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ABSTRACT
We present algorithms for simplifying and clustering pat-
terns from sensors such as GPS, LiDAR, and other devices
that can produce high-dimensional signals. The algorithms
are suitable for handling very large (e.g. terabytes) stream-
ing data and can be run in parallel on networks or clouds.
Applications include compression, denoising, activity recog-
nition, road matching, and map generation.
We encode these problems as (k,m)-segment mean prob-

lems. Formally, we provide (1+ ε)-approximations to the k-
segment and (k,m)-segment mean of a d-dimensional discrete-
time signal. The k-segment mean is a k-piecewise linear
function that minimizes the regression distance to the sig-
nal. The (k,m)-segment mean has an additional constraint
that the projection of the k segments on Rd consists of only
m ≤ k segments. Existing algorithms for these problems
take O(kn2) and nO(mk) time respectively andO(kn2) space,
where n is the length of the signal.
Our main tool is a new coreset for discrete-time signals.

The coreset is a smart compression of the input signal that
allows computation of a (1 + ε)-approximation to the k-
segment or (k,m)-segment mean in O(n logn) time for ar-
bitrary constants ε, k, and m. We use coresets to obtain
a parallel algorithm that scans the signal in one pass, us-
ing space and update time per point that is polynomial in
logn. We provide empirical evaluations of the quality of our
coreset and experimental results that show how our core-
set boosts both inefficient optimal algorithms and existing
heuristics. We demonstrate our results for extracting signals
from GPS traces. However, the results are more general and
applicable to other types of sensors.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Clustering
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1. INTRODUCTION
Today, most smartphones carry multiple sensors that can

be used to retrieve the trajectories, directions, locations,
etc., of the user. We are interested in robustly identifying
locations despite the error that is intrinsic in the GPS signal.
Specifically, we consider two problems: (1) Given a large
GPS trace, how do we robustly identify the critical points
in this trace that indicate a change in semantics for the
trace (such as turning from one road to another)? (2) Given
multiple GPS traces, how do we compute the points that
have been visited multiple times across these trajectories?

Although the sampling frequency of a signal may be high,
it usually contains a great deal of data redundancy. This
is because unlike random noise signals, signals from sensors
usually satisfy:

1. The underlying data has simple geometrical structure.
2. Patterns in the data are repeated over time.

For example, we expect that a signal of n GPS points col-
lected over a user’s life will contain only k ≪ n trajectories
of this user, and that those can usually be described by sim-
ple shapes (roads, streets). Also, typical trajectories should
come from a set of m≪ k places or roads in space (such as
work, home and roads in between). This paper exploits these
two properties in order to learn signals, compress them, and
reveal their hidden semantic patterns.

For simplicity, we discuss GPS-signals (d = 2), although
our results hold for general d-dimensional signals with only
linear dependency on the dimension d. For example, the
iPhone 4 produces signals from an accelerometer and gy-
roscope, an ambient light sensor, a moisture sensor, and a
proximity sensor [11]. Other relevant signals include those
from LiDAR, video, and audio.

2. THE OPTIMIZATION PROBLEMS
The sensor signal properties described in Section 1 gives

rise to the following two optimization problems, which we
address in this paper.



2.1 Linear Simplification
The first property states that the n (x, y,time) GPS-points

in a signal can be approximated over time by some k ≪ n
simple shapes, such as linear (3-dimensional) segments. Since
GPS-points usually contain Gaussian noise [31], the maxi-
mum likelihood estimation (MLE) method [24] implies that
the originating (without noise) signal that most likely gen-
erated our noisy one is the one that minimizes its sum of
squared distances from the points. The Gaussian noise as-
sumption holds for most sensors.
In that case, the optimization problem of interest is to

compute the k-segment mean, the k-piecewise linear function
over time that minimizes the cost (sum of squared regres-
sion distances) to the points among all possible k-segments.
These types of problems are known as line simplification.

2.2 Signal Clustering
The second property states that the k segments in the sig-

nal simplification will repeat themselves, and that each seg-
ment in the signal is actually a translation in time of one of
m ≪ k 2-dimensional segments in space. Then, the (k,m)-
segment mean is a k-segment that minimizes the sum of
squared regression distances to the input GPS-points, with
the additional constraint that the projection of the k seg-
ments on (x, y)-space (i.e, their geographical path, ignoring
time and speed) is a set of only m ≪ k (two-dimensional)
segments. In particular, the k-segment mean is the (k, k)-
segment mean of P .

2.3 Potential Applications
Our algorithms take as input a stream of n GPS-points

and output an approximation to the k-segment and (k,m)-
segment mean of the signal. From this output we compute
the following pair of tables, which represent the semantic
trajectories behind the signal:

1. The actual trajectory in time, containing k ≪ n rows,
with fields begin time, end time, and pattern ID.

2. The m ≪ k segment patterns in space, with fields
pattern ID, begin point, end point. Here, a point is a
(latitude, longitude) location in space.

This output pair of tables is the main step for many power-
ful applications in learning and predicting GIS data and its
semantic meaning, such as determining user activities and
community behavior. We list some of them below.

Compression. While the sampling frequency of sensors
can be high, storage on mobile devices and computers is
bounded. In addition, transmitting data to a server is ex-
pensive, slow, and may be impossible due to communication
problems. The ability to save on-line only the semantic tra-
jectories that are represented by the signal, rather than high
resolution GPS-points, mitigates these problems. Even for
small datasets when storage of the signals is not an issue, an-
alyzing the signals usually involves non-trivial optimization
problems. Applying the algorithms on small semantic rep-
resentations of the signals reduces their running time, which
usually depends on the input signal size. This idea will be
formalized as coresets.

De-noising. Consider the GPS-signal of a static user. Since
GPS-error is Gaussian, the mean of the sampled point will
eventually converge to the user’s true location, by the law
of large numbers. However, this usually takes too long in

practice. The problem is even worse when the user is moving
and the period of sampled time is small. On the other hand,
if a user visits the same location several times, even for a
quick visit, the points that correspond to these visits will be
assigned the same location id. Computing the average of all
the points in this cluster would then allow prediction of the
correct location of the user with higher probability.

Map Generation and Matching. Navigation devices use
pre-built maps for planning. The algorithms in this paper
can generate such maps from the GPS-traces of cars on the
street.In fact, map symbols other than road structure can
be extracted from our tables. For example, when several
users spend time at the same location and then increase
speed, then this location may be a traffic signal. We can
also generate associations such as: people that visit place
a and b will usually visit place c. Such rules have natural
applications in marketing and homeland security.

The output maps can also be used to perform map-matching,
where the goal is to find which road a vehicle is on based
on its GPS-location. The näıve approach of assigning the
vehicle to the nearest road in a map usually fails because of
noise (see [28]). Instead, we can match every pattern ID to a
road in the map. While related papers use local consecutive
sets of GPS-points, our linear simplification is based on both
global optimization and clustering and may improve results.

Learning Social Networks and Communities. From
our output tables, we can extract a sparse matrix A whose
(i, j) entry is the number of times that user i visited place
ID j. During recent decades, many algorithms have been
suggested for learning such matrices. For example, applying
PCA on this matrix reveals correlations between users and
places. Running clustering algorithms on the rows/columns
of A will allow us to find clusters of users, places, and unique
people (outliers) (see [23] for a survey and algorithms).

GPS-text mining. We have implemented a new system
called iDiary [12], that allows text search of users’ GPS data
based on the algorithms in this paper. The system features
a user interface similar to Google Search that allows users to
type text queries on their activities (e.g., “Where did I buy
books?”) and receive textual answers based on their GPS
signals. In iDiary, we apply reverse geociting on the out-
put tables using existing APIs such as Google Maps. These
services translate (latitude, longitude) coordinates into tex-
tual descriptions (exact address, places, business name, zip
code, etc.) on which we can run text queries. However, the
service does not de-noise the data and provides only a lim-
ited number of queries. We run queries once on the m rows
of the location table, rather than on the large set of noisy
input points, and then run all future queries on the local ta-
bles, allowing us to serve unlimited numbers of queries with
greater accuracy.

3. RELATED WORK

3.1 Line Simplification
Line simplification is a common approach to compressing

and denoising continuous signals and has already been well
studied for purposes such as cartography [14] and digital
graphics [5]. Streaming heuristics for this problem is sug-
gested in [8]. Whereas many algorithms, optimal, approx-
imate, and heuristics, have been proposed for the problem



of a maximum-distance error function (see [22] and refer-
ences therein), the problem of line simplification for a sum-
of-squared-distances error has largely been unexplored. To
our knowledge, no algorithms with provable error bounds
have been proposed since Bellman’s dynamic program [7],
which yields an optimal solution in O(kn2) time and O(kn2)
space, although several heuristics exist that find locally opti-
mal partitions using grid search [26] or recursive partitioning
of intervals [21]. None the existing sum-of-squared-distances
algorithms can run on streams of GPS data. In this paper
we suggest the first (1 + ε)-approximation for this problem
that takes O(n) time for arbitrary constant ϵ > 0.

3.2 Signal Clustering
The problem of signal clustering is significantly harder,

and even the heuristics for solving it are few. The main
challenge of the signal clustering problem is that unlike the
line simplification problem, where we cluster to the same
segment only consecutive points in time, here we wish to
cluster sets of GPS-points from arbitrary time intervals. We
observe that the projection of the (n,m)-segment mean on
Rd is the solution to the classic k-means clustering problem
(where k is replaced by m) of computing a set of k centers
(points) that minimizes the sum of squared distances from
every input point in Rd to its closest center. This also implies
that the (k,m)-segment mean, unlike the k-segment mean,
is NP-hard, even for a (1 + ε)-approximation when ε < 1
and m is not constant.
Unlike k-means, however, we could not find any algorithm

with provable bound on its error. Actually, to our knowl-
edge, this is the first paper that suggests a formal defini-
tion of the problem. There exists a body of signal clustering
work [9, 25, 32] whose goal is to translate a time signal into a
map of commonly traversed paths. In particular, Sacharidis
et al. [13] process GPS streams online to generate common
motion paths and identify “hot” paths. However, the major-
ity of this work either suggest an algorithm without defin-
ing any optimization problem, or suggest quality functions
based on a ad-hoc tuning variables whose meaning are not
clear. Most also use a maximum-distance cost function. Fur-
thermore, since the aim of these works are to identify tra-
jectory patterns in space, the temporal information in the
original data is lost. No current work in trajectory clustering
uses the results as a method of compression for the original
input trajectory. Other semantic compression techniques for
signals can be found at [4, 30, 10]. Techniques for semantic
annotation of trajectories can be found in [6, 27].

4. CORESETS
To solve the k-segment and (k,m)-segment mean efficiently

for massive streams of points using distributed computing
and existing inefficient optimization algorithms, we use core-
sets. A coreset is a small semantic compression of an original
signal P , such that every k-segment has the same cost with
respect to the original signal as to the coreset, up to (1+ ε)-
multiplicative error, for a given ε > 0. Coresets provide:
Shorter running time. An (possibly inefficient) opti-

mization algorithm for a problem such as the k- or (k,m)-
segment mean can be applied on a small coreset and yield a
(1+ε) approximation to the corresponding mean of the orig-
inal (large) signal much faster. This includes constrained
version of these optimization problems. In particular, for
non-constant m the (k,m)-segment mean problem is NP-
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Figure 1: (a) Tree construction for generating core-
sets in parallel or from data streams. Black arrows
indicate “merge-and-reduce” operations. The inter-
mediate coresets C1, . . . , C7 are numbered in the or-
der in which they would be generated in the stream-
ing case. In the parallel case, C1, C2, C4 and C5 would
be constructed in parallel, followed by C3 and C6, fi-
nally resulting in C7. (b) Example construction of
C3 on a GPS-signal that recorded a trajectory of 6
routes over time. The first (left) half of the input
contains the first 3 routes. The second half (right)
contains routes 4-6. [16]

hard, but a small coreset for the problem can be computed
in linear time. We thus provide EM-algorithm for this prob-
lem that converges to local optimum, and using the coreset
are able to run it for many more iterations and initial seeds.

Streaming computing. In the streaming setting, GPS
points arrive one-by-one and it is impossible to remember
the entire data set due to memory constraints. Using a
merge-and-reduce technique [16], we can apply inefficient
and non-streaming algorithms on coresets to obtain efficient
streaming algorithms. This approach is usually used in the
context of coreset and we summarize it in Fig. 1.

Parallel computing. Our coreset construction is embar-
rassingly parallel [17] and can be easily run on a network or a
cloud. We partition the data into sets and compute coresets
for each set independently. We then merge pairs of coresets
to get the final coreset for the entire data set. Construction
of a single coreset can also involve parallel computation for
faster running time. This is because it involves mainly Eu-
clidean distance calculations, an operation that is known to
be suitable for parallel processing (see Line 5 of Algorithm 1
Line 1 of Algorithm 2).

It has been proven that in general, coresets of size o(n) do
not exist for the line simplification problem [2, 19], although
under certain conditions, coresets have been constructed for
the maximum distance cost function. For example, Abam et
al. [2] provided the first provable line simplification stream-
ing algorithm for signals that are monotone; unfortunately,
GPS signals are typically not monotone, and their results
cannot be used here. In [16], to overcome the o(n) lower
bound above, a different approximation function was used:
ε-angular rotation from the optimal k-segment. However,
this approximation allows large errors for GPS points that
are approximated by long segments (such as high-ways),
which is undesirable. The size of the coreset in [16] is also
exponential in the dimension d of the signal, unlike the core-
set in this paper.

In this paper, we construct the first small coresets that



deals with sum of squared distances, which is more suitable
for GPS points as noted in Section 2.1. To avoid the o(n)
lower bound we used the natural assumption that the GPS-
signals are discrete-time, i.e, sampled at constant frequency
or a small number of frequencies. This is the first sub linear
size coreset that provides a (1 + ε)-approximation for the
k-segment mean problem of discrete signals, or in general,
for non-monotone signals.

5. OUR RESULTS
Our algorithms receive as input a discrete signal P of

p1, · · · , pn of n points in Rd that is processed on-line (in
one pass) using:

• logO(1) n space (memory)

• logO(1) n update time per point insertion
• n/M · logO(1) n overall runtime for M ≥ 1 processors

In the above notation, we assumed that all input parameters
other than n are fixed. More generally, the dependency of
space and time on k is linear, and on d is polynomial.
Our results are as follows.

A (k, ε)-coreset. The size of the coreset for P is O(k/ε2)
for any input integer k ≥ 1 and error bound ε > 0. The
coreset construction is randomized and succeeds with high
(arbitrarily small constant) probability. All other algorithms
are deterministic, but since we apply them on the coreset,
they also succeed with high probability.

(1 + ε)-approximation to the k-segment mean. The
algorithm is based on running the existing optimal algorithm
on the coreset of P .

(1 + ε)-approximation to the (k,m)-segment mean.

The overall running time for a fixed ε > 0 is O(n/M)+2O(m)

using an approximation algorithm on the coreset.

EM-Algorithm for the (k,m)-segment mean. We run
an iterative (k,m)-segment mean algorithm on the coreset

of P in km logO(1) n time per iteration. The algorithm is
based on the expected-maximization (EM) technique and
each iteration returns a better approximation to the (k,m)-
segment mean of the input signal. The algorithm converges
to a local minimum.

Experimental Results. We implement our coreset and
algorithms above and present experimental results on sev-
eral datasets that demonstrate: (a) the quality and running
time of the coreset constructions as a function of their size
and construction time, (b) benchmarks of our algorithms
and their compression ratio compared to existing heuristics,
(c) new streaming capabilities and better performance for
existing heuristics using our coresets.
Note on choosing k and m Since the cost function is

reduced with both k and m, and since both of them are
integers between 1 to n, the values of k and m can be auto-
matically calibrated in O(log2 n) runs of the algorithm via
binary search or hill climbing techniques for finding the “el-
bow” (zero second derivative) of the cost function [3].

6. PROBLEM STATEMENT
We are concerned with compressing an input discrete-time

signal, which is a set P = {p1, · · · , pn} of ordered points
in Rd, where pi is a point that was sampled at time i for
i = 1, · · · , n. A crucial observation is that if all the points

are lying on a line, then we can represent the signal exactly
just by its endpoints p1 and pn. We use this observation to
compress the projection of a signal on its k-segment mean.

Definition 6.1 (k-segment mean). For an integer k ≥ 1,
a k-segment in Rd is a piecewise linear function f : R→ Rd

of k linear segments. The fitting cost of f for a signal P in
Rd is the sum of squared distances to its k segments,

cost(P, f) :=
∑
pt∈P

∥f(t)− pt∥2.

Here, ∥x− y∥ is the Euclidean distance between the x and y
in Rd. The k-segment mean f∗ of P minimizes cost(P, f)
over every k-segment f in Rd.

For obtaining fast and practical algorithms, we will aim
only for α-approximation algorithms whose cost equals to
the cost of the k-segment mean f∗ of P , up to a multiplica-
tive constant factor α, i.e,

cost(P, f̃) ≤ α · cost(P, f∗), and f̃ is a k-segment

In order to decide which points should be represented in
the coreset, we usually need some rough approximation of
the k-segment mean. Unfortunately, existing results do not
provide even α-approximation that can be computed in time
sub-cubic in n, for any constant α. Instead, we provide an
algorithm that computes the following weaker approxima-
tion for the k-segment mean for constructing the coreset in
O(n) time.

Definition 6.2 ((α, β)-approximation). For α, β >
0, an (α, β)-approximation for the k-segment mean of P is
a βk-segment b : R → Rd whose cost equals to the cost of
the k-segment mean f∗ of P , up to a multiplicative constant
factor α, i.e,

cost(P, b) ≤ α · cost(P, f∗), and b is a βk-segment

Note that we compare b to the optimal k-segment mean
f∗, and not to the (βk)-segment mean of P . Unlike α-
approximations, there are (α, β)-approximation for α < 1.
For example, using n − 1 segments (β = (n − 1)/k) we can
trivially get zero cost (α = 0) for P by connecting every pair
of consecutive points in P by a segment.

In order to store an efficient representation of a signal as
a coreset, we introduce weighted signals, where more impor-
tant points are given larger weights. Unlike existing coresets,
in order to approximate k-segments we had to introduce neg-
ative weights.

Definition 6.3 ((k, ε)-coreset). Let k ≥ 1 be an in-
teger and ε > 0. A weighted signal (C,w) where w : C → R
is a (k, ε)-coreset for a discrete signal P if for every k-
segment f in Rd,

(1− ε)cost(P, f) ≤ costw(C, f) ≤ (1 + ε)cost(P, f).

where

costw(C, f) :=
∑
ct∈C

wc · ∥f(t)− ct∥2.

To exploit the data redundancy of sequences of points that
are repeated over time we define the (k,m)-segment mean.

Definition 6.4 ((k,m)-segment mean). For a pair of
integers k ≥ m ≥ 1, a (k,m)-segment is a k-segment f in Rd

whose projection {f(t) | t ∈ R} is a set of only m segments



in Rd. Given a signal P in Rd, its (k,m)-segment mean f∗

minimizes cost(P, f) among every possible (k,m)-segment f
in Rd.

7. (α, β)-APPROXIMATION
The exact k-segment mean can be computed in O(kn2)

time as described in [7]. Using the map-and-reduce tech-
nique, we will need to apply this algorithm (as part of the

coreset construction) only on small data sets of size k logO(1) n,

so the total running time will be k3 logO(1) n.
However, in practice and in our experiments the value of k

may be large, so we wish to compute the coreset in time that
is linear in both n and k. To this end, we suggest an (α, β)-
approximation for the k-segment mean that takes only O(n)
time, shown in Algorithm 1. Informally, given k and the
signal P , we partition P into 4k consecutive subsequences
and find the 1-segment mean of each. Then we remove the
k subsequences that have the lowest cost 1-segments means
and iterate on the remaining 3

4
of the signal. The output of

the algorithm is the 1-segment means of the subsequences we
removed at each iteration, for a total of O(k logn) segments.
The algorithm uses the following algorithm for finding the

1-segment mean as a sub-routine.

Lemma 7.1. Let P be a signal of n points in Rd. The
1-segment mean of P can be computed in O(n) time.

Proof. Let u, v ∈ Rd, and let ℓ : R→ Rd be a 1-segment
ℓ(t) = u+ vt which minimizes

costw(P, ℓ) = min
u,v∈Rd

∑
pt∈P

w(p)∥u+ vt− pt∥2. (1)

By letting XT := [u | v], for an appropriate matrices
A,P+, B and N we have that

costw(P, ℓ) = ∥AX − P+∥F − ∥BX −N∥F , (2)

where ∥·∥F denotes the Frobenius norm (sum of squared
entries). Taking the derivative of the right-hand side of (2)
with respect to X yields X = M−1Y , where M = ATA −
BTB and Y = PT

+A − NTB. Hence, computing X which
correspond to the 1-segment mean of P takes O(n) time.

Theorem 7.2. Let P be a discrete signal of n points in
Rd, and k ≥ 1 be an integer. Let f be the output of the algo-
rithm Bicriteria(P ,k) (Algorithm 1). Then f is an (α, β)-
approximation for the k-segment mean of P , with α, β =
O(logn). The running time of the algorithm is O(n).

Proof. Running time: One-quarter of the points of P are
removed in every iteration so there are O(log n) iterations.
In every iteration, we compute the 1-segment mean of k sets,
which takes O(n) time using the previous lemma. Hence, the
overall running time is

∑
i n(1− 1/4)i = O(n).

Correctness: In every one of the O(logn) iterations we
add k segments to the output, which yields β = O(logn).
In order to bound α, observed that if we partition P into
4k segments, half of these segments will not contain any of
the 2k endpoints of the k-segment mean f∗ of P . Hence,
the cost c of these segments to f∗ is at least their sum of
costs to their 1-segment mean. Since our algorithm chooses
the k segments with the minimum sum of costs to their 1-
segment mean, this sum is less than c. By repeating this
argument recursively for the α = O(logn) iterations we ob-
tain a cost that is at most α times the optimal k-segment
mean of P .

Algorithm 1: Bicriteria(P, k)

Input: A discrete signal P of n points in Rd,
and an integer k ≥ 1.

Output: (α, β)-approximation b to the k-segment of P ,
where α, β = O(logn).

1 i← 1; P1 ← P ; F ← ∅
2 while |Pi| > 4k do

/* Partition Pi into 4k consecutive

sequences */

3 for j ← 1 to 4k do
4 Pi,j ←

{
p(j−1)(4n/k)+1, · · · , pjn/4k

}
5 fi,j ← A 1-segment mean of Pi,j

/* see Lemma 7.1 for a suggested

algorithm */

6 Pi,j1 , · · · , Pi,jk ← The k sets Pi,j with the smallest
cost(Pi,j , fi,j) over j = 1, · · · , 4k

7 Pi+1 ← Pi \ (Pi,j1 ∪ · · · ∪ Pi,jk)
8 F ← F ∪ {fi,j1 , · · · , fi,jk}
9 i← i+ 1

10 fi ← 4k-segment whose endpoints are the points of Pi.
11 F ← F ∪ {fi}
12 b← k · |F |-segment corresponding to the segments in F
13 return b

8. CORESET

Algorithm 2: Coreset(P, k, ε, δ)

Input: A discrete signal P = {p1, · · · , pn} in Rd,
an integer k ≥ 1, and ε, δ ∈ (0, 1).

Output: With probability at least 1− δ,
a (k, ε)-coreset (C,w) for P .

1 Compute an (α, β)-approximation f̃ for the k-segment
mean of P , where α, β = O(logn)
/* See Theorem 7.2 for suggested algorithm. */

2 for i← 1 to n do

3 Set σ(pi)←
∥pi − f̃(i)∥2∑n
i=1∥pi − f̃(i)∥2

/* The dominator is cost(P, f̃) (Def. 6.1) */

4 c← sufficiently large constant that is determined in the
proof of Theorem 8.1.

5 Pick a non-uniform random sample S of

10cα2k ln(1/δ)/ε2 points from P , for every q ∈ S and
p ∈ P we have q = p with probability σ(p)

6 Set P ′ ←
{
f̃(i) | 1 ≤ i ≤ n

}
/* project P on f̃ */

7 Set S′ ←
{
f̃(s) | ps ∈ S

}
/* project S on f̃ */

8 Set C ← P ′ ∪ S ∪ S′

9 for each ps ∈ S do
10 w(ps)← 1

|S|·σ(ps)

11 w(f̃(s))← −w(ps)

12 for each p ∈ P ′ do
13 w(p)← 1
14 return (C,w)

We use the bicriteria approximation from the previous
section to compute a coreset of size that depends polynomi-
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ally on logn. In the following corollary we will show how to
construct a coreset of size independent of n.

Theorem 8.1. Let P be a signal in Rd, δ, ε ∈ (0, 1.2) and
k ≥ 1 be constants where δ > ε/2. Let (C,w) be the output
of a call to Coreset(P, k, ε, δ) (Algorithm 2). Then, with
probability at least 1 − δ, the pair (C,w) is a (k, ε)-coreset
for P . The coreset (C,w) can be computed in O(n) time.

Proof. We use the notation and variables that are de-
fined in Algorithm 2. For every pi ∈ P we denote by p′i
its corresponding projection in P ′. Fix a k-segment f in
Rd. The error of approximating the weighted distances to S
from C rather than P is:∣∣∣∣∣∣

∑
pi∈P

∥f(i)− pi∥2 −
∑
pi∈C

w(pi)∥f(i)− pi∥2
∣∣∣∣∣∣

=
∑
pi∈P

(
∥f(i)− pi∥2 − ∥f(i)− p′i∥2

)
−

∑
pi∈C

w(pi)
(
∥f(i)− pi∥2 − ∥f(i)− p′i∥2

)
.

(3)

Denote the contribution of pi ∈ P to the desired cost as

∆(pi) := ∥f(i)− pi∥2 − ∥f(i)− p′i∥2.

Let Q denote the points in P such that |∆(pi)| > εf2(p).
With probability at least 1−δ, we have σ(p) ≥ δ/(10|S|) for
every p ∈ S. Suppose that this event indeed occurs. Hence,

w(p) =
1

|S| · σ(p) ≤
10

δ
.

Summing this over the points of P \Q yields∣∣∣∣∣∣
∑

pi∈P\Q

∆(pi)−
∑

pi∈C\Q

w(pi)∆(pi)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

pi∈P\Q

εf2(p)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
pi∈C\Q

10

δ
· εf2(p)

∣∣∣∣∣∣
≤ 10εcost(P, f)

δ
≤ 5εcost(P, f).

It is left to bound the error for the points in Q.
Using the framework from [15] for constructing coresets,

we only need to bound the total sensitivity T of the points in
Q to the family of k-segments in Rd and the VC-dimension
v of this family. The desired sample |S| then should be
cv ln(1/δ)T 2/ε2 as proved in [15]. Intuitively, the VC-dimension
corresponds to the number of parameters needed to define
a k-segment. It is easy to verify that the VC-dimension of

the family of k-segments is O(k); see the formal proof for
the family of k lines in [15].

Suppose that we are given a query k-segment of distance
at most 1 to each query point, and that the sum of squared
distances is cost. By Hoeffding inequality, approximating
the sum of squared distances from the n points to this k-
segment by a uniform random sample of size O(1/ε2) would
yield an additive error of O(εn) , with high probability.
The theory of PAC-learning generalizes this results for ap-
proximating simultaneously every k-segment, using O(v/ε2)
points. The result in [15] generalizes this result to obtain
εcost additive error, i.e, (1 + ε) multiplicative error, by re-
scaling each input point p by a weight that it proportional to
its sensitivity 1/s(p), and duplicate it in number of copies
that is proportional to s(p). While the total cost to the
query segment is the same, the maximum contribution of
a specific point is bounded. Taking a uniform sample from
such a set of duplicated point is of course the same as taking
a non-uniform sample from the original set.

The sensitivity of a point p ∈ Q is a number s(p) ∈ [0, 1]
of how important it is to take p ∈ Q (and its projection p′)
in the coreset. For example, if there is a k-segment f that is
close to all other points but far from p, then we must choose
p in the coreset, otherwise f will not be approximated well.

Let ∆′(p) = ∆(p) if p ∈ Q and 0 otherwise. Since we wish
to approximate

∑
p∈P ∆′(p) with an additive error εcost(P, f),

the sensitivity of p ∈ P is

s(p) := max
f

|∆′(p)|
cost(P, f)

,

where the maximum is over every k-segment f in Rd. We
now bound this sensitivity. Since s(p) = 0 for p ∈ P \Q, we
assume p ∈ Q.

Using the triangle inequality, it can be proved that for
every τ ∈ (0, 1/2)

∆(p) ≤ 3f̃2(p)

τ
+ 2τf2(p).

See [20]. Hence,

s(p) ≤ 3f̃2(p)

τcost(P, f)
+

2τf2(p)

cost(P, f)
.

Since p ∈ Q we have ∆(pi)/ε > f2(p). Hence, for τ < ε/4,

s(p) ≤ 3f̃2(p)

τcost(P, f)
+

2τ |∆(pi)|
εcost(P, f)

≤ 3f̃2(p)

τcost(P, f)
+

s(p)

2
.

So, for τ > ε/6

s(p) ≤ 6f̃2(p)

τcost(P, f)
≤ 6αf̃2(p)

τcost(P, f̃)
≤ 36αf̃2(p)

εcost(P, f̃)
.



Summing this over every p ∈ P yields that the total sensi-
tivity is T =

∑
p∈Q s(p) ≤ 36α

ε
.

Corollary 8.2. A (k, ε)-coreset for P of size O(k) can
be constructed in O(n) expected time for arbitrary small con-
stant ε > 0.

Proof. We use ideas from [20]. First we compute a
(k, 1/2)-coreset C of size O(log2 n) by applying Algorithm
2 with ε = 1/2. Using C and the Bellman’s optimal algo-
rithm [7], we compute the optimal k-segment of C. This
yields an (α, β)-approximation f∗ for the k-segment of P
with α = β = O(1). We then compute a new coreset C′

using Algorithm 2, using f∗ as the (α, β)-approximation in
the first line of the algorithm.

By applying the optimal algorithm of Bellman [7] that takes
time O(kn2) on the coreset C of P instead of P , we obtain
a (1 + ε)-approximation for the k-segment mean of P .

Theorem 8.3. Let P be a discrete signal of n points in
Rd, and k ≥ 1 be an integer. A (1+ ε)-approximation to the
k-segment mean of P can be computed, with high probability,
in O(n+ k3) time for arbitrary small ε > 0.

9. (K,M)-SEGMENT MEAN
Similarly to the approach of the previous section, we first

suggest a (1+ε)-approximation non-streaming algorithm for

the (k,m)-segment mean that takes nO(m) time. Then we
apply the algorithm on our coreset from the previous section
to reduce the space to O(log n) and the running time to

O(n) + 2O(m). The algorithm is simply based on exhaustive
search and due to space limitation we leave the proof for the
full version.

Theorem 9.1. Let P be a signal of n points in Rd, k ≥
m ≥ 1 be integers, and ε > 0 be an arbitrary small constant.
Then a (1+ε)-approximation to the (k,m)-segment mean of

P can be computed in nO(m) time.

Applying the algorithm from the proof of Theorem 9.1
on the coreset of size O(k) from Theorem 8.1 yields the
following theorem.

Theorem 9.2. Let P be a discrete signal in Rd, ε > 0
and k ≥ m ≥ 1 be a pair of constant integers. A (1 +
ε)-approximation to the (k,m)-segment mean of P can be

computed in O(n) + 2O(m) time.

Practical Heuristic for large m.

Theorem 9.3. Let P be a signal in Rd, and iend ≥ 1, k ≥
m ≥ 1 be integers. Then the running time of Algorithm 3
is O(n) + O(iend). Moreover, the cost of the output (k,m)-
segment reduces with iend and converges to a local minimum
with i→∞.

10. EXPERIMENTAL RESULTS
Running algorithms on our experimental data sets, such as

Bellman’s optimal k-segment mean, would require literally
Terabytes of RAM and years of computation time. Using
our coreset, we were able to run such algorithms on millions
of GPS-points in only few hours on our laptop, using näıve
MATLAB implementations.

Algorithm 3: km-Segment(P, k,m, iend)

Input: A signal P = {p1, · · · , pn} ⊆ Rd,
two integers k ≥ m ≥ 1,
and number iend of iterations.

Output: A (k,m)-segment fiend .

/* Initialization: */

1 f ← A (1 + ε)-approximation to the k-segment mean
of P /* See Theorem 8.3 */

2 Q← The set of concatenated k pairs

(q1 | q2), . . . , (q2k−1 | qk) ∈ R2d of the segments
endpoints of {f(i) | 1 ≤ i ≤ n}

3 {Q1, · · · , Qm} ← The partition of Q into its m-means
(points) clusters
for j ← 1 to m do

4 P1,j ← the points of P that are on a segment
p, q ∈ Qj

for i← 1 to iend do
/* Maximization step: */

5 for j ← 1 to m do
6 ai,j ← the 1-segment mean of Pi,j

7 Ai ← {ai,1, · · · , ai,m}
/* Expectation step: */

8 fi ← The optimal (k,m)-segment f of P whose
projection is Ai

for j ← 1 to m do
Pi+1,j ← points whose projections are closest to
the jth projected segment of fi, among its m
projected segments

In this section, we compare the performance of these al-
gorithms in terms of quality of the signal approximation,
runtime, and storage cost. More precisely, given a specific
constraint on the size k and m of the output signal, we mea-
sure the error cost (sum of squared distances) to the original
signal, and the running time of the algorithm. We measured
all times in seconds on a 4-core Intel Xeon CPU running at
2.67GHz with 6GB of RAM.

Our results demonstrate large reductions in storage size by
using the proposed algorithms without much loss of quality.
We further find that applying these algorithms, both opti-
mal and heuristic, to our coreset yields significant speedup.
Our (k,m)-algorithm produces maps that approximate the
input trajectory better than existing trajectory clustering
algorithms.

Datasets. We used three sets of GPS trajectories for our
experiments: (DRL) a trajectory, consisting of 5,811 points,
pre-planned and executed by the authors,(SIGSPATIAL)
the 14,436-point training dataset provided to participants in
the ACM SIGSPATIAL Cup 2012 [1], and (CAB) 2,688,000
points collected by 121 taxicabs in San Francisco [29].

10.1 Compression
In the first set of experiments, we compare the storage-

quality tradeoff that comes with approximating a signal by
line segments. We ran k-segment and (k,m)-segment mean
algorithms on the DRL dataset and compared the quality of
the approximation for various sizes of output.

Algorithms. The algorithms we tested are: optimal Bell-
man [7], MATLAB’s SPAP2 (from the curve fitting tool-



10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Size of Input

T
o
ta
l C
o
st
 (
d
e
g
.2
)

 

 

250 5000

Bellman

BellmanCor

BellmanUni

DPSegs

DPSegsCor

DPSegsUni

SPAP2

SPAP2Cor

SPAP2Uni

DeadRec

(a) Total Cost, DRL

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Size of Input

T
o
ta
l C
o
st
 (
d
e
g
.2
)

14,000

(b) Total Cost, SIGSPATIAL

10
3

10
4

10
5

10
6

10
−4

10
−2

10
0

10
2

10
4

10
6

Size of Input

T
o
ta
l C
o
st
 (
d
e
g
.2
)

2,688,000

(c) Total Cost, CAB

Figure 3: Mean cost of Bellman’s, Douglas-Peucker, spap2, and dead-reckoning algorithms for the (a) DRL,
(b) SIGSPATIAL, and (c) CAB datasets. Data points were processed in batches of 1000, and 3 trial runs
were performed. Algorithms run on entire input are shown as solid lines, on coresets (COR) as dotted lines,
and on uniform random samples (UNI) as dashed lines. Note that Bellman’s was not run on the entire
SIGSPATIAL or CAB datasets for lack of memory. The sizes of the coreset were (DRL) k = 100, |S| = 100
and (SIGSPATIAL, CAB) k = 200, |S| = 100. 30-segment means were calculated on the DRL dataset, and
100-segment means on SIGSPATIAL and CAB. Three tests were performed for each algorithm and dataset.

Size, kB Total Cost, deg.2

(% of orig) (k,m) Bellman DPSegs SPAP2 DeadRec
0.2 (0.14) 0.2667 0.3530 0.3900 0.5033 2.1738
0.4 (0.29) 0.0293 0.0331 0.0820 0.1156 0.8364
0.8 (0.57) 0.0069 0.0075 0.0152 0.0261 0.2519
1.0 (0.72) 0.0048 0.0048 0.0093 0.0176 0.1528
1.5 (1.08) 0.0022 0.0017 0.0039 0.0058 0.0592
2.0 (1.43) 0.0012 0.0010 0.0020 0.0033 0.0290
2.5 (1.79) 0.0007 0.0006 0.0012 0.0024 0.0168

Table 1: Comparison of size (in bytes) of the k- or
(k,m)-segments representation and their mean qual-
ity. The original total size of the dataset (DRL) was
139.4 kB.

box), and the popular Douglas-Peucker (DPSegs) [14] and
dead-reckoning (DeadRec) [18] heuristics. To improve their
results, we modified spap2 and DPSegs to support discon-
nected segments. We also changed the cost function of
DPSegs from maximum distance to sum of squared dis-
tances. Our version of DPSegs consists of the following
steps: Beginning with a partitioning that consists of the
entire data set, 1) for the partition with the highest cost,
compute the optimal 2-segment mean, 2) divide that par-
tition into two parts according to the result, and 3) repeat
until the dataset has been partitioned into k. Of these four
algorithms, only DeadRec can inherently be applied in a
streaming context.

Results. The results are shown in Table 1. As an opti-
mal algorithm, Bellman produces the best storage-to-cost
ratio out of all k-segment algorithms. Interestingly, it also
outperforms the (k,m)-segment mean EM algorithm for the
larger output sizes. We expected the (k,m)-segment mean
to yield better storage-to-cost ratios since the DRL dataset
contains multiple repetitions of the same subtrajectory and
suspect that the larger costs stem from the fact that Bell-
man is an optimal algorithm and km-Segment is not. No-
tice that km-Segment outperformed all of the k-segment
mean heuristics.

10.2 Advantage of Coresets: k-Segment Mean
The experiments in Section 10.1 could be performed on

the entire DRL dataset since it was relatively small. For
larger data sets, the computation time becomes prohibitively
large. In the following experiments, we tested k-segment
mean algorithms on our proposed coreset to verify our claims
of shorter running time without loss of quality.

Method. We compare the results of running k-segment
mean algorithms on P compared to its coreset Cor and to
a uniform random sampling Uni from P . We used k = 30
for the DRL dataset and k = 100 for the SIGSPATIAL and
CAB datasets. The input to the algorithms was a stream of
subsets of size 1000 from P . Coresets and uniform samples,
each of size S = 600 points, were constructed from each
batch. The algorithms that do not support streaming (all
except DeadRec) were run on the whole set that was seen
so far, on the coreset, and on the uniform random sample.

Results. The results are shown in Fig. 3. Update time
for the trials, which were approximately the same for all
datasets, are shown in Fig. 4. For Bellman’s, Douglas-
Peucker, and spap2, applying the algorithm to the core-
set yields little cost difference from applying it to the in-
put points. However, using the coreset allows a relatively
constant update time with increasing input size, while the
update time required to apply the algorithm directly to the
input points increases with the total input size. Actually,
for the coreset, update times vary with the coreset size. In
Fig. 4(b) we see evidence of the updating mechanism of the
streaming tree, where update time (coreset size) reaches a
minimum when input sizes are powers of two, as described
in Fig 1. The uniform random sample, which is chosen in
sub-linear time, is significantly faster than the coreset, but
the cost of the random sample is consistently higher than
both using the entire input and using the coreset.

10.3 (k,m)-Segment Mean

Method. A (k,m)-segments approximation to the input
trajectory can also be computed ona coreset, as described
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Figure 4: Mean update time over three tests of Bell-
man’s, Douglas-Peucker, spap2, and dead-reckoning
algorithms on the input datasets. The plots looked
similar for all three datasets.

in Section 9. We analyzed the quality and size of the output
for coresets of the DRL and SIGSPATIAL datasets.

Results. Fig. 5 shows example maps created using the
km-Segment algorithm as compared to computing only k-
segments. We also compared the output maps to those cre-
ated by the algorithm proposed by Lee et al. in [25]; this al-
gorithm also clusters subtrajectories but approximates each
cluster by a linear spline rather than a single segment and
does not attempt to perform compression. Furthermore, the
time information from the input trajectory is not preserved.
We ran Lee et al.’s algorithm with distance weights all equal
to 1. For comparison with the (k,m)-segments-mean and k-
segments-mean, we used the the resulting number of clusters
from running Lee et al. as m, and the number of partitions
as k.
We see that a (k,m)-segment mean with m < k will yield

a larger cost than the corresponding k-segment mean, but
will have a smaller storage size. Both algorithms performed
much better than Lee et al. in terms of storage, since Lee
et al. does not compress the data.
Qualitatively, we observe that trajectory clustering pro-

duces a cleaner map by decreasing variation in the direc-
tions of segments that overlap in space. We also observe
that taking a global approach to the k-segments or (k,m)-

segments approximation produces a map that approximates
the the input trajectory much better than an approach such
as Lee et al.’s, which makes local clustering decisions. In
particular, our algorithms were able to better approximate
areas of high curvature, such as the tail in the bottom right
of the DRL trajectory or the square in the center of the
SIGSPATIAL trajectory.

11. CONCLUSION
In this paper, we present a novel coreset for the k-segment

mean and introduce the problem of finding a (k,m)-segment
mean. By running existing algorithms on our coreset, we
provide more efficient, streamable algorithms that yield high-
quality semantic compressions of the original input data. We
demonstrate large decreases in runtime for large datasets
without significant loss of quality and produce maps from
users’ trajectories. In the future, we intend to extend our
work to design coresets for the (k,m)-segments mean prob-
lem, with size dependent only on m. Our work has many
potential applications in map generation and matching, ac-
tivity recognition, and analysis of social networks.
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Figure 5: Example maps produced for (a-c) DRL and (d-f) SIGSPATIAL datasets using (DRL) k = 43,m = 25
and (SIGSPATIAL) k = 91,m = 70. For the algorithms that perform trajectory clustering, different clusters
are indicated by different colors. The original trajectory is shown in light gray. The amount of space required
to store the solution and, where appropriate, the cost of the solution are also given. (d-f) The box at in the
upper-right corner shows a close-up of area near the center of the signal.
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