the vt kVar i ancePoi nt Wei ght Anal yzer  

performed the best, though for many tests, it was only slightly better than the vt kMaxDi st ancePoi nt -

Wei ght Anal yzer . 

A major deficiency in the algorithms we tested was that they generally had difficulty registering 

certain human-identifiable features of high curvature changes and edges of range images.  For example, the 

tips of the ear lobes in the face tests would generally be closely registered for the most successful tests, but 

often the curves at those tips did not match correctly.  We expect that including the smoothed normals as 

[6] suggests would assist in obtaining better results. 

One rather startling discovery we made was that the vt kVar i ancePoi nt Wei ght Anal yzer  was 

performing very well, but sometimes for the wrong reasons.  [14] claims that the histogram of the 

Euclidean distances between corresponding point pairs of a moderately well registered range image pair is 

distributed as a Gaussian curve.  Often we found this to be the case, as is shown Figure 5.7.  On the other 

hand, for the “FacesPat1”  and “FacesRick1”  images, the right leg of the histograms tend to be elevated, 

especially when large non-overlapping regions are present.   

Consider the curves in Figure 5.8. Both have Gaussian noise and are perfectly registered.  If we 

examine the overlapping region, the section that looks like a carat (^), we can plot a histogram of the 

distances between corresponding point pairs.  This histogram would be a Gaussian curve due to the noise in 

the data. If we examine the straight segment on the dashed curve, then every point on that segment will 

match with the left tip of the dotted carat section.  This produces a histogram resembling a pulse function.  

When these two histograms are added, we get the lower histogram shown in the figure.  In this case, the 

standard Gaussian fit leads us to erroneously base our outlier classification by the arithmetic mean rather 

than the peak of the Gaussian section. 
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In our “FacesPat1”  and “FacesRick1”  tests, we found that the above situation happened nearly all of 

the time.  Additionally, a typical arithmetic mean of the corresponding point pair distances was near 30mm.  

With an expected error parameter setting ranging from 0. 1109125mm to 7. 0984mm, this mean causes 

the registration to be considered so poor by [14] that the fallback classifier method must be used.  As 

shown in Figure 5.9, this effectively results in all point pairs corresponding to the right of the main peak in 

the histogram to be classified as outliers.  These results demonstrate a theoretical deficiency in Zhang’s 

outlier classifier when there are large non-overlapping sections.  Further experiments are required to 

determine whether using a more accurate histogram curve fit would allow us to more correctly extract the 

inlier corresponding point pairs. 
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Figure 5.7: A typical histogram of the distances between cor responding point pairs for  a final 
registration.  Note that the histogram resembles a Gaussian, as hypothesized by [14].  The histogram 
columns are shaded according to whether  the points in that histogram column have been classified as 
inliers or outliers.  This histogram is from the Angel_000U02-040U02_V35492_0003 test. 
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5.3.2 Effects of Decimation 

In general, we found that lower decimation factors produced better results, though they required 

greater execution time.  In particular, the simplistic brute-force nearest-neighbor search used for finding 

closest point pairs proved particularly slow for undecimated data sets due to its O(N2) complexity.  For 

example, the Buddha_300U01- 000U01_N_0003 test took approximately 1 minute, 45 seconds to load 

into the GUI.  The bulk of this time was spent performing the nearest neighbor search. After breaking up 

the input points into uniformly sized bins to improve search speed, we saw this loading time decrease to 40 

seconds.  In order to not skew the timing results for later tests, the original O(N2) algorithm was used for all 

tests and the enhanced search was only used for the GUI visualization.  We believe that a more 

sophisticated search such as a kd-tree based search would yield much faster results. 

As for the registration quality, when each test is viewed with the decimation factor used to perform the 

registration, the results tend to be quite good.  Unfortunately, the uniform decimation is sub-optimal for 

preserving the original shape.  If a registration performed on decimated data is viewed with undecimated 

data, the more subtle features of the shape show up and expose mis-registration problems.  We found that 

because the initial course hand registrations were close enough to the correct registration that decimation 

factors above 2 produced unsatisfactory results.  Higher decimation factors generally resulted in fine 

registrations that were qualitatively worse than the original course registration, when viewing the results 

with undecimated data. 

We did not find any strong correlation between the decimation factor and how the outlier classifier 

parameters affected whether an ICP iteration terminated successfully or became invalid  



 46 

Overlapping 
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Histograms of Corresponding Point
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Figure 5.8: Hypothesized source of non-Gaussian histograms of distances between cor responding 
point pairs 
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Figure 5.9: A histogram of the distances between corresponding point pairs for  a final registration 
typical of tests where there are large non-over lapping regions. The histogram columns are shaded 
according to whether  the points in that histogram column have been classified as inliers or  outliers. 
This histogram is from the FacesPat1_000U01-144U01_V01109125_003 test. 
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5.3.3 Effects of the Loop Criterion Threshold Value 

Modifying the loop criterion produced predictable results.  As tighter criteria were used, we noticed 

greater refinement in the registration path being followed.  If the ICP algorithm was moving toward an 

incorrect registration, a tighter criterion simply allowed it to move in closer to that incorrect registration.  

Additionally, the tighter the criterion, the greater chances there were that the ICP sequence would become 

invalidated. 

5.4 Summary and Conclusions 

In this chapter, we have described our test setup and the generation of the 7,699 tests for our 

experiments.  We have proposed a method of analyzing the quality of range image registrations, and given 

our analysis of our experiments using this method.    

In that analysis, we found that for range image pairs that approximate Besl’s requirement of full-

overlapping, using no outlier classifier generally yielded the best results.  For those pairs that had 

significant non-overlapping regions, both of the classifiers generally yielded good results, with the 

classifier based on Zhang’s work performing slightly better in most cases than the one based on the work of 

Schütz. 

We also found that although decimated data could be registered, those registrations tend to only be 

“good”  in the context of their decimation.  Once the range image pair is viewed undecimated, the 

registration imperfections readily manifest themselves.  On the flip-side, due to our rather brute-force 

approach to finding closest point pairs, decimation had an extremely significant impact on the execution 

time required. 

Additionally, we found that modifying the threshold for determining convergence of an ICP sequence 

had predictable results.  As that threshold is lowered, the sequence simply goes further along the path it is 

following unless it first encounters numerical or algorithmic instabilities. 

Through performing the tests and analyses, we benefited from the design goals that we followed.  The 

hooks for instrumentation allowed us to gather the required data from our experiments.  Further, we were 
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able to add new variants as necessary to our test-bed due to its extensible nature.  Internally, we reused 

code as we developed classes such as the vt kCl osest Poi nt sConnect or  that shares the point 

correspondence filters with the vt kI CPAl gor i t hm class, and as we built multiple applications that 

shared the library classes discussed in this thesis.  In the next chapter, we will examine ways in which the 

work we have done may be expanded even further and ways in which we may build upon the observations 

we have made here. 
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CHAPTER 6: 

FUTURE WORK 

While developing and using the test-bed, we encountered numerous areas in which our work may be 

extended and enhanced in the future.  Some of these ways include further improving the test-bed software 

infrastructure, implementing and testing additional existing registration algorithms and variants, and 

developing novel techniques and approaches to the registration problem. 

When we began developing the batch processing application, we encountered an infrastructure issue: 

serialization and deserialization of the registration pipeline configuration and results.  In this context, 

serialization is the process of converting a complex set of objects into a stream of bytes typically stored on 

disk.  Deserialization is the inverse process.  We used the CSV-based approach introduced in subsection 

4.4.3 due to its simplicity and our ready access to tools such as Microsoft Excel™ and PERL that could 

easily process CSV files.  Unfortunately, this approach required hand-coding of each serialization and 

deserialization routine.  As support grows in VTK, we expect to be able to enhance the software to support 

automatic recognition of new registration and helper classes in libraries and automated serialization and 

deserialization. 

Related to this infrastructure work, there are many other registration algorithms and variants that we 

have neither implemented nor specifically tested.  For example, Turk’s non-binary point weight classifier 

[13] may prove to yield better results around points that have a high probability of sensor error.  The 

spring-mass approach used by Eggert [6] and others may prove to be much faster than a pure ICP approach.  

By including not only the position, but also the normal in the corresponding point distances used for the 

registration, our results may improve significantly around features of high curvature. 

Finally, we would like to further characterize the distribution of errors due to sensor noise.  We expect 

that we will find the hypotheses presented in subsection 5.3.1 to be correct. The distribution of 



 50 

corresponding point distances may be approximated by a Gaussian curve from the overlapping regions of 

the range image plus a step function from non-overlapping regions when the object has strong globally 

smooth curvature.  If this theory holds true, we believe that we can develop more robust point classifiers 

that can more effectively extract the corresponding point pairs that actually belong to overlapping region in 

the range images. 
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APPENDIX A: 

HARDWARE AND SOFTWARE TOOLS USED 

• Hardware Tools 

• 450Mhz Pentium II with 256MB memory  

• Minolta Vivid 700 Non-Contact 3D Digitizer (http://www.minolta.com/)  

• Software Tools 

• Microsoft Visual Modeler™ 

• OSU range image database (http://sampl.eng.ohio-state.edu/)  

• Microsoft Excel™ for numerical analysis 

• Languages and APIs 

• C++ 

• VTK™ (http://www.kitware.com/vtk.html)  

• MFC™ for the GUI 

• PERL for support scripts (http://www.cpan.org/)  

• HTML for debugging output 
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APPENDIX B: 

TEST NAMING CONVENTIONS 

Buddha _ 000 U 04 - 040 U 04 _ M 0221825 _ 0003

Loop Exit Criterion Threshold
Delimiter
Outl ier Classifier Parameter
Outl ier Classifier
Delimiter
View 1 Decimation Factor
View 1 Decimation Type
View 1 Angle

Delimiter
Data set name

Delimiter
View 0 Decimation Factor
View 0 Decimation Type
View 0 Angle

• Data set name: Human readable logical name of the data set used.  In this paper, the data sets are 
“Angel” , “ Buddha” , “FacesPat1” , and “FacesPat2”are used.

• Delimiter : A combination of underscores and dashes are used as delimiter characters to make 
machine and human parsing of the test names easier.

• View Angle: Indicates an approximate view angle about the vertical axis.  For example a test with 
view angles of 000 and 040 would contain two range image views separated by approximately 40 
degrees.  The narrowest view angle used in these tests was 20 degrees and the widest view angle 
was approximately 126 degrees.  Note that for the “FacesPat1”  and “FacesRick1”  data sets, the 
names of the view angles are actually double the value described here (e.g. the 126 degree view of 
“FacesPat1”  is labelled as 252).

• View Decimation Type: For a given view, indicates what type of decimation was used.  For the 
tests we are reporting here, only uniform decimation was used, indicated by a “U” .

• View Decimation Factor : Indicates how much decimation was used.  In the example above, “04”  
indicates that every fourth row and column of the original range image was used.

• Outlier  Classifier : Indicates which outlier classifier was used. “ N”  stands for none, “M”  for 
vtkMaxDistancePointWeightAnalyzer, and “V”  for vtkVariancePointWeightAnalyzer.

• Outlier  Classifier  Par ameter : If the outlier classifer was not “ N” , this gives the classifier 
parameter.  To interpret these values, insert a decimal point after the first digit.  For example, 
“M0221825”  indicates that a vtkMaxDistancePointWeightAnalyzer was used with the 
ExpectedError value set to 0.221825.

• L oop Exit Cr iter ion Threshold: Indicates the maximum difference between successive 
registration errors required to consider an ICP sequence to have converged.  As with the outlier 
classifier parameter, a decimal point is logically inserted after the first digit, so “ 0003”  is 
interpreted as 0.003.

 

Figure B.1: Naming conventions used for  our  exper iments.  See section 5.1 for  additional details on 
the tests per formed. 
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