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In this supplementary material, we provide various technical details for our paper. The latest copy
of the paper and this supplementary material will be available on the project webpage http://
dilipkay.wordpress.com/sfs/.

1 Depth Error Measure

In Table 1, we show the errors between ground truth depth and our depth measurements using
the Z-MAE error measure introduced in [1]. It can be seen that our algorithms have consistently
lower error. However, this error measure is highly dependent on the absolute range of values in the
recovered depth Z. The error measure is not consistent with perceptual assessment of recovered
depth quality, and so we report it here only for completeness.

Method Natural Lights Lab Lights All Lights
SIFS 11.5 10.7 11.3

Ours - GVA 8.3 6.0 7.8
Ours - no GVA 8.4 6.2 7.9

Table 1: Median Error of recovered depth values (called Z-MAE in [1]).

2 Derivation of Linearization Formula

As shown in our paper, the effectiveness of using GVA in a computational framework relies heavily
on the relinearization of the Spherical Harmonics lighting model. The original non-linear model
that generates the log shading pixels is given by the following per-pixel equation (each pixel is
independent of the others):

h(α, β) = nTMn (1)

where n is given by:

n =
[

α√
1+α2+β2

β√
1+α2+β2

1√
1+α2+β2

1
]

(2)
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and:

M =

c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7

 (3)

where c1 = 0.429043, c2 = 0.511664, c3 = 0.743125, c4 = 0.886227 and c5 = 0.247708. Note
that α and β are scalars. Also for later use, let us define the vector x such that:

n = [ x 1 ] (4)

This model is linear in L (since M is linear in L) and quadratic in n. Given a current estimate α0

and β0 for the surface slopes, the Taylor series expansion of h around (α0, β0) is given by:

h(α, β) = h(α0, β0) + [∇αh ∇βh]
∣∣∣∣
(α0,β0)

[α− α0 β − β0]T + higher order terms (5)

Here the gradient of h is with respect to α and β. Now we derive these terms individually using the
chain rule:

∇αh = ∇xf ∇αx
∇βh = ∇xf ∇βx

where x is defined in Eq. 4. Let M1 be the top left 3× 3 block of M and M2 be the first 3 columns
of the last row of M (note that M is symmetric). Then we get:

∇xh = [2xM1 + 2M2] (6)

∇αx =
[

1√
1+α2+β2

− α2√
(1+α2+β2)3

−αβ√
(1+α2+β2)3

−α√
(1+α2+β2)3

]
(7)

∇βx =
[

−αβ√
(1+α2+β2)3

1√
1+α2+β2

− β2

(1+α2+β2)3
−β√

(1+α2+β2)3

]
(8)

This gives us the values for ∇αh and ∇βh, which can then be substituted in Eq. 5. Collecting
all constants into kc and α and β coefficients into kx and ky respectively gives the final linearized
model:

h(α, β) ≈ kc + kxα+ kyβ (9)

3 Introduction to ADMM

The Alternating Direction Method of Multipliers has been developed in various forms over the last
few decades. Initially, it was introduced in the 1970s for the numerical solution of partial differential
equations. ADMM is closely related to the ideas of dual decomposition and augmented Lagrangians.
A thorough review of these ideas is given in [3]. Bento et al. [2] introduced a message-passing
version of ADMM, which is equivalent to the classical ADMM method when only a single weight
is used. However, by using different kinds of messages, they are able to significantly improve the
convergence rate of ADMM for certain constrained problems.

We give here a brief description of the message passing ADMM. Further details can be found in the
above references. A simple canonical problem we consider is the following:

min f(x) + g(z)

s.t. x = z (10)

This problem arises in many contexts, for example when f is a likelihood function and g is a reg-
ularization term. Message-passing ADMM now considers the above problem to consist of 3 sub-
problems, each of which can be solved in parallel. The three sub-problems involve f(x), g(z) and
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the constraint x = z respectively. Thus the variable x is involved in 2 sub-problems, and the vari-
able z in two sub-problems. There are two conflicting requirements to ensure that we make progress:
each sub-problem must make progress towards minimizing it’s own cost function; and secondly, it
must not provide a solution that is completely different from the other sub-problem that involves the
same variables.

This tension is resolved in message-passing ADMM by the use of regularized sub-problems which
ensure that the solution of the sub-problem does not move too far away from the current consensus
solution for the set of variables involved in that sub-problem. The strength of regularization is
controlled by a parameter ρ. The regularized sub-problems for the above canonical problem are
given by:

min f(x) +
ρ

2
(x− nx)2

min g(z) +
ρ

2
(z − nz)2

min
ρ

2
(x− nx)2 +

ρ

2
(z − nz)2 s.t. x = z

The “messages” nx and nz encode the current consensus for the x and z variables respectively.
Larger ρ values ensure that the sub-problems do not move too far away from the consensus; however,
this could slow down convergence. Smaller ρ values allow each sub-problem to get to a better local
minimum; however, this might cause significant oscillation in the consensus values. ρ is a hyper-
parameter who’s value is problem-dependent.

Further details of the consensus mechanism and the structure of the messages nx and nz are given in
[2]. The key benefit of ADMM is that individual sub-problems may be solved in parallel and admit
fast solutions; for example if f(x) is a quadratic and g(z) is an l1 regularization term. Secondly, the
lifting of variables to a higher-dimensional space may enable escaping local minima in the case of
non-convex problems.
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