
Data Structures - Assignment no. 4

Remarks:

• Write both your name and your ID number very clearly on the top of the exercise. Write
your exercises in pen, or in clearly visible pencil. Please write very clearly.

• Give correctness and complexity proofs for every algorithm you write.

• For every question where you are required to write pseudo-code, also explain your solu-
tion in words.

1. Insert the keys 5, then 9 and then 2 to the heap depicted in Figure 1. Then perform delete-min
four times. Now draw the resulting heap.

2. Show how to modify a Red Black tree, in order to get a data structure that supports the
operations delete-min and insert in O(log n) time, and find-min in O(1) time. What are the
disadvantages of such an implementation of a heap, compared to the standard implementa-
tion?

3. Describe an algorithm that prints the k smallest elements in a Heap. You can assume that the
heap is represented as an array or as a tree, whichever is more convenient for you. As usual,
you may also assume that no key appears more than once in the heap. The algorithm should
take O(k log k) time. The algorithm should not modify the heap. Give: (i) pseudo-code; (ii)
an explanation of the algorithm; (iii) an explanation why it is correct; and (iv) an explanation
why the running time is indeed O(k log k).
Note: Observe that getting an algorithm that runs in time O(k log n), where n is the size of
the heap, is easy – just perform k delete-mins. (In order to avoid modifying the heap, you
need to undo your actions, which takes another O(k log n) time).

4. Describe an algorithm that solves the following problem. You are given k sorted lists A1, . . . , Ak,
each of length n. The output should be one sorted list which contains the keys of all input
lists. The algorithm should take O(nk log k) time. You may assume that no key appears more
than once in the input. Give: (i) an explanation of the algorithm; (ii) an explanation why it
is correct; and (iii) an explanation why the running time is indeed O(nk log k).
Hint: The merge procedure that is used as a subroutine in merge-sort (which you learned in
the course “extended introduction to CS”) answers this question for k = 2 in time O(n).

5. Describe an algorithm that melds two binary heaps, represented by arrays, into one binary
heap. Denote by n the sum of the sizes of the heaps. (Assume that no key appears more than
once in the input). Try to make the algorithm as asymptotically efficient as possible. (Hint:
the solution is very easy, and can be described in one or two lines).

6. Similar to decrease-key in binary heaps, we want an operation increase-key which allows
us to set the key of a given node to a larger value. Describe how this operation could be
implemented efficiently (in your own words, or pseudo-code). If you wish, you can use any of
the existing operations or sub-operations in your implementation. What is the complexity of
your method (in O-notation)?

1



47 76 25

15

7

3

15

56 8930

Figure 1: A Heap.

2


