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ABSTRACT

We propose a method for automatic target recognition using an airborne laser

range finder for targets hiding under tree canopies. Our system attempts to infer local,

low-order, relatively flat surfaces and then reconstruct a mesh model of the object

to be identified. We then segment this mesh using a spectral clustering algorithm

to find larger shapes that make up the object, and we recognize the target using a

partial graph matcher. Given the noise and clutter levels, we demonstrate promising

results, with two of our objects achieving 100% recognition rates.

In this thesis we describe the final method we implemented as well as the shortcom-

ings of several alternative approaches attempted. For segmentation, we found that a

previous method based on local curvature estimates could not properly account for

swift changes in surface orientation. We also explored using a robust surface fitting

technique, but found that it produced unreliable segmentations. Finally, we investi-

gated a probabilistic framework for the segmentation algorithm and we explain why

that framework fails to work as well for our data as the more heuristic method used.
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CHAPTER 1

INTRODUCTION

1.1 Problem Description and Motivation

Our general objective is to reliably detect and recognize military and civilian

vehicles in forested areas given a set of 3D points describing the scene. In particular,

we focus on the object recognition portion of this problem.

Automatic recognition of objects from sensed data is a field of study that has

attracted a great deal of attention over the years, especially within the computer

vision community. In general, it is an under-constrained, ill-posed problem, yet one

excellent and readily-available system exists: the human visual system (as well as

the visual systems of other animals, to a greater and lesser extent). Unfortunately,

this system has its limitations. Years of training are required to develop each system,

camouflage on military vehicles can be very effective at foiling the system, and there

are increasingly high political costs to placing humans in harm’s way. As such, there is

an incentive to develop machine-based methods of automatically recognizing objects

of interest and being able to differentiate between, say a school bus full of children

and a tank. A practical system also should be able to excel where more traditional
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Figure 1.1: Recognition engine steps.

visual and photographic techniques fail, such as when vehicles of interest are located

under tree canopies, as will be studied in this thesis.

One of the most basic assumptions we have made in designing our system is that

vehicles are composed of large, low order, generally flat, piecewise smooth surface

segments. In other words, they consist of nearly flat roofs, smoothly-curving hoods,

side panels, and other such parts instead of looking like randomly scattered noise.

In contrast, natural vegetation exhibits much less structure and organization and

comprises more intricate surfaces.

1.2 Organization of the Thesis

In Fig. 1.1, we give an overview of the recognition system. Each of the blocks

in the diagram are explained in a chapter of this thesis. Chapter 2 describes how

a hypothetical deployed system might generate the set of 3D points describing the

scene and how we are synthesizing this process. In Chapter 3, we describe how we

estimate the local surface properties of the object of interest given a dense set of

points. Chapter 4 describes a method we are using to estimate the surface of the

entire object of interest given a sparse set of points. In Chapter 5, we describe

how we segment the reconstructed global surface to discover the parts of the object.

Chapter 6 describes how we recognize the identity of the object of interest using a
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graph matching technique based on the segmented parts. Chapter 7 summarizes the

contributions of our work and ways in which our work may be enhanced and extended.

In each chapter, we explore relevant prior work that has been used to accomplish

the task described in it.
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CHAPTER 2

RANGE IMAGE GENERATION

The system described in this thesis is most directly intended to explore issues

relating to a future airborne military automatic target recognition system. In our

working scenario, an unmanned airplane flies through a geographical region suspected

of containing hostile forces in the form of military vehicles hiding in forested areas.

Among the sensor equipment on this aircraft is a time-of-flight range sensor that takes

range images1 of places likely to have such enemy vehicles. Where there is evidence

of vehicle-like structure in such places, an object recognition system is employed to

determine what type of vehicle is present, if any. Pictorially, the goal of our system

is to take a scene such as the one rendered in Fig. 2.1a and produce a recognition

result such as the one depicted in 2.1b.

Some of the issues involved with such a system include

1. Determination of places likely to contain vehicles in the large geographical region

2. Accurate and fast 3D sensing

3. Alignment (registration) of the 3D data from different range images

1A range image gives partial 3D data about a scene. It is effectively a 2D image where the pixel
value is a distance measure instead of a reflectance value.
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Figure 2.1: System Goal. The goal of our system is to take a scene such as the
one rendered in (a) and produce a recognition result such as the one depicted in (b).

4. Determination of which parts of the range images correspond to a vehicle vs.

vegetation (initial detection)

5. Object recognition given the vehicle range points

In this thesis, we will focus primarily on the final issue: that of object recognition.

Because we do not expect the initial detection to be perfect, we also allow some

spurious 3D points to be sent through the system. The other issues just described

are outside the scope of this work.

Because the hypothetical sensor just described does not yet exist, we are simulat-

ing it by producing the range images using a ray tracing program. When ray tracing,

we wish to find the color and/or depth value for each point (pixel) on a regular 2D

grid called the screen, as shown in Fig. 2.2. For our system we use an orthographic

camera because we envision the sensor being used at a high stand-off distance with

a narrow view angle. In this case when ray tracing, there is a sensor for each pixels

position on the screen. A ray is passed from the sensor through the screen and con-

tinues until it intersects the first object (the shaded pentagon). If we are producing

5



Figure 2.2: 2D Ray Tracing. Ray tracing assuming an orthographic camera is being
used.

Figure 2.3: Renderings of the Objects Used. The five objects we used are shown
as intensity image renderings. All five are shown to the same scale.

an intensity image, we calculate the reflectance values from any light sources we have

defined (not shown). When producing range images, do is stored. For more detail on

ray tracing techniques, the reader may refer to virtually any introductory graphics

programming text including the one by Foley et al. [13] or by Watt and Watt [31].

To generate our data, we have modified a version of the popular freeware POV-

Ray ray tracer [39] to output the 3D global coordinates of each range point. We

have selected CAD models of five objects to test our recognition engine: earthmover,

6



Figure 2.4: Foliage. Two views of the tank object occluded by our pessimistic
simplified foliage model.

obj1, sedan, semi, and tank. Intensity image renderings of each are shown in Fig. 2.3.

For reference purposes, obj1 is 3.1 × 8.1 × 2.0m in size. All range images taken are

512 × 512 pixels, yielding an approximate pixel-to-pixel distance of 30mm using an

orthographic projection.

We created three scenes which we have called circle, flyby, and unoccluded. The

first two have simulated vegetation and the last has only the object and a ground-

plane. For the circle scene, a circular flight path was taken around the object of

interest with an angle of elevation of 75o with 12 evenly-spaced images taken about

the circle. For the flyby scene, the camera is flown in front of and behind the object

in two passes, taking a total of 20 range images. The camera begins taking range

images when it is placed at 450 to the object’s long axis in the ground plane. As was

the case with the circle scene, the angle of elevation of the camera is 75o. For the

unoccluded, we place the camera at each vertex of a dodecahedron centered on the

object and retain only those range images produced by cameras above ground level

(10 of them).

For the foliage, we initially used tree models designed to look realistic in intensity

images such as those used to generate Fig. 2.1a. We unfortunately found that these

7



models were both extremely time consuming for the renderer and did not provide

much occlusion for the vehicles when all of the range images in a scene were put

together. After attempting a few other foliage models, we settled on a rather simple

one that was easy to render yet provided sufficient occlusion. For each scene, we

created 500 randomly placed thin discs. These discs were placed in a vertical band

starting at the top of the vehicle and going up 2 meters. They were spread out over

a square 12.2× 12.2 meters and had a radius of 100mm. Fig. 2.4 shows two example

renderings of tank using this foliage model.

After generating the scenes, we added isotropic Gaussian noise to the range points

where the standard deviation of the noise was 0, 2, 4, 8, 16, and 32mm.

We assumed that the initial detection system will be able to localize the object

of interest reasonably well, so we retained all points that lay within a bounding box

centered on the object 10m long, 4m wide, and 4m tall.

In summary, we generate a set of synthetic range images for each object pictured

in three scenes. The unoccluded scene has no vegetation, has the camera positions

placed even about the view sphere, and is used to build the modelbase. The circle

and flyby scenes include pessimistically-modelled vegetation and use plausible aircraft

flight paths. In all cases, varying levels of isotropic Gaussian noise are added to the

range point coordinates.
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CHAPTER 3

LOCAL SURFACE FITTING

In the introduction (Section 1.1), we stated one of our basic assumptions: vehicles

are well-described by large, piecewise smooth, “low order”, flat surface segments.

Fig. 3.1 shows some example curves that represent these concepts assuming that we

consider each side of the roughly rectangular shapes to be different “pieces.” We

assume that vehicle pieces in which we are interested look like (c) and (d), not like

(a) or (b).

Our recognition system is designed to match groupings of points that imply these

well-behaved surfaces. In order to do so, we must first form reliable local surface

estimates.

Figure 3.1: Curves that do and do not consist of large, piecewise smooth,
flat, low order segments. Various types of curves that each have four “flat” pieces
roughly corresponding to the sides of a rectangle. (a) non-piecewise smooth and high
order (b) low order, but non-piecewise smooth (c) and (d) piecewise smooth and low
order.
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We have found that our surface segmentation algorithm (Chapter 5) is sensitive to

the manner in which the local surfaces are estimated. First, the segmenter does not

deal well with large numbers of range points (e.g. our tank object has over 220,000

raw points). Secondly, the surface fitting process tends to produce smoothed surface

estimates if not done properly. Our segmentation algorithm relies on discontinuities

between the low order surface segments, which smoothing destroys.

In Section 3.2, we will describe how we subsample the initial point cloud (collection

of unorganized points) and do so in a way that avoids the smoothing problem just

mentioned. We describe the particulars of our local surface fitting using rotated

biquadratics in Sections 3.3 and 3.4.

3.1 Prior Work

Before describing the methods we have used for local surface description, we give a

brief overview of common local surface descriptions used by researchers to compactly

describe surfaces for object modelling and recognition.

By far, the most common method for representing surfaces is as piecewise planar

shapes, or polygonal meshes. This representation is the simplest and is very amenable

to hardware implementations for rendering purposes. For objects that are indeed

planar, the approximation is very good. Unfortunately, this representation has some

major drawbacks. It may poorly represent shapes having many bumps, wiggles, and

tight curves unless an extremely large number of polygons are used. Moreover, it is

not always descriptive enough to accurately convey information needed for surface

analysis.
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One of the more common types of analysis desired for recognition purposes is

the calculation of surface curvature. Flynn and Jain [11] have explored a number

of different techniques for estimating curvature on meshes, including using a bicubic

polynomial fit as opposed to only using the planar polygonal facets. We have adopted

Srikantiah’s usage of a slightly simpler biquadratic [26]. This method will be described

in more detail in sections 3.3 and 3.4

3.2 Point Selection

Before actually estimating the surfaces, we must decide where we need the esti-

mates so that we avoid overburdening the recognition system. We have experimented

with several methods, and in the remainder of this section, we describe the two most

interesting methods of these.

In our discussion, we use the term “point cloud” to refer to all of the original range

points. The “subsampled points” are those that have been selected to have surface

estimates made and are preserved in the recognition pipeline after the local surface

estimation step.

3.2.1 Random Selection

First, we tried randomly selecting 5% to 10% of the points from the point cloud and

estimating the local surface characteristics by looking at their local neighborhoods.

We used this approach because we wanted to avoid artificially introducing structure in

our data by evenly spacing the points. Once the points were selected, we estimated the

surface by performing a least-squares biquadratic fit to all subsampled points within

some radius.
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Figure 3.2: Quadratic fits near a corner. (a), (b), and (c) show approximate
curve fits given the local neighborhood defined by the filled point and the dashed
circle. (d) shows the three superimposed curve fits, zoomed in.

As a baseline, we chose a neighborhood radius such that about 90% of the points

had local neighborhoods with at least 8-10 other points. This resulted in very tight,

very local biquadratic fits. Unfortunately, when we began trying to group points

based on local fits (chapter 5), we saw very poor results. We experimented with

increasing the neighborhood radius by a factor of eight and we still could not get

good segmentations. Despite attempts to adjust the neighborhood radius and vari-

ous parameters of the segmentation algorithm, we typically had one or more of the

following problems: execution times on the order of hours or days, non-convergence

of the segmentation algorithm, and meaningless segmentations. In summary, this

approach was unstable.

Although we found that additional factors were at play, a fundamental problem

with the approach just given was that we had introduced smoothing into the surface

fitting procedure. We will illustrate the problem using a 2D analogy. In Fig. 3.2a-c,

we see three local curve fits near a corner, given three neighboring center points. As

seen in Fig. 3.2d, within the local neighborhoods, these curve fits are quite similar,

even though points 1 and 3 arose from different smooth curves, and point 2 from

a boundary between these curves. If noise were added to the point locations, the
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Fit errors due 
to the corner 

Lack of fit errors 
away from 
the corner 

Fit errors due to
the corner 

Fit errors 
due to noise 

(a) (b) 

No noise σ = 0.3 

Figure 3.3: Noise effects on quadratic fits. (a) Shows a series of quadratic fits for
a neighborhood radius of 3 with no noise. The only fit errors present are due to the
corner. (b) Shows the same points, with additive isotropic Gaussian noise (σ = 0.3).
The fit errors far from the corner are very similar to those near the corner.

differences between these fits would look very similar to the differences between fits

that are only estimated from points belonging to the same curve (see Fig. 3.3). In

contrast to this situation, we would like all three points to produce very different

surface fits even though they are closest neighbors.

3.2.2 Voxelized Selection

To avoid smoothing across surface parameter discontinuities as just seen, we would

prefer that each range image point participate in one and only one local surface fit.

Put more precisely, we would like the following to be true

⋃

i

Ni = P
∧ ⋂

i

Ni = � (3.1)

where P is the set of all range points, Ni is the set of points in the local neighborhood

of si ∈ S, and S (not shown in Eqn. 3.1) is the set of points selected by subsampling.

Two possible methods of creating the disjoint neighborhoods described in Eqn.

3.1 are as follows. First, we could continue to randomly select S, as was done in
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section 3.2.1, but restrict each point in P to the neighborhood of its closest point in

S. A second approach is to partition the space into voxel (cube-shaped) bins. All

points in voxel i are assigned to neighborhood Ni, and the point in Ni nearest the

center becomes si, the point retained after subsampling. Because of its computational

efficiency, we have chosen the second approach.

Once we have assigned each input range point to a voxel, we evaluate each voxel

to determine whether it appears to represent a surface of interest. If a voxel has too

few points, then we cannot reliably estimate the local surface attributes or there may

effectively be no surface at all, so we discard it. Additionally, if we have a high fit

error (Section 3.4), then the voxel does not contain a surface well described by our

model (e.g. it may contain points from scattered leaves), and again we discard it. For

our baseline tests with noiseless data, the voxels are 128mm on edge, we require each

one to have at least 32 points, and we require the root mean square (RMS) fit error

to be 8mm or less.

3.3 Local Coordinate Frame

Once we have selected a set of points, we are ready to estimate the local surface

properties. For the surface fitting that will be described in the next Section, we need

to establish a local coordinate system for the point neighborhood that places the

surface normal in the direction of a preset axis, in our case the w-axis. For this, we

use a standard principal components analysis (PCA) algorithm that works by finding

the eigenvalues of the sample covariance matrix:

Si =
1

|Ni|

|Ni|
∑

j=1

[

nij − n̂i

] [

nij − n̂i

]T
(3.2)
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Figure 3.4: PCA of a curve. The local coordinate system for a set of 2D points
was found via principal component analysis (PCA). X’s are the input points, O is the
centroid of the X’s, and the two arrows point in the directions of the two eigenvectors
of the covariance matrix of these points and are scaled according to the square root
of their eigenvalues.

where nij is the jth point in the neighborhood, |Ni| is the number of elements in

neighborhood i, and n̂i is the centroid n̂i =
∑

j nij/|Ni|.

Eigenvector v1 of S corresponding to the smallest eigenvalue points in the direction

of least spread of the points in Ni. Likewise, eigenvector v3 corresponding to the

largest eigenvector points in the direction of greatest spread of the points. These

eigenvectors are guaranteed to point in orthogonal directions. Fig. 3.4 shows an

example of the results of the PCA analysis for a set of 2D points. A more detailed

discussion of the theoretical underpinnings of PCA can be found in Strang’s linear

algebra book [28] by combining the discussion of covariance matrices (pp. 203–205)

with the sections explaining Rayleigh-Ritz (pp. 347–360). Additionally, Flynn and

Jain present justifications for using this approach [10].

Once we establish this new coordinate system, we create a homogeneous trans-

formation matrix that converts from (x, y, z) coordinates to (u, v, w). Homogeneous

transforms are represented by 4×4 matrices and are capable of combining both rota-

tion and translation into a single matrix multiplication operation. The homogeneous
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system combines the usual (x, y, z) coordinates with an α component that can be

thought of as a scale parameter, e.g. [x̃, ỹ, z̃, α]T refers to a point at [ x̃
α
, ỹ

α
, z̃

α
]T in the

usual Cartesian coordinate system. The transform we use is:

puvwα = Tpxyz1 =









· · · v3 · · · −n̂i.x
· · · v2 · · · −n̂i.y
· · · v1 · · · −n̂i.z
0 0 0 1

















pxyz1.x
pxyz1.y
pxyz1.z

1









(3.3)

where n̂i is the neighborhood centroid and 4.x is the x component of vector 4.

This transformation moves p into a coordinate system centered at ni and where

the u direction is aligned with the the largest eigenvector, v3, the v direction with

v2, and the w direction with the smallest eigenvector, v1. For a fuller discussion of

homogeneous coordinates and how they can be used to combine both rotation and

translation into a single matrix, please refer to the OpenGL Programming Guide [34].

3.4 Biquadratic Surface Fit

Once we have transformed our neighborhood of points into its local (u, v, w) co-

ordinate system, we are ready to fit a surface to those points. We experimented with

doing planar fits (e.g. only using the PCA output), but found that planes were not

descriptive enough to describe our object parts well. Instead, we adopted Srikan-

tiah’s least squares biquadratic fit [26, pp. 28–29]. For it, we wish to describe the

local surface as the following function:

w = f (u, v) = a0u
2 + a1uv + a2v

2 + a3u + a4v + a5 (3.4)
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Figure 3.5: Biquadratic fit on obj1. Sample biquadratic fit extended out on the
global surface. (a) shows the whole object. (b) shows a point (circled) whose voxel
was used to estimate a biquadratic, points from neighboring voxel centroids (x’s), and
the biquadratic (shaded surface). The biquadratic surface in (b) has been clipped by
the highlighted sphere shown in (a).

For the collection of neighborhood points, we can express this equation in matrix

form as follows:

Ba =











u2
0 u0v0 v2

0 u0 v0 1
u2

1 u1v1 v2
1 u1 v1 1

u2
2 u2v2 v2

2 u2 v2 1
...

...
...

...
...

...



























a0

a1

a2

a3

a4

a5

















≈











w0

w1

w2
...











(3.5)

By taking the Moore-Penrose pseudo-inverse of B, we are able to obtain a least-

squares solution to this problem that minimizes the squared distance between each

point and the surface in the w direction.

Note that in order for B to be full-rank there must be at least six points in

the neighborhood, selected to produce linearly independent rows (non-collinear, for

example). More points are necessary for accurate surface estimation as noise is added

to the system. Fig. 3.5 shows an example of a local biquadratic fit extended out

beyond the original voxel.
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3.5 Summary

In summary, our surface segmentation scheme (to be described in Chapter 5)

requires that we have estimates of the local surface characteristics for a subset of

the original points. To avoid excessive smoothing, we partition the original region of

interest into cubic voxel bins. Out of each of these bins, we retain at most one point

and the information derived from fitting an oriented biquadratic surface to the points

in the bin.

In the rest of this thesis neighborhoods, additional surface fits, and meshes all are

based on the subsampled points only, unless explicitly stated otherwise. The original

range points discarded by subsampling are not examined further.
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CHAPTER 4

GLOBAL SURFACE RECONSTRUCTION

After completing the local surface fits described in the previous chapter, we are not

yet prepared to begin grouping points into larger surfaces. This is because our points

have no topology information; all we have are a set of attributed points scattered

in space with no encoded connectivity. In other words, our data look like Fig. 4.1a,

without the globally connected surface of 4.1b.

This topological information is useful for a number of reasons:

• It allows for easy, unambiguous identification of nearest neighbors.

Figure 4.1: The earthmover object without and with topology. (a) with
only its retained point samples and (b) after global surface reconstruction (e.g. with
topological information). Voxel size used: 64mm.
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Figure 4.2: False neighbors due to lack of topology. (a) some points are incor-
rectly grouped with point p1. (b) Introducing topological information alleviates this
condition.

• Searches over sets of small cardinality can be implemented with efficient and

simple recursive algorithms.

• Renderings such as Fig. 4.1b become possible and ease the qualitative evaluation

of results.

• It allows us to easily avoid incorrect grouping of nearby surfaces.

To explain the “incorrect grouping” problem, consider the set of points in Fig. 4.2.

Suppose that we wish to group points that fall within some distance of each point.

For point p2 to be grouped with either of its immediate neighbors, we must make this

distance relatively large. If we use this same radius for point p1, many points that

obviously2 come from a separate surface get included in its neighborhood. In Fig.

4.2a, we would like only the darkly shaded points near p1 to be used, not the lightly

shaded (red) points. If we reconstruct the surface as in Fig. 4.2b and walk along our

mesh, we can avoid considering the “false neighbors.”

For these reasons, we perform surface reconstruction on the points selected for

receiving local surface fits (Chapter 3). Note that we did not reconstruct the surface

2It is obvious to the human observer who can observe the overall point configuration
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before doing the local fits because the reconstruction is a computationally expensive

process when the full set of range points are used. Additionally, at the biquadratic

estimation stage, intra-voxel topology is a non-issue because the voxels are small and

we are only interested in voxels representing surface patches which have low curvatures

relative to the voxel size.

In Section 4.1 we describe existing methods for performing surface reconstruc-

tion. We then explain some preliminary concepts in Section 4.2 that are necessary

to understand a 2D curve reconstruction algorithm (Section 4.3) and its generaliza-

tion to 3D surfaces (Section 4.4) that we use. In Section 4.5 we describe some mesh

post-processing that we perform to clean up our reconstructed surface.

4.1 Prior Work

A number of different techniques have been proposed for reconstructing surfaces

from unorganized point clouds. One popular method proposed by Hoppe et. al [16]

and adapted by Curless and Levoy [6] finds zero locations for the signed distance

function. The surface is then reconstructed using an algorithm such as Marching

Cubes [18]. Though intuitive, this method makes no guarantees about the topological

correctness of the reconstructed shape.

In order to add these guarantees, Amenta et. al developed the crust algorithm

which is based on analysis of the Voronoi diagram of the sample points [1]. Cocone, a

descendant of crust is based on the same concepts, but is faster and has weaker sam-

pling constraints [2]. We employ cocone for our surface reconstruction and explain

the algorithm here.
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Figure 4.3: Voronoi diagram of a sampled curve. (a) a set of points sampled
from a curve (b) the Voronoi cell of point p–shaded (c) the Voronoi diagram of the
entire point set

4.2 Preliminaries

In discussing cocone, we will begin by exploring some preliminary concepts from

computational geometry and topology. After presenting a simple curve reconstruction

technique, we will describe the cocone surface reconstruction algorithm itself.

4.2.1 Voronoi Diagrams

The first preliminary topic we will discuss is the Voronoi diagram of a set of

sample points. To simplify this discussion, we restrict ourselves to shapes and point

sets embedded in 2- or 3- dimensional spaces.

Consider a point p from a set of sample points, P, such as the one shown in Fig.

4.3a. The Voronoi cell of p is the set of all points in the space closer to p than to

any other sample points in P (note that a “sample point” is a location that has been

measured or identified, whereas a general “point” is any location in the space). In

Fig. 4.3b, the shaded region is the Voronoi cell of p. The Voronoi facets, edges, and

vertices are the facets (for 3D only), edges and vertices of those cells. The Voronoi
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Figure 4.4: Three examples of 1D manifolds embedded in a 2D space.

diagram is the set of all Voronoi cells, facets (for 3D only), edges, and vertices for all

of the sample points being considered (Fig. 4.3c). Note that the Voronoi facets and

edges are always perpendicular to the line segment connecting the two sample points

in cells separated by the facet or edge.

4.2.2 Medial Axis

For the Voronoi diagram, we assumed a measured set of points drawn from a

shape. For the medial axis, we will consider not the sample points but the original

shape itself. To be precise in our definition of “shape,” we will consider N-1 or lower

dimensional smooth manifolds (possibly) with boundaries embedded in N dimensional

spaces. For example, in a three-dimensional space, a “shape” is a (possibly non-

closed) surface, curve, or lone point without creases, folds, or hard edges. Fig. 4.4

shows some examples of 1D manifolds (curves) embedded in a 2D space.

A medial ball is a ball (i.e. a circle in 2D, a sphere in 3D, etc.) that touches

the shape tangentially on at least two points. For a manifold without boundary, the

medial axis is defined to be the set of points equidistant from at least two surface

points, or as the locus of all of medial ball centers. The precise definition of the

medial axis for manifolds with boundaries is beyond the scope of this paper. Fig. 4.5
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Figure 4.5: Medial axis of a closed curve. A shape (solid line) with several
medial balls (circles) and its medial axis (dashed lines)

shows an example of a 1D shape (solid line) and several of its medial balls (circles)

whose centers form the medial axis (dashed lines).

4.2.3 ε-sampling

The distance to the closest point on the medial axis from a given point on the shape

is called the feature distance. For the curve and surface reconstruction algorithms we

will discuss, it is important to sample the shape in a manner proportional to the

local feature distance. Conceptually, regions of high curvature are close to the medial

axis and must be sampled more finely to capture all of the surface detail. Flat,

well-separated regions are far from the medial axis and only a few sample points are

necessary for properly reconstructing those portions of the shape. A shape that has

been ε-sampled is one that, for each sample point, there is a neighboring sample point

at most ε times the feature distance away (0 < ε < 1 in general). Fig. 4.6 shows a

portion of the curve from Fig. 4.5 that has been ε-sampled where ε = 0.5.
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Figure 4.6: ε−sampling. A portion of a curve (solid line) with its medial axis
(dashed line) that is ε-sampled where ε = 0.5.

4.2.4 Correctness

The curve and surface reconstruction algorithms about to be discussed are proved

to be topologically and geometrically “correct” when ε ≤ 1/3 [8] and ε ≤ 0.06 [2],

respectively. In lay terms, topological correctness implies that the reconstructed

shape has the same number of holes and pieces as the original shape. Geometrical

correctness in this case implies the following for surface reconstruction when ε ≤ 0.06

[2], given the feature distance, f(p) for each sample point p:

• Any point on the reconstructed mesh is at most 0.088f(p) from the true surface.

• The maximum error in any triangle face normal is 42◦.

• The maximum error in any vertex normal is 28◦.

In practice, ε may be much larger than the values referenced here and still yield

a correct or nearly-correct reconstruction. In our experience, the algorithm generally

fails gracefully when undersampling conditions occur (as they frequently do for us).
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Figure 4.7: Curve reconstruction. (a) The Voronoi diagram of a set of points
sampled from a curve. (b) All nearest neighbor pairs are connected. (c) Point p with
the half-plane, H opposite its nearest neighbor, s shaded. Point s is the closest to p
in H. (d) The final reconstructed curve.

4.3 Curve Reconstruction

Algorithm 1 Curve Reconstruction

Compute the Voronoi diagram of the sample points
for all points p do

Find the nearest neighbor s
Connect p and s with a line segment ps
Form the half-plane H whose edge runs through p and is perpendicular

to ps and does not include s
Find the nearest neighbor q in H
If segment pq does not yet exist, connect p and q with a line segment pq

end for

Fortunately, reconstructing a curve is intuitive and straightforward, as given in

Algorithm 1 and illustrated in Fig. 4.7. First, the Voronoi diagram of the point set

is computed (Fig. 4.7a). Then, line segments are created connecting each point to

its nearest neighbor, as in Fig. 4.7b. For each point that does not have two edges

connected to it, a half-plane is temporarily constructed. This half-plane’s edge is

perpendicular to the existing line segment (connecting the current point to its nearest
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Figure 4.8: Elongated vs. wide Voronoi cells. Solid lines denote Voronoi edges
caused by close neighboring points. Dashed lines denote Voronoi edges close to the
medial axis. (b) has been sampled more densely and has more elongated cells.

neighbor) and runs through the point (Fig. 4.7c). Next, the nearest neighbor to the

point in the half-plane is used to construct the point’s second line segment. If there

are no points in the half-plane, then an endpoint has been detected for the curve.

Once this procedure has been completed for all points, the curve is reconstructed

(Fig. 4.7d). As stated before, assuming that the curve is ε−sampled at ε ≤ 1/3, this

algorithm is provably correct.

4.4 Cocone Surface Reconstruction Algorithm

To reconstruct surfaces (2D manifolds with edges embedded in a 3D Euclidean

vector space), we need a slightly more sophisticated algorithm that examines the

Voronoi diagram of the sample points in a little more detail.

First, we note that Voronoi boundaries (the faces and edges bordering Voronoi

cells) are caused by either two neighboring samples being close to each other or by

the medial axis being close to a sample point, as shown in Fig. 4.8. The location of

the medial axis does not change under denser sampling conditions. As such, when we

sample more finely, the Voronoi cells become elongated.
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Figure 4.9: Pole vector in a 3D Voronoi cell.

Figure 4.10: Cocone region. Co-cone region for the cell from Fig. 4.9

We define the pole vector to be the vector going from the sample point to the

farthest corner of the Voronoi cell (Fig. 4.9). When the Voronoi cell is unbounded,

any vector that does not intersect a cell boundary may be chosen as the pole vector.

As the cells get skinnier, the pole vector more closely approximates the surface normal

at the sample point. As shown by Amenta [2], when ε < 0.1, the pole vector will be

within π
8

radians of the true surface normal.

Once we have found the pole vectors, we define the co-cone region of a Voronoi

cell to be the volume between the cones π
8

above and below the plane perpendicular

to the pole vector (Fig. 4.10). The true surface is guaranteed to lie entirely in this
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co-cone region. With these definitions, we are ready to specify the cocone algorithm

given in Algorithm 2.

Algorithm 2 Surface Reconstruction

Find the Voronoi diagram of the sample points
for all cells in the diagram do

Find the co-cone region
For each Voronoi facet in the co-cone region, create a surface edge starting at
that the cell’s sample point and going to the neighboring cell’s sample point.

end for

After completing this procedure, some cleanup work is necessary to remove false

and redundant surfaces and to detect regions of undersampling. These procedures

are detailed in [7].

4.5 Mesh Post-Processing

In addition to the cleanup work done by cocone itself, we have found it useful to

prune out parts of the mesh that tend to confuse the surface segmentation algorithm

described in Chapter 5. We prune facets that have fewer than three sides, have large

areas, and/or have high aspect ratios. We also prune vertices that have low elevations

and/or are isolated points. Facets with fewer than three sides can appear when we

prune some but not all of the vertices of a facet.

We first remove any vertices that have too low elevations because points that are

near the ground are much more likely to arise from grass, bushes, and other low-level

foliage. We are currently removing any points lower than 300mm from the ground.

After doing so, we remove any degenerate facets that have fewer than three vertices.

Although our analysis algorithms could actually handle these degeneracies, it is useful
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Figure 4.11: Mesh Pruning Examples. (a) is a POV-Ray shaded rendering of
the earthmover object. (b) shows the initial reconstructed mesh, with several false
and very large triangles. (c) The large triangles have been removed. (d) A false-color
POV-Ray rendering of an earthmover scene with simplified-leaf occlusions. (e) The
initial mesh. Many false triangles with high aspect ratios have been created that join
randomly scattered leaves.

to prune them to ease the rendering of results and these degenerate points quite often

lie on what will be future segmentation boundaries.

Because we very frequently violate the required ε-sampling conditions, cocone

occasionally produces false facets such as the ones shown in Fig. 4.11b going from the

rake to the top of the vehicle (see Fig. 4.11a for a rendering of the original vehicle

shape). We have found that by pruning facets whose area is 40, 000mm2 or greater

that we are able to very reliably remove such false facets yet retain all of the true

facets (see Fig. 4.11c).

Our next problem arises because we are subsampling our original point cloud.

When we add foliage such as the leaves shown in Fig. 4.11d and then subsample

the point cloud, the region that contains the leaves essentially becomes a volume
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with randomly-placed points scattered in it. The version of cocone we are using is

designed to extract only surfaces and not volumes3. As a result, it tends to create

triangles adjoining different leaves, as shown in 4.11e. These false surfaces tend to

confuse the surface segmentation and graph matching algorithms. Fortunately, unlike

the well-sampled portions of the vehicle surface, the triangles in the foliage area tend

to have high aspect ratios (longest edge length / shortest edge). We remove any

triangles whose aspect ratio is above 1.75. This process occasionally results in the

removal of correct triangles, but not so many that serious problems result.

Once we have removed the spurious triangles, we often are left with orphaned

points that belong to no valid triangle. These points are now discarded.

3
cocone has been generalized to handle N-dimensional manifolds with boundaries [9]
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CHAPTER 5

SURFACE SEGMENTATION

Once we have a reconstructed surface (Chapter 4) whose points are attributed

with local surface estimates (Chapter 3), we are ready to segment the surface into

the parts that imply flat, low order surface patches. Once we have these patches or

segments, we can attempt to match them to ones in the modelbase in order to identify

the object seen.

5.1 Assumptions and Motivation

There is a multitude of recognition algorithms that do not require segmentation to

be performed, some of which are mentioned in Section 6.1; however, we have chosen

to take a segmentation approach because of several assumptions that we make about

how point data will be gathered in an eventual deployed application.

In such a system, we envision a frequent condition where entire vehicle faces are

not sampled. This could happen because a vehicle is parked near a large occluding

object such as a cliff, another vehicle, a building, or very dense foliage. Additionally,

the flying sensor may not have the opportunity to sample the vehicle from enough

different viewpoints to see all of the faces. By segmenting the surface, we can apply

our recognition techniques to only the parts that were seen.
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Figure 5.1: Unreliable segmentations using robust sequential estimators.
These six segmentations are of the same obj1 object without occlusion given differ-
ent additive Gaussian noise parameters. Note that segmentation boundaries change
significantly with different noise inputs.

Secondly, we do not assume that optimal sampling conditions will be present.

A body of techniques look for features such as crease edges, which are very useful

features for the human visual system. Unfortunately, we do not expect those edges

to be sampled well. The segmentation approach we use places the focus on finding

consistent surface estimates and thus takes the focus away from these edges.

We expect a segmentation scheme to be “reliable” in order to be useful for us. By

this we mean that the algorithm should be able to provide the same segments under

different sampling and noise conditions.

5.2 Prior Work

After briefly discussing some alternate techniques, we will spend most of this

section talking about spectral clustering methods for segmentation.
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5.2.1 Miscellaneous Segmentation Techniques

Mirza and Boyer [19] used a robust weighted least-squares fit to estimate bi-

quadratic surface patch fits to range data. Their method assumes that additive range

errors are of the form of a Student-t distribution with the degree of freedom between

1 and 2. Their efficient algorithm demonstrates being able to detect boundaries be-

tween different surfaces as well as ignore gross outlier data. Unfortunately, for our

data a näive implementation of their algorithm produces unreliable segmentations,

as seen in Fig. 5.1. A more complete attempt based on later work by them [3] would

likely yield better results.

Srikantiah [26] developed a pseudo-multi-scale method for segmenting meshes us-

ing surface curvature estimates found from local biquadratic surface patch fits. He

first uses a region growing technique to group together surface points that all have

the same mean and Gaussian curvatures, within a tolerance window. After finding all

such large segments, he extracts segments that have only similar mean or Gaussian

curvatures. This was in fact the first segmentation method we attempted to use on

our data.

Unfortunately, we have a very frequent condition that occurs in our data that

foils his approach: we have neighboring segments that have the same curvature but

different orientations and often lack a well-sampled boundary. This results in points

that are immediate neighbors having the same curvature estimates even though their

normals point in different directions. Fig. 5.2 shows an example of this condition.

For 2D curves, this condition may not happen often. For 3D surfaces, this condition

need only happen with a single pair of points from the neighboring surfaces since a

strict region growing method is used.
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Figure 5.2: Same curvature estimates, inconsistent orientations. If pi and pj

are neighboring points on a mesh, they may both have the same curvature estimates
(i.e. zero here) even though their normal orientations clearly indicate they belong
to different surfaces. The dashed circles represent the local neighborhood size used
when estimating the curvature. The bold lines represent the local curve (surface) fit.

5.2.2 Spectral Clustering

A number of researchers have recently been examining spectral methods for seg-

mentation, clustering, and related problems [17], [20], [21], [22], [25], [30], [32], [35]. In

general, these methods require a symmetric affinity matrix A that defines a similarity

measure between points pi and pj, often of the form

Ai,j =
M
∏

m=1

(

exp

(

−|| dm (ti, tj) ||2
2σm

2

))

(5.1)

where ti is a set of attributes for point pi, σm is a free parameter generally related to

an estimate of the measurement noise, M is the number of distance measures used,

and dm (·, ·) is some distance measure.

Ideally, the affinity between points that belong in the same segment is one and the

affinity between points not in the same segment is zero. Under these conditions, A is

a block diagonal matrix. This means that, after possible row-column permutations,
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it has the following form (assuming there are two segments in this example)

A =

[

B Z
ZT C

]

(5.2)

where B and C are square matrices of ones and Z is a rectangular matrix of all zeros.

In practice, B and C must contain a large number of large affinity values and Z must

have only a few large values and/or consist of small values.

The eigenvalue corresponding to the largest eigenvector of A will contain ones for

all points that belong to the largest cluster and zeros elsewhere, as explained by Weiss

[32]. Sarkar and Boyer [22] and Perona and Freeman [21] use the first eigenvalues of A

for change detection and a simplification of A for segmentation, respectively. Using

this formulation directly results in what Shi and Malik call the average association.

This method tends to be effective at selecting highly coherent clusters, but does not

always yield optimal segmentations in practice.

Several researchers use a modified form of the affinity matrix to improve the

segmentation quality. Shi and Malik [25] use the degree of A

Di,i =
∑

j

Ai,j (5.3)

to normalize A into the following generalized eigenvector problem:

(D − A)yi = λiDyi (5.4)

By examining the second smallest eigenvector of N = D−1/2AD−1/2, they are able to

determine the first segment. They continue to recursively partition the graph until

the normalized cut value rises to a threshold value. This value is defined as

Ncut (B,C) =
cut (B,C)

assoc (B, V )
+

cut (B,C)

assoc (C, V )
(5.5)
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where B and C form a partition of the full set of points V . The cut value is defined

as

cut (B,C) =
∑

b∈B,c∈C

Ab,c (5.6)

and the association as

assoc (B, V ) =
∑

b∈B,v∈V

Ab,v (5.7)

This formulation favors breaking the set of points into balanced regions. This method

is called normalized cuts.

Weiss [32] recommends combining normalized cuts with a second method to ease

the extraction of segments after k eigenvectors are found. Ng et al. [20] use a

slightly different normalization scheme that they claim can produce more reliable

segmentations when the degree
∑

Di,i of different segments varies greatly across

segments. Kannan et al. [17] offer an in-depth mathematical analysis of spectral

clustering methods, and Wang and Siskind [30] propose an alternative but similar

method called ratio cuts.

Yu et al. [35] have recently adapted normalized cuts for use with unorganized

range points before surface reconstruction. Their segmentation objective is to produce

an over-segmentation of objects in a room. The segments are then grouped manually

to form objects such as lamps, walls, and furniture. For their similarity measure, they

define the following asymmetric anisotropic proximity distance

dyu dist assym (pi, pj) =

√

E (vi,j ◦ ni)
2 + ||vi,j − (vi,j ◦ ni) ni||2/E (5.8)

where vi,j = pi − pj, “◦” is the dot product operator, || · || is the standard 2-norm,

ni is the estimated surface normal of point pi, and E ≥ 1 is a weighting parameter.

In the first pass of their multi-scale segmentation, they use their adapted normalized
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Figure 5.3: Affinity transitivity. (a) A spiral shape that would be grouped as one
segment using normalized cuts. (b) A shape that would be split into two segments
between points p5 and p6.

cuts algorithm with the following similarity measures:

dyu norm (ti, tj) = cos−1 (ni ◦ nj) (5.9)

dyu dist (ti, tj) = max (dyu dist assym (pi, pj) , dyu dist assym (pj, pi)) (5.10)

Eqn. 5.9 indicates that the estimated normals of two points must be similar for

those points to have a high affinity. Eqn. 5.10 compares the distance between the

two points, but assigns a higher penalty to distance in the direction of the normal

vectors, according to the choice of E in Eqn. 5.8. Eqns. 5.9 and 5.10 are used as the

distance measures in Eqn. 5.1 to calculate the affinity value.

As was done by Shi and Malik, Yu et al. make their affinity matrix more sparse by

only retaining a portion of the non-zero values for points not very close to each other.

They have found that this makes the eigenvector calculations happen faster. After

segmentation, Yu et al. reconstruct meshes using crust, a predecessor of cocone (see

Chapter 4).
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These spectral clustering methods assume that a property which we call transi-

tivity is desired. This property states that if Ai,j � 0 and Aj,k � 0 then points pi

and pk belong to the same segment, even if Ai,k is small. Fig. 5.3a shows an extreme

example of this principle. Even though affinity A4,21 is low (assuming Eqns. 5.9

and 5.10 are used), points p4 and p22 will be grouped into the same segment because

affinities {..., A2,3, A3,4, ..., A21,22, ...} are all high. On the other hand, the shape in

5.3b would be segmented between points p5 and p6 because there is a sudden jump

in the normal direction between these points. One of the strengths of formulations

similar to normalized cuts is that they are able to exploit transitive relationships such

as these better than other formulations such as average association.

5.3 Our Segmentation Algorithm

We have chosen to use a modified version of normalized cuts for segmenting the

meshes reconstructed via cocone (see Chapter 4). In doing so, we have learned a

number of valuable lessons which we will discuss in this section.

The first lesson is that the choice of affinity function is very important in deter-

mining the quality and reliability of segmentations. After exploring a number of less

heuristic affinity measures (Section 5.4), we found that only formulations similar to

those of Yu et al. (Eqns. 5.9 and 5.10) produced reliable segmentations for our data.

The final formulation that we have chosen is based on the same core ideas,

ai,j = exp

(

−cos−1 (ni ◦ nj)

2
(

π
180o σn

)2

)

exp

(

−dyu dist assym (pi, pj)

2r2

)

(5.11)

Ai,j = min (ai,j , aj,i) (5.12)

where dyu dist assym (·, ·) is the same as was defined in Eqn. 5.8, E is set to 2, and

we choose r = 512mm and σn = 10o. Any points that are more than r millimeters
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Figure 5.4: Unsegmented disjoint regions using normalized cuts. An object
with disjoint segments that does not get properly segmented using normalized cuts
due to a poor choice in affinity measure and too few Lanczos iterations allowed. Lines
connecting points represent non-zero affinities between those points. The thickness
of the line is proportional to the affinity value.

apart have their affinities set to zero. We also only retain 25% of the affinities between

points separated by more than 175mm and we discard any affinities that are less than

0.1. By using min instead of max to compare ai,j and aj,i, we were able to slightly

improve the reliability of the segmentation for our data.

The second problem area for us relates to the number of iterations required for

the Lanczos eigensolver [14, pp. 475–504], [38]. We based our implementation on

one adapted from Shi and Malik by Doron Tal for image segmentation. In that

implementation, only 25 iterations were allowed. Although so few iterations may be

enough for image segmentation, we found that we needed ten times as many for our

mesh segmentation. We saw cases where normalized cuts was unable to separate

fully-disjoint segments (i.e. where A is truly block-diagonal), such as is shown in Fig.

5.4.
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Additionally, for some affinity formulations we found that the lapack implemen-

tation of the eigensolver resulted in divisions by zero and other data corruption. In

cases where the eigenvectors did not get corrupted, occasionally the eigensolver would

be stuck in a loop oscillating between two eigenvector solutions without converging.

We noticed these problems when we did not force the retention of the affinity values

for immediate mesh neighbors.

5.4 Probabilistic Affinities

In Section 5.3, we described the final affinity functions that we employed in our

recognition system. In this section, we will discuss two other similarity measures with

which we experimented, and we will discuss the reasons we believe that they did not

work as well as the more heuristic measure given by Eqns. 5.11 and 5.12.

In particular, we will examine Apos (·, ·) and Anorm (·, ·) where

Ai,j = min (Apos (pi, pj)Anorm (pi, pj) ,Apos (pj, pi)Anorm (pj, pi)) (5.13)

These distance measures consider the position of a point relative to the other’s surface

fit and the consistency of normal estimates, respectively. Each of these has its own σ

parameter, σpos, σnorm, σdist, and σfit, respectively. Fig. 5.5 gives an overview of what

the position, normal, and distance affinities are measuring (simplified to 2D curves).

5.4.1 Position Affinity

Our position affinity, Apos (pi, pj), is proportional to the probability that point pj

was measured from the surface fit Si(u, v) of pi, given that pj was sampled from that

surface. We make the simplifying assumption that in a local estimation neighborhood,

the errors in the biquadratic fit are due to identical, independently distributed (IID)
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Figure 5.5: General affinity framework. The geometric framework (shown in
2D) from which the probabilistically-based Ai,j is derived given a surface estimate
Si(u) from point pi. p ′

j is the projection of pj onto curve Si(u) (or Si(u, v) in 3D).
Solid equilateral triangles mark parallel lines. Note that the origin of the local
(u, v, w) coordinate system for point pi does not actually pass through point pi

in general (see Sec. 3.3).

Figure 5.6: Position affinity frame-
work. Position affinity framework.
The dashed lines are the curve Si(u) dis-
placed vertically by the distance between
pj and its projection, p ′

j, onto Si(u). The
Gaussian by which the position affinity
is scaled is overlaid (thick line).

Figure 5.7: Normal affinity frame-
work. Important objects in the deriva-
tion of the 2D normal orientation affin-
ity. See section 5.4.2 for a more detailed
explanation of the math in this figure.
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Gaussian noise in the w-direction. It can be shown that the least squares fit we

explained in Section 3.3 is an optimal estimate of the surface under those conditions.

Furthermore, the mean squared error in the fit, σpos
2 serves as the optimal estimate

of the variance of the Gaussian noise [27].

Based on that assumption, the measurement probability and the position affinity

are given by:

P [pj would be measured from Si(u, v)] ∝

Apos (pi, pj) = exp

(

−
||pj − p ′

j||2
2σpos

2

)

(5.14)

where p ′
j = (pj.u, pj .v, Si(pj.u, pj.v)) is the projection of pj onto surface Si and 4.u

is the u component of point 4, etc. Fig. 5.6 is a pictorial description of the inputs

to the exponential.

Although we might choose σpos
2 to be the surface fit error for Si, as described

above, this approach would yield poor results. Under our model, surface fit disconti-

nuities are rare events and correspond to the edges of different underlying low order

surfaces. At such discontinuities, the surface fit error is more likely to be driven by

the edge effect rather than by sensor noise.

Under the assumption that the sensor noise characteristics do not change from one

part of the surface to another, we instead calculated an average surface fit error across

all points and used that global fit error. We found that this estimate was generally

only slightly higher than the known variance of the Gaussian noise we added to our

simulated data. Unfortunately, this approach yielded over-segmentation on low-noise

scenes and under-segmentation on high-noise scenes. This is because the noise due

to edge effects does not change with sensor noise. Instead we found that if we chose
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a single σpos
2 regardless of the actual sensor noise simulated, we had more consistent

results.

When we were originally using random point selection to subsample the range

points (Section 3.2.1), we only calculated affinities between points not much more

distant than the furthest point that was used to estimate the biquadratic fit. As

such, this positional affinity worked reasonably well at determining whether point pj

arose from the surface of pi.

We knew from our experiments with Srikantiah’s segmentation algorithm (Section

5.2.1) that orientation information is critical for segmenting our data. As discussed

in Section 3.2.2, the random point selection results in overly-smooth biquadratic esti-

mates. In particular, the normal estimates are smoothed to the point where too often

there is no detectable discontinuity in orientation change. This drove us to make

our biquadratic fit estimates much more locally. Upon doing so we began comparing

points a long distance away from where the biquadratic fit was made. With even a

little bit of noise, these fits tend to become highly unreliable outside the estimation

radius, and our position error estimates thus also became unreliable.

These difficulties were finally overcome by abandoning the probabilistically-based

position affinity and adopting the distance measure proposed by Yu et al. (Eqn. 5.8).

It is our observation that this measure effectively makes a position error estimate

based on a planar fit instead of a biquadratic one.

5.4.2 Normal Orientation Affinity

As was already mentioned, when we were developing our probabilistic position

affinity function, we knew we would need to somehow compare the estimated surface
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orientations of points. Toward this end, we began to develop a probabilistic normal

orientation affinity, Anorm (pi, pj). It relates the probability that the normal found

from the surface estimate of pj would be measured from the surface of pi at the

projected point p ′
j. We begin by first considering the 2D case.

As with Apos (pi, pj), we assume that errors in the biquadratic fit are due to IID

Gaussian noise. Fig. 5.7 depicts the relationships between the vectors and measure-

ments we will be analyzing and will be used without further referencing in this section.

We also make the simplifying assumption that the curve normal, nj for pj was es-

timated by finding the vector perpendicular to the line segment connecting pj and

another measured point, r , which is d distance units away from pj in the u direction.

To simplify the drawing, pj and p ′
j are shown as coincident. For non-coincident pj

and p ′
j, r would move vertically with pj.

From trigonometry, we can see:

n = nj.u = g(w) =
w√

d2 + w2
(5.15)

where nj.u is the u component of the normal nj, g(w) is a function of the deterministic

variable w, and g(W ) is a function of the random variable W which we wish to invert:

g(W ) = N =
W√

d2 + W 2
(5.16)

N2(d2 + W 2) = W 2 (5.17)

N2d2 = W 2(1 − N 2) (5.18)

g−1(N) = W =
Nd√

1 − N 2
(5.19)

Likewise, for the normal calculated at the projected point p ′
j leads to the deterministic

relation

g−1(n′) =
n′d√

1 − n′2
(5.20)

45



The derivative of g is given by

∂g(w)

∂w
=

1√
d2 + w2

− w2(d2 + w2)−3/2 (5.21)

Under our current model W is a random variable defined as:

W = r .w − pj.w (5.22)

where r .w and pj.w are random variables distributed as Gaussians with variance σpos
2

and means r ′.w and p ′
j.w, respectively. W thus is distributed as a Gaussian with

variance 2σpos
2 and mean w′ = r ′.w− p ′

j.w. H = W −w′ has the probability density

function (pdf)

fH(h) ∝ exp

(

− h2

4σpos
2

)

(5.23)

giving us the pdf of W :

fW (w) ∝ exp

(

−(w − w′)2

4σpos
2

)

(5.24)

In general, given a random variable, X and an invertible, monotonically non-

decreasing transformation Y = g(X), the pdf of Y is given by the following formula

fY (y) = fX(g−1(y))

∣

∣

∣

∣

∂g(x)

∂x

∣

∣

∣

∣

−1

(5.25)

where x = g−1(y) [27, pp. 119–120]. Using this formula, we can find the pdf of N:

fN(n) = fW (g−1(n))

∣

∣

∣

∣

∂g(w)

∂w

∣

∣

∣

∣

−1

(5.26)

∝
exp

(

−
(

nd√
1−n2

− n′d√
1−n′2

)2
/

4σpos
2

)

∣

∣

(

1
/√

d2 + w2
)

− w2(d2 + w2)−3/2
∣

∣

= Anorm,2D (pi, pj) (5.27)

Substituting w = g−1(n) back in, we define the 2D normal orientation affinity to be:

Anorm,2D (pi, pj) =

exp

(

−
(

nd√
1−n2

− n′d√
1−n′2

)2
/

4σpos
2

)

∣

∣

∣

∣

(

1
/

√

d2 + (nd)2

1−n2

)

− (nd)2

1−n2

(

d2 + (nd)2

1−n2

)−3/2
∣

∣

∣

∣

(5.28)

46



−90 0 90

sin−1(n’)=0o

d=128, σ=8

−90 0 90

sin−1(n’)=60o

d=128, σ=8

−90 0 90

sin−1(n’)=60o

d=128, σ=64

−90 0 90

sin−1(n’)=60o

d=128, σ=256

Figure 5.8: angle (nj) vs. Anorm,2D (pi, pj). 2D probabilistic normal orientation
affinity distribution examples for several parameter values. The x-axis represents
the angle from vertical of the estimated surface normal of point pj. For reference, a
vertical dotted line indicating the normal of the projected point is shown.

Figure 5.9: Curve Segmentation Example Using Probabilistic Affinities. Ex-
ample segmentation of a curve using the probabilistic affinity measure defined in this
section.

Several examples relating the angle nj makes to the u-axis to the affinity value are

shown in Fig. 5.8.

Fig. 5.9 shows an example segmentation of a curve using the probabilistic position

and normal affinities described in this and the previous section. The example curve

is 7, 680mm long in the horizontal direction (a typical vehicle length) and contains

600 original points with 128mm 2D voxels. This yields approximately 10 points per

128×128mm voxel, which is analogous to the 3D case where our vehicles typically have

100 points in a 128× 128× 128mm voxel. Independent isotropic Gaussian noise with

σ = 8mm is added to each point before quadratic curve estimation, corresponding to
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a medium noise level in our 3D data. Except for the quarter-circle region, the results

shown in Fig. 5.9 seem to be promising.

Unfortunately, extending this 2D affinity to 3D is non-trivial and results in mul-

tiplying and adding several random variables whose distributions are of the form of

Eqn. 5.27. We experimented with making a simplifying assumption that the com-

ponents of the normal are separable in the u and v directions, but unsatisfactory

segmentations resulted. In contrast, we found that Eqn. 5.9 provides an intuitive and

effective affinity measure.

5.5 Segment Attribute Assignment

Once we have segmented the mesh using normalized cuts, we assign a number of

attributes to each segment that are useful in the recognition process. In this section

we will explain the attributes which we use as well as a few that we considered.

• Area: Among the most important segment attributes for our modelbase is

surface area. To find the area contribution of an individual point, we first find

the area of each mesh triangle using the well-known formula [13, pg. 1112]:

Ai,j,k =
1

2
||(pi − pj) × (pk − pj)|| (5.29)

where pi, pj, and pk are the vertices of the triangle. One third of each triangle’s

area is then assigned to each of its vertices.

• PCA Attributes: Using all of the points in the segment, we perform PCA

again (see Section 3.3) to determine the principal axes, most notably the normal

direction. If we think of PCA as fitting an ellipsoid to our data, then the square
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roots of the eigenvalues indicate the radii of the ellipsoid. We retain these

values.

• Thickness: We define the thickness of the segment to be
√

λ3/λ1 where λ1 ≥

λ2 ≥ λ3 are the PCA eigenvalues.

• Elongation: Similarly, we define the elongation of the segment to be
√

λ2/λ1.

The elongation and planarity together give a gross estimate of the shape of the

segment.

• Centroid: Finally, we calculate the centroid of the segment. Together with

the normal direction, they provide attributes for making comparisons between

pairs of object and model segments.

• Other Attributes Considered: We also considered using the mean and Gaus-

sian curvature at the projection of the centroid onto a biquadratic fit of the sur-

face. Since we have selected only relatively flat surfaces due to our range point

subsampling process, these two features do not tend to be very descriptive.

We considered using a distinctiveness measure as well that indicates how dis-

similar a segment is to all segments from all other models:

distinctiveness (s, {mi,j}) = 1 − 1

1 + 1
N

N
∑

i=1

min
j

du (s,mi,j)

(5.30)

where s is the segment for which we wish to determine the distinctiveness,

{mi,j} is the set of segments in the modelbase (not including any segments from

the model from which s was taken), i is the model number, j is the segment

number, N + 1 is the number of models in the modelbase, and du (·, ·) is the
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Figure 5.10: Spurious segments and points. (s) spurious segments for sedan in
the flyby scene with no noise added. (b) extra surface points that have been grouped
with the roof of the tank in the flyby where σ = 4mm.

unary feature distance to be described in Section 6.3 (Eqn. 6.3). Since our

modelbase is currently so small, we did not find this measure to be very helpful.

5.6 Results

Using the affinity matrix defined in Eqn. 5.12 and rejecting any segment splits

when Ncut (B,C) ≥ 0.1 (Eqn. 5.5), we have segmented our test data sets. The results

are shown in Figs. 5.11, 5.12, and 5.13 for the circle, flyby, and unoccluded scenes,

respectively. In comparing the results, we will use as a baseline the first column in

Fig. 5.13, corresponding to noiseless data taken from the unoccluded scene.

The most important differences in segmentations that we observe are the following:

1. Area: As a result of noise and/or occlusion, a very common difference in seg-

ments is that they have a smaller area than those from the baseline segmenta-

tion. For example, the roof of the sedan in the third row and last column of

Fig. 5.11 has chunks missing due to occlusion and noise in the data. A more
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severe version of differences in area are when too little of a surface is seen for

a segment to even be created at all. For example, the two sides of the roof are

not present for obj1 in row 2, column 5 of Fig. 5.12.

2. Spurious Segments: Although the combination of pruning high aspect ratio

triangles and using normalized cuts generally removes the clutter from the fi-

nal results, sometimes spurious segments get formed as shown in Fig. 5.10a.

Fortunately, those spurious segments that do get created rarely confuse our

recognition engine.

3. Over-segmentation: One of the most common problems is with over-segmen-

tation. Compare for example obj1 (2nd row) with σ = 16 (column 5) in the

circle scene (Fig. 5.11) to the three roof segments in the baseline segmentation

(row 2, column 1, Fig. 5.13).

4. Under-segmentation: Occasionally, surface regions that are split in the base-

line object remain as one segment in another data set. This event is actually

quite rare with our data.

5. Misaligned segmentation: We noticed that especially with the tank that a

few extra points that really belong to one segment get grouped with another

segment (see Fig. 5.10b).
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σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

Figure 5.11: Segmentations of the circle scene. The rows contain the segmen-
tation results of earthmover, obj1, sedan, semi, and tank, respectively for each of the
synthetic noise levels.

52



σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

Figure 5.12: Segmentations of the flyby scene. The rows contain the segmen-
tation results of earthmover, obj1, sedan, semi, and tank, respectively for each of the
synthetic noise levels.

53



σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

σ = 0.0 σ = 2.0 σ = 4.0 σ = 8.0 σ = 16.0 σ = 32.0

Figure 5.13: Segmentations of the unoccluded scene. The rows contain the
segmentation results of earthmover, obj1, sedan, semi, and tank, respectively for each
of the synthetic noise levels.
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CHAPTER 6

GRAPH MATCHING AND OBJECT RECOGNITION

As has been mentioned and implied in previous chapters, we do our final object

recognition by attempting to match up scene object segments produced by the algo-

rithm described in Chapter 5 with modelbase segments. In Section 6.1 we give an

overview of recognition systems used by other researchers. We then describe how

graph matching is done in Section 6.2. In Section 6.3, we describe our matching error

measure. We discuss our recognition results in Section 6.4.

6.1 Prior Work

Object recognition techniques are commonly divided into two classes: those that

use global features and those that use local features to do matching. Global methods

use statistics and features based on the entire shape. As an example, one might say

an object is a car because it has the right silhouette when seen from a side view.

Local feature methods use attributes from regions of the shape and generally encode

spatial relationships between these regions. In this case, one might recognize a car

by seeing a hood connected to sides which are connected to the windows which are

connected to a roof.
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Campbell and Flynn provide an excellent overview of recent recognition methods

in [4]. In this section, we will summarize some of the methods described there as well

some additional techniques we have considered.

One popular category of global feature methods has been termed “appearance-

based recognition.” Typically only a single view has been taken of an object. Feature

information (e.g. hue, range, curvature, etc.) are sampled on the surface in a topolog-

ically uniform manner. The feature values become coordinates in some high dimen-

sional space. Principal Component Analysis (Section 3.3) on a representative set of

views using a model can then be employed to create a basis. A given view is then rec-

ognized by projecting its feature vector onto the basis and determining which model

yields the lowest projection error [4]. We have chosen not to use an appearance-based

technique for our system for two reasons. First, we expect to use many object views,

not just one since any single view will have significant clutter. Second, appearance-

based techniques often perform poorly when occlusions and highly-variable sampling

conditions are present.

Another related set of global feature techniques are the Extended Gaussian Im-

age and Spherical Attribute Image (SAI) [15]. In these techniques, a geometrically

and topologically semi-uniform mesh is fitted to a surface representation of an object

and a curvature-based measurement is made at each mesh vertex. Because a vector

is a one dimensional list and we have a 2D manifold, multiple feature vectors must

be created from these measurements. A particular feature vector encodes the shape

given a particular orientation. A modelbase is created offline with a sampling of the

possible orientations of each model. An exhaustive recognition can then be performed

efficiently by taking the dot product of the scene object’s feature vector with each
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vector in the database. Herbert et al. use a feature vector of approximately 1000

elements and have 3000 feature vectors per model [15]. They have shown that this

technique works for certain types of occlusions. We considered using this approach for

our recognition engine; however, the mesh regularization step is both non-trivial and

critical to the success of the method. Additionally, our scenes tend to have a combi-

nation of many small occluded patches with several large-area occlusions. Additional

work would be required to fully evaluate the SAI approach in our environment.

One of the reasons for using local features in a recognition system has already been

mentioned: occlusion. A missing part in an appearance-based scheme may sufficiently

perturb the feature vector so that the entire shape seen does not look much like the

entire model. Additionally, ambiguities can arise that complicate the usage of the

SAI when many occluded regions exist. A common way of using local features is to

identify a (small) number of salient regions of the object. For example, one could

identify crease edges. We identify surface segments, as has been described in Section

5. These segments are then matched up with ones in the modelbase, checking the

similarity of object-to-model segment pairings and the spatial relationships between

the pairings. In the next section, we describe one method for doing this matching.

Some other methods include those describe by Wong et al. [33], Srikantiah [26], and

Chen and Kak [5].

6.2 Graph Matching

When using graph matching techniques for object recognition, we represent ob-

jects as attributed graphs where each object segment corresponds to a graph node

and the links between nodes signify explicit relationships amongst the segments. As a
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Figure 6.1: Five attributed graphs.

running example in this section, we will use the graphs in Fig. 6.1. The shaded shapes

are the nodes where “triangle”, “circle”, etc. are their attributes. The lines connect-

ing them represent the links in the graph. For the sake of simplicity, we consider the

only attribute of a link to be whether it is present or not (in this section). Our graph

matching algorithm is based on the work of Flynn and Jain [12] and Srikantiah [26].

A complete graph match is a set of ordered pairs of segments such that the pairs

contain one segment from each graph, the two segments in each pair are the same,

and all of the links between the pairs are the same. For example, {(ca, cb), (ha, hb),

(ra, rb), (ta, tb)} is a complete match between the graphs shown in Fig. 6.1a and 6.1b.

An incomplete graph match is one where only some of the nodes are matched up.

For example, {(ca, cc), (ha, hc), (ta, tc)} is an incomplete match because segments oc

and rc from graph c and segment ra from graph a are not matched up with any other

segments.

An inexact graph match is a graph match in which the nodes and links may not

exactly match up. For example, {(ca, cd), (ha, hd), (ra, rd), (ta, td)} is an inexact match
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Figure 6.2: Tree-based graph matching example. Consider the segments in Fig.
6.1a and Fig. 6.1b. This is a partial match tree. The full match tree would contain a
path for every possible matching of segments from graph a to those in graph b. Along
the left side of the figure is the object segment being matched for the given tree level.

because the nodes in graphs b are slightly different than those in a and there are two

extra links between hd and rd and between cd and rd.

A complete graph is one in which all nodes are connected to all other nodes, such

as is shown in Fig. 6.1e.

A tree-based matching algorithm is one that recursively attempts to assign nodes

from an object to nodes from a given model. Fig. 6.2 shows a pictorial representation

of part of a match tree for the segments in Fig. 6.1a and Fig. 6.1b. These algorithms

are exponential in complexity.

For the sake of implementation simplicity, we have created a depth-first, tree-

based, incomplete, inexact graph match algorithm given a set of object segments

S = {s0, s1, ...} and a modelbase. Since our modelbase is small, we attempt to match

the object to each model and we rank the results by match score. Before beginning
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the matching process, we sort the object segments by area, with the largest segment

being matched first.

At any particular level in the match tree, we evaluate the match error for each of

the branches going to the next level. To maintain runtime performance, we allow for

only recursing on the B best branches. We also will consider only the X best object

segments, limiting the depth of the tree. For our experiments, we have chosen B = 5

and X = 15.

6.3 Match Error Measure

We will now explain the match error calculations. We begin these calculations by

determining the unary match error between a set of x pairs of segments {(s1,m1), ..., (sx,mx)}

that have been tentatively matched up:

EU (si,mi) = 1 − exp
(

− du
2 (si,mi)

)

(6.1)

CU ({(s1,m1), ..., (sx,mx)}) =
x
∑

i=1

EU (si,mi) (6.2)

where EU (·, ·) is the pairwise unary match error, CU (·) is the cumulative unary match

error, and du (·, ·) is the unary feature distance and is given by

du (si,mi) =

√

da
2 (si,mi) + dt

2 (si,mi) + de
2 (si,mi) (6.3)

where da (·, ·) is the unary area match error, dt (·, ·) is the unary thickness match error,

and de (·, ·) is the unary elongation match error. To limit the amount of time spent

exploring portions of the match tree that are unlikely to result in good matches, we

halt our recursive search any time the pairwise unary match error EU (·, ·) is greater

than some threshold (0.6 for our experiments).
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When comparing object and model segment areas, we wish to penalize for multi-

plicative differences, thus we have chosen

da (si,mi) = − log(1 .0+fa )

(

min (asi
, ami

)

max (asi
, ami

)

)

(6.4)

where asi
is the area of segment si and 100fa is the percentage change in area required

to produce one feature distance unit. We are currently using fa = 1.

In comparing thickness and elongation, we wish to penalize for additive instead

of multiplicative differences. Thus

dt (si,mi) = wt|tsi
− tmi

| (6.5)

de (si,mi) = −we ln (1 − |esi
− emi

|) (6.6)

where wt and we are weighting factors (chosen to be 10 and 1, respectively) and tsi

and esi
are the thickness and elongation of segment si, as defined in Section 5.5.

After determining how well the individual pairs of segments match up, we wish

to evaluate their spatial relationships using the orientation match error and centroid

distance match error. The orientation match error is given by

EO (si, sj,mi,mj) =
2

π

∣

∣

(

cos -1 (nsi
◦ nmi

)
)

−
(

cos -1
(

nsj
◦ nmj

))
∣

∣ (6.7)

CO ({(s1,m1), ..., (sx,mx)}) =
x
∑

i=1

x
∑

j=1

EO (si, sj,mi,mj) (6.8)

and it ensure that the difference in surface normals at the segment centroids match

up. Similar to unary match error, we halt the recursion any time the value for

EO (si, sj,mi,mj) rises above some threshold (0.3 for our experiments).
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Similarly, the centroid distance match error ED compares the separation of seg-

ment centroids, as follows

dR (a, b) =

{

0 if a = 0 and b = 0
|a − b|/max (a, b) otherwise

(6.9)

CD ({(s1,m1), ..., (sx,mx)}) =
x
∑

i=1

x
∑

j=1

dR

(

||csi
− csj

||, ||cmi
− cmj

||
)

(6.10)

where csi
is the centroid of segment si and x is the number of segments currently

matched up. Any time dR

(

||csi
− csj

||, ||cmi
− cmj

||
)

is greater than some threshold

(0.3 for our experiments), we halt the match tree recursion.

Finally, we wish to include a penalty for only matching small parts of the model.

The cumulative area error is given by

CA ({(s1,m1), ..., (sx,mx)}) = min

(

1,

∣

∣

∣

∣

∣

1 −
x
∑

i=1

asi

/ X
∑

i=1

ami

∣

∣

∣

∣

∣

)

(6.11)

where X is the total number of segments in the model.

We now combine the four top-level match error scores into a single cumulative

error measure,

E (M) =
1

x
CU (M)euCO (M)eoCD (M)edCA (M)ea (6.12)

where M = {(s1,m1), ..., (sx,mx)} is the match being evaluated, and where we have

chosen the weighting terms eu = eo = ed = ea = 1. This error value ranges from 0 to

1.

We sometimes have spurious segments in the object being recognized relative to

a given model. These segments can exist for the following reasons:

1. The object is not an example of the model (i.e. we are trying to match a car

with a tank).
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2. The object was over-, under-, or incorrectly segmented.

3. Pieces of foliage looked enough like a vehicle to confuse the local surface fitting,

surface reconstruction, and surface segmentation.

Because of these conditions, we allow for NULL segment matches, denoted {si, NULL}.

Since a non-existent segment has no attributes, we set the values of Eqn. 6.1, 6.7, and

6.9 to zero any time a NULL segment is involved. We also set ami
to zero in Eqn.

6.11 to penalize for not matching segment si up with anything.

6.4 Results

To test our recognition engine, we took each of our objects and placed them in the

circle, flyby, and unoccluded scenes with additive Gaussian noise standard deviations

of 0, 2, 4, 8, 16, and 32mm. Renderings of the segmentation results that feed into the

recognition process are shown in Figs. 5.11, 5.12, and 5.13.

We then generated the range data for these scenes (see Chapter 2), estimated local

surface properties at a subset of the range points (see Chapter 3), reconstructed the

surface meshes (see Chapter 4), and segmented the meshes (see Chapter 5). For each

of the five objects, we selected the unoccluded scene where no noise was added and

created a modelbase out of their segments. We will hereafter refer to these entries in

the modelbase as “models”. We then computed the match score for each of the data

sets generated to each of the models in the modelbase,

S (M) = 1 − E (M) (6.13)

where S (·) is the match score and M is a given object-to-model match.
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Tables 6.1, 6.2, 6.3, 6.4, and 6.5 give the recognition results for earthmover, obj1,

sedan, semi, and tank, respectively. The entropy given for each set of matches is an

indication of the uncertainty in the recognition results for a given data set with each

of the five models. It is defined as follows:

s ({M1, ...,MN}) =
N
∑

k=1

S (Mk) (6.14)

entropy ({M1, ...,MN}) = −
N
∑

k=1

{

S(Mk)
s(Mk)

log2

(

S(Mk)
s(Mk)

)

if s (Mk) > 0

0 otherwise
(6.15)

where {M1, ...,MN} is the set of matches to each model given an object assuming there

are N models. The entropy varies from zero to log2 (N). A value of zero indicates

complete certainty in the recognition result, and the maximal value indicates that

the object looks like every model as much the others. Given five models, the entropy

may vary from zero to approximately 2.3219.

We saw the best results with sedan and earthmover. Both were recognized cor-

rectly 100% of the time, but sedan had the lowest entropies. Semi also produced

very promising results, only failing the recognition for the highest noise level. When

the engine failed to place it first, twice the correct match was its second guess and

once its third. In all three of these cases, the entropy was quite high. In general, the

entropies were high for all but sedan.

Across all of the objects, we found that errors in area (including non-existent

segments) were a significant factor in 10 of the 19 incorrect recognitions. Neither

under-segmentation nor spurious segments contributed significantly to any of the

errors, but over-segmentation (of the scene relative to the model) was a major factor

in 12 of the erroneous recognitions. Misaligned segments contributed only to problems
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with the tank, where they participated in four of the errors, mostly in the data sets

from the flyby scene.

We found that if we modified the affinity calculations to reduce the number mis-

aligned segmentations that we greatly exacerbated the over-segmentation problem for

all of the rest of the data.
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Scene
Noise
Level

Score for
Correct Match

Match Rank
(lower is better)

Entropy
(uncertainty)

circle 0 0.824 1 2.16
circle 2 0.764 1 2.16
circle 4 0.819 1 2.19
circle 8 0.865 1 2.16
circle 16 0.797 1 2.15
circle 32 0.777 1 2.12
flyby 0 0.775 1 2.17
flyby 2 0.757 1 2.17
flyby 4 0.771 1 2.17
flyby 8 0.747 1 2.17
flyby 16 0.707 1 2.16
flyby 32 0.482 1 1.94

unoccluded 0 1.000 1 2.03
unoccluded 2 0.921 1 2.07
unoccluded 4 0.905 1 2.08
unoccluded 8 0.827 1 2.11
unoccluded 16 0.825 1 2.11
unoccluded 32 0.824 1 2.15

Recognition rate: 100%

Table 6.1: Recognition results for earthmover. The object from the given
scenes and noise levels was compared with the noiseless unoccluded scene for all five
objects. The noise level is given in millimeters and the match score varies from 0 to
1 (with 1 being a perfect match). A match rank of 1 means the correct match was
the first one while a rank of 5 means the recognizer thought that all other models
looked more like object than the correct model. The entropy was calculated over the
attempts to match against the five models.
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Scene
Noise
Level

Score for
Correct Match

Match Rank
(lower is better)

Entropy
(uncertainty)

circle 0 0.756 2 1.86
circle 2 0.811 1 1.95
circle 4 0.816 1 1.96
circle 8 0.662 1 2.27
circle 16 0.468 4 2.25
circle 32 0.241 5 2.26
flyby 0 0.796 1 1.94
flyby 2 0.561 1 2.28
flyby 4 0.730 1 2.23
flyby 8 0.272 5 2.26
flyby 16 0.281 5 2.29
flyby 32 0.000 5 1.96

unoccluded 0 1.000 1 1.89
unoccluded 2 0.810 1 2.20
unoccluded 4 0.726 1 2.23
unoccluded 8 0.794 1 2.21
unoccluded 16 0.839 1 2.07
unoccluded 32 0.179 4 1.93

Recognition rate: 64%

Table 6.2: Recognition results for obj1. The object from the given scenes and
noise levels was compared with the noiseless unoccluded scene for all five objects.
The noise level is given in millimeters and the match score varies from 0 to 1 (with
1 being a perfect match). A match rank of 1 means the correct match was the first
one while a rank of 5 means the recognizer thought that all other models looked more
like object than the correct model. The entropy was calculated over the attempts to
match against the five models.
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Scene
Noise
Level

Score for
Correct Match

Match Rank
(lower is better)

Entropy
(uncertainty)

circle 0 0.641 1 1.64
circle 2 0.723 1 1.65
circle 4 0.767 1 1.63
circle 8 0.589 1 1.69
circle 16 0.507 1 1.72
circle 32 0.486 1 1.71
flyby 0 0.683 1 1.61
flyby 2 0.576 1 1.68
flyby 4 0.662 1 1.62
flyby 8 0.602 1 1.68
flyby 16 0.447 1 1.72
flyby 32 0.291 1 1.71

unoccluded 0 1.000 1 1.46
unoccluded 2 0.937 1 1.50
unoccluded 4 0.894 1 1.52
unoccluded 8 0.918 1 1.51
unoccluded 16 0.666 1 1.67
unoccluded 32 0.451 1 1.70

Recognition rate: 100%

Table 6.3: Recognition results for sedan. The object from the given scenes and
noise levels was compared with the noiseless unoccluded scene for all five objects.
The noise level is given in millimeters and the match score varies from 0 to 1 (with
1 being a perfect match). A match rank of 1 means the correct match was the first
one while a rank of 5 means the recognizer thought that all other models looked more
like object than the correct model. The entropy was calculated over the attempts to
match against the five models.
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Scene
Noise
Level

Score for
Correct Match

Match Rank
(lower is better)

Entropy
(uncertainty)

circle 0 0.767 1 2.08
circle 2 0.733 1 2.16
circle 4 0.722 1 2.13
circle 8 0.708 1 2.16
circle 16 0.703 1 2.17
circle 32 0.374 2 2.18
flyby 0 0.611 1 2.12
flyby 2 0.580 1 2.14
flyby 4 0.598 1 1.89
flyby 8 0.599 1 2.06
flyby 16 0.545 1 2.08
flyby 32 0.256 3 2.16

unoccluded 0 1.000 1 1.95
unoccluded 2 0.770 1 2.09
unoccluded 4 0.737 1 2.11
unoccluded 8 0.736 1 2.11
unoccluded 16 0.677 1 2.01
unoccluded 32 0.269 2 2.16

Recognition rate: 83%

Table 6.4: Recognition results for semi. The object from the given scenes and
noise levels was compared with the noiseless unoccluded scene for all five objects.
The noise level is given in millimeters and the match score varies from 0 to 1 (with
1 being a perfect match). A match rank of 1 means the correct match was the first
one while a rank of 5 means the recognizer thought that all other models looked more
like object than the correct model. The entropy was calculated over the attempts to
match against the five models.
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Scene
Noise
Level

Score for
Correct Match

Match Rank
(lower is better)

Entropy
(uncertainty)

circle 0 0.603 2 2.26
circle 2 0.628 1 1.93
circle 4 0.682 1 1.92
circle 8 0.636 1 1.93
circle 16 0.588 1 1.95
circle 32 0.511 2 2.26
flyby 0 0.444 1 2.30
flyby 2 0.187 5 2.29
flyby 4 0.430 2 2.29
flyby 8 0.234 5 2.30
flyby 16 0.281 3 2.28
flyby 32 0.119 4 2.11

unoccluded 0 1.000 1 2.06
unoccluded 2 0.826 1 2.08
unoccluded 4 0.831 1 2.06
unoccluded 8 0.473 2 2.11
unoccluded 16 0.697 1 2.26
unoccluded 32 0.237 4 2.13

Recognition rate: 50%

Table 6.5: Recognition results for tank. The object from the given scenes and
noise levels was compared with the noiseless unoccluded scene for all five objects.
The noise level is given in millimeters and the match score varies from 0 to 1 (with
1 being a perfect match). A match rank of 1 means the correct match was the first
one while a rank of 5 means the recognizer thought that all other models looked more
like object than the correct model. The entropy was calculated over the attempts to
match against the five models.
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CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

7.1 Summary and Conclusions

We have developed a system which takes synthetic range data from a hypothetical

unmanned vehicle and recognizes the vehicle being imaged. The range data is clut-

tered by a pessimistic simulation of a leaf canopy and corrupted by isotropic Gaussian

noise. Taking this data, we use local surface fits to initially filter some of the clutter

and reduce our data size prior to reconstructing a mesh surface. This mesh surface

then has spurious triangles removed and is segmented using a method based on the

normalized cut of an affinity matrix constructed from the local surface fits. These

segments are then matched to those in a modelbase using a tree-based inexact partial

graph matcher.

For two of our five objects, we achieve 100% correct recognition across all three

scenes and all six noise levels. In the cases where our recognition engine fails to

properly identify the object, the leading cause is over-segmentation and the second

most frequent cause is due to portions of the surface not being seen that lead to errors

in matching segment areas.
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7.2 Improvements and Future Work

There are a number of ways in which the system we present in this thesis could

be improved and/or extended:

1. Articulation: Currently we do not consider cases of articulation such as a

rotating gun turret or a semi truck with a trailer being towed. Because many

military vehicles are articulated, a final system would need to be able to handle

this situation. By properly adding articulation constraints to the models, we

believe that our approach could be extended to handle articulation.

2. Larger modelbase: Our experiments were done on five different models. A

deployed system would need to accurately and quickly identify from a model

base of at least hundreds or thousands of objects.

3. Iterative recognition: In a hostile environment, it is important to properly

budget sensor time so as to not put the sensor platform at undue risk as well

as to avoid alerting any potential targets that they have been identified. An

iterative recognition loop that takes the range images already produced and hy-

pothesizes a match can then decide whether more data are required to reduce

the uncertainty in the match. If more data are required, a view planning algo-

rithm could be employed to set the optimal flight path to acquire the needed

data.

4. Alternative Segmentation Methods: Although we were able to work with

several methods for segmenting our meshes, there were many others which we
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did not have an opportunity to explore to see if they could better overcome the

over-segmentation problem. Some alternatives are:

(a) the different sparse matrix normalization scheme proposed by Ng et al.

[20].

(b) tensor voting methods such as those proposed by Tang and Medioni [29]

(c) using the full segmentation algorithm for the robust sequential estimator,

as detailed in [3].

(d) heuristically enhancing Srikantiah’s segmentation algorithm [26] to be able

to detect orientation conflicts when growing segments.

5. Verification: Especially as the modelbase size grows, a verification step may be

necessary to evaluate the most likely matches. A popular method of verification

is to attempt to register the object to its model using the segment matches to

initialize the registration.

6. Alternative Recognizers: Although we are suspicious about the ability of

appearance based recognition techniques to deal well with the clutter and noise

in our scenes, a recognizer based on spherical attribute images might be made

to work in this environment.
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APPENDIX A

SOFTWARE AND TIMING INFORMATION

A.1 Software and Libraries Used

We developed our source code using Microsoft Visual C++ 6.0 on MS Windows

and using KDevelop and GNU C++ on Linux. We used the following 3rd-party

libraries and development tools as well:

• Matlab for system prototyping, especially in evaluating some of the alternative

spectral segmentation techniques [37].

• Normalized Cuts for the segmentation algorithm we used. Unfortunately, the

implementation we downloaded from Berkeley is no longer available from them.

• Perl for scripting and automating portions of our system for execution and data

analysis [36].

• POV-Ray, a ray tracing program which we modified to output range images

[39].

• Ravi Srikantiah’s Source for his Master’s project served as an initial starting

point for our work [26].
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Step
Machine

Specifications
# of Times
Performed

Total Time
(hh:mm)

Range image
generation

Pentium II, 450MHz
SuSE Linux 7.3

780 7:34

Local surface
fitting

Pentium IV, 1.7GHz
MS Windows XP

90 0:57

Surface
reconstruction

Pentium IV, 1.7GHz
MS Windows XP

90 2:14

Segmentation
Pentium III, 1GHz
MS Windows 2000

90 1:07

Recognition
Pentium III, 1GHz
MS Windows 2000

90 0:02

Table A.1: Approximate execution times. The number of range images generated
is the number of scenes times the number of objects times the number of camera
positions. The number of times each of the other steps was performed is the number
of objects times the number of scenes times the number of noise levels.

• VTK (Visualization Toolkit) for most of renderings [23], [24], [40].

• VxL for numerical computations, especially for performing PCA and the bi-

quadratic fits [41].

A.2 Execution Times

We give estimates of the execution times required for the major steps in our

recognition procedure in Table A.1.
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