
Data Structures - Assignment no. 7

Remarks:

• Please write your exercises in pen, or in clearly visible pencil. Please write very clearly.

• For every question where you are required to write pseudo-code, also explain your solu-
tion in words.

1. Suppose that the splits at every level of quicksort are in proportion 1 − α to α, where 0 <
α < 1/2 ia a constant. Show that the minimum depth of a leaf in the recursion tree is
approximately - log n/ log α and the maximum depth is approximately - log n/ log (1− α).
(Don’t worry about integer round-off).

2. During the running procedure of RANDOMIZED − QUICKSORT , how many calls are
made to the random-number generator RANDOM in the worst case? How about in the best
case? Give your answer in terms of Θ-notation.

3. In this question we discuss a model called the “extended comparison model”, which is like
the comparison model, except that you are allowed 5 types of questions: (i) “a = b?”, (ii)
“a < b?”, (iii) “a > b?”, (iv) “a < b + 100?”, (v) “a > b + 100?”. Prove a lower bound of
Ω(n log n) for sorting an array of size n in the extended comparison model.

4. (a) You are given two arrays, A and B, each of size n. Give an algorithm that returns an
array C of size n, such that C[i] is equal to the number of elements of A that are less
or equal to B[i]. The algorithm should run in time O(n log n). Describe the algorithm
and explain why the running time is O(n log n). You do not have to give pseudo-code.

(b) Prove a lower bound of Ω(n log n) for this problem in the comparison model.
Hint: You can prove this lower bound directly. However, it is easier to give a reduction.
To do this, you should: (i) Prove that if you can solve this problem in time f(n) then
you can sort an array of size n in time O(f(n) + n); (ii) Deduce from this that if you
can solve this problem in time f(n) then f(n) = Ω(n log n).

5. (a) You are given an array of size n, which contains log n distinct elements, each of them oc-
curring exactly n

log n times. Give an algorithm that sorts this array in time O(n log log n).
Describe the algorithm and explain why the running time is O(n log log n). You do not
have to give pseudo-code.

(b) Prove a lower bound of Ω(n log log n) in the comparison model for this problem.
Hint: Work like the lower bound that you have seen in class. First prove that there
must be at least (n!)/ ((n/ log n)!)log n leaves in the comparison tree. Then use Stirling’s
approximation of n! to prove that the depth of the tree is Ω(n log log n). When using
Stirling’s approximation, it is enough to use that:

n! = Θ
(√

n
(n

e

)n)

You can use this approximation without proving it.

1



6. You are given an array of size n. In this array there exists an index j such that for every
i < j, A[i] < A[i + 1] and for every i > j, A[i] > A[i + 1].

(a) Describe an efficient algorithm to find index j.

(b) Prove that Ω(log n) is the lower bound on the number of required comparisons in the
worst case.

2


