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Abstract

The development of advanced computer animation tools has allowed talented artists to
create digital actors, or characters, in films and commercials that move in a plausible
and compelling way. In interactive applications, however, the artist does not have
total control over the scenarios the character will experience. Unexpected changes in
the environment of the character or unexpected interactions with dynamic elements
of the virtual world can lead to implausible motions. This work investigates the
use of physical simulation to automatically synthesize plausible character motions in
interactive applications.

We show how to simulate a realistic motion for a humanoid character by creating
a feedback controller that tracks a motion capture recording. By applying the right
forces at the right time, the controller is able to recover from a range of interesting
changes to the environment and unexpected disturbances. Controlling physically
simulated humanoid characters is non-trivial as they are governed by non-linear,
non-smooth, and high-dimensional equations of motion. We simplify the problem by
using a linearized and simplified dynamics model near a reference trajectory.

Tracking a reference trajectory is an effective way of getting a character to perform
a single task. However, simulated characters need to perform many tasks form a
variety of possible configurations. This work also describes a method for combining
existing controllers by adding their output forces to perform new tasks. This allows
one to reuse existing controllers. A surprising fact is that combined controllers can
perform optimally under certain conditions.

These methods allow us to interactively simulate many interesting humanoid char-
acter behaviors in two and three dimensions. These characters have many more
degrees of freedom than typical robot systems and move much more naturally. Sim-
ulation is fast enough that the controllers could soon be used to animate characters
in interactive games. It is also possible that these simulations could be used to test
robotic designs and biomechanical hypotheses.
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List of Figures

1-1 By drawing everything that’s seen on the screen a traditional anima-

tor has total control over the final animation. The computer animator

gives up some control to save a lot of effort. The computer animator

creates key poses through a user interface and the computer interpo-

lates those poses using an algorithmic scheme. In game animation,

these animations, which may originate from motion capture record-

ings, are packaged into clips. A game engine than stitches these clips

together or blends them to match high level input from a user or AI

to produce the final animation. . . . . . . . . . . . . . . . . . . . . . 26

1-2 Physically-based character animation has a number of advantages over

standard kinematic methods. A physically-simulated character adapts

to changes in the environment, reacts to dynamic disturbances, and

offers an infinite range of possible motions. This figure illustrates this

point with some examples. Trying to replay a motion that was ani-

mated walking on flat ground will lead to an implausible result if the

motion is replayed on a slope. If you simulate a ball hitting the char-

acter, the character won’t react if you are simply replaying a kinematic

method. Finally, using pre-animated motions leads to repetitive mo-

tion, whereas, you could easily get new motions in a physics based

approach simply by changing the mass properties of your character. 27
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1-3 Simulating a character behavior requires a controller. A feedback con-

troller examines the current state of the character to compute forces

which, when fed into simulation, help the character achieve some goal.

Designing robust controllers for high-dimensional, non-linear dynami-

cal systems is difficult. The task is even harder when you also want

the controller to produce life-like motions. . . . . . . . . . . . . . . . 28

2-1 The pose a character takes on the display is a function of its kinematic

state. Here we see an arm modeled as two rigid links. To animate the

arm, an artist specifies a function for each degree of freedom of the

arm over time. This function can be defined using a smooth spline or

can come from motion capture data. . . . . . . . . . . . . . . . . . . 34

2-2 To simulate an arm that does something besides swing aimlessly, you

need a controller that feeds meaningful forces to a simulation. The

simulation then computes forward dynamics to update the state of the

arm. Controlling an arm is fairly straightforward if you can exert a

torque at the shoulder and elbow. . . . . . . . . . . . . . . . . . . . 41

3-1 Automated analysis of linear time-varying systems leads to a balance

feedback policy that accounts for the under-actuated dynamics in the

human motion. With balance taken care of, a control system can

then reproduce a given locomotion style by tracking every body joint.

Quadratic programming combines the two feedback terms to compute

control forces needed to simulate stylized locomotion in new environ-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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3-2 The state of the character is geometrically mapped to the approximate

model. The user annotates sections of the reference motion correspond-

ing to different contact states. A simple model is constructed for each

single support section of the reference motion and the motion is re-

targeted geometrically to produce a sequence of desired states for the

simple model. At runtime, the same mapping is used to determine the

current tracking error for the three-link model. . . . . . . . . . . . . 58

3-3 The balance control approximates dynamics of each single support

phase with a linear time-varying system. Dwell times are determined

manually by timing corresponding phases in the reference motion. The

balance control illustrated in this diagram alternates between LTV sys-

tems for left and right step with the option to pause and restart. . . . 59

3-4 To prevent a fall, the LQR balance controller employs a flywheel strat-

egy, rapidly swinging the upper body in the direction of the fall and

the swing leg in the opposite direction. The strategy is depicted using

snapshots from a simulation in the leftmost image. The arrows indi-

cate the direction and relative magnitude of the applied torque. For

this particular model, the controller can recover from an initial error of

about 20 degrees which corresponds to the projected center of mass be-

ing approximately 36 centimeters away from the base of support. The

time evolution of the squared tracking error of this system is shown

for various initial perturbations in the plots on the right. Doubling the

control cost slightly improves performance but in either case the end

result is the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3-5 A simple three link model is constructed from the geometric and iner-

tial properties of the character model. The inertial properties of each

simple link are created by summing the inertial properties of corre-

sponding links on the simple character. The base link is attached to

the ground with a three-dof ball joint. Two three-dof ball joints con-

nect the other two links to the base link. The yellow dots represent

centers of mass, which are in agreement with the detailed character

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3-6 We plot the horizontal components of the root link’s up vector. The x

axis is the lateral component and the z axis is the forward component

(the character is walking down negative z). The first plot was created

using our controller on a slope of five degrees tracking the output of a

manually designed PD controller on flat ground. The second plot was

created using our controller on an uphill slope of five degrees but with

the same parameters as the downhill plot. Note that in the uphill plot,

the up vector has a more negative forward component in the upright

phase (lateral component equal to 0) indicating that the character is

leaning forward as compared to the downhill plot. In either case, the

character achieves a stable gait. . . . . . . . . . . . . . . . . . . . . 71

3-7 An action graph consisting of controllers for normal and marching

styles of walking. Currently, allowable transitions are found manu-

ally. An interesting area of future work is constructing action graphs

automatically by precomputing optimal transitions based on character

state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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3-8 Some examples of the styles of motion simulated by our controller.

Starting from motion capture makes it easy to simulate motions like

a sumo maneuver. We can simulate reference motions in new envi-

ronments, such as adapting a sideways stepping motion or a turning

motion to walk down steps. The backwards walk is adapted to walk

over a dynamic seesaw. The entire sequence is simulated creating a

realistic motion that would be difficult to animate by hand, motion

capture, or synthesize kinematically. . . . . . . . . . . . . . . . . . . 76

5-1 Solutions to the linear Bellman equation can be used to generate op-

timal trajectories for a three-wheeled vehicle shown here on the left

(image from http://www.cs.cmu.edu/∼reshko/PILOT/). The wheels

can move in any direction but some directions are faster than others.

This causes the vehicle to move along circular paths to get to the goal

as quickly as possible as shown in the center plot. In the figure on the

right, the vehicle first moves to the right to allow itself room to avoid

the obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
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5-2 On the left is an error analysis of various numerical schemes for the

one-dimensional particle example. These plots were generated by com-

paring the numerical solution at the final time (in this case the reward

function at time 0) with the closed-form solution using the `−∞ norm.

The middle is the trajectory of a one-dimensional particle under the

numerically computed (IRK3 spectral) and closed-form policies. The

two trajectories are indistinguishable even though there are some small

errors in the numerically computed policy. For this plot, the grid size

is 0.0126, though similar results are obtained for grids as coarse as

0.3927 units per grid point (500 versus 16 grid points). The figure

on the right compares value iteration of the non-linear HJB with an

implicit method for solving the linear Bellman equation. Shown is the

largest error in the value function for the particle test case after half a

second. The error for value iteration is shown in red while the error for

the implicit Euler method is shown in blue. For equal time steps and

grid sizes, solving in reward space is more accurate than using value

iteration in cost space. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5-3 The left figure plots the convergence rates of value iteration and the

implicit Euler method with upwind differencing for the brick problem.

The middle figure compares the running time of value iteration of the

non-linear HJB versus an implicit method solving the linear Bellman

form for the brick on ice problem. Solving the linear Bellman is consid-

erably faster than value iteration. Finally, the rightmost figure shows

the ratio of the total cost of the policy computed by solving the linear

Bellman over the total policy cost as computed by value iteration. For

the same grid size and time step, the linear Bellman policy is less than

a third of the cost of the policy computed by value iteration. . . . . 92
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6-1 Overview. Linear Bellman combination creates a new controller using

pre-computed controllers optimized for related tasks of finite duration.

The tasks share a common integrated cost,
∫ T

0
q(x) + 1

2
u>udt, but

have different terminal costs gi(x). The output of each controller,

ui, is scaled by a reward function, zi(x, t) = exp
(
− v(x, t)

)
and by

the amount the controller’s terminal reward function, hi(x) = gi(x),

overlaps the desired terminal reward function, h̄(x). These weighting

factors are normalized and the resulting control action is a sum as in

Equation 6.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6-2 Cost Space-Reward Space. The HJB equation is a non-linear par-

tial differential equation describing the time derivative of the cost-to-

go function. Non-linearity means that linear combinations of optimal

value functions are not a new optimal value function. However, us-

ing a non-linear mapping from cost to rewards space leads to a linear

PDE for the time evolution of a reward function. In this space, linear

combinations are solutions to an optimal control problem. . . . . . . 101

6-3 Projecting Terminal Cost Functions. Since we restrict terminal

cost functions, g(x), to be quadratic, we have Gaussian reward func-

tions, h(x), after exponentiating. To compute the fixed blend weights,

wi, we must project the desired terminal reward function, h̄(x) onto the

example terminal rewards associated with each component controller,

h1(x) and h2(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6-4 Unintuitive Projection. Depending on how example terminal cost

functions are sampled, weighted combinations may produce unintuitive

new terminal cost functions. For example, if the examples are too far

apart, a weighted combination will produce a terminal reward function

with two acceptable outcomes. Here a terminal cost function centered

on zero and another centered on one are scaled such that weighted

combinations produce local minima in the reconstructed terminal cost

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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6-5 Coordinating Multiple Controllers. Linear Bellman controllers

can track multiple trajectories at once, smoothly choosing whichever

is appropriate at the given state and time. For example, we may have

multiple controllers that start a step in different configurations but end

in the same state. Or we may have controllers that start in the same

state but end up in an acceptable outcome. . . . . . . . . . . . . . . . 107

6-6 Toy example- sine particle. Shown on the top half of the figure

are the time-varying optimal value functions for two control problems

involving a one-dimensional particle with non-linear dynamics. The

optimal policies descend the gradient of the value function to drive

the particle to the indicated target. The plots on the bottom half are

the exponentially remapped terminal cost functions. In blue is h1(x) =

z1(x, T ) = exp
(
−v1(x, T )

)
, the remapped terminal cost function for a

control problem where we want the particle to land at x̄T = 0.35 at the

final time. This corresponds to the top row of the top value function

image. In green is the remapped terminal cost function for a control

problem where we want the particle to end up at x̄T = 1.35. This

corresponds to the top row of the second value function image. In red

is hc(x) = w1h1(x) + w2h2(x), the combined terminal cost function.

The combined policy as described in Equation 6.6 solves this control

problem without having to solve an expensive dynamic programming

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-7 Total cost comparison. Shown are the total cost of policies that

drive a 1D particle with sinusoidal dynamics to the desired state, x̄.

Linear Bellman combination always give a lower cost although the size

of the advantage depends on the desired state. . . . . . . . . . . . . 121
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6-8 Naive Blend vs Linear Bellman. Shown are the final frames of two

dive simulations. The simulation on the right used linear Bellman com-

bination to compute time-varying weights to combine a dive controller

that under rotates and a dive controller that over rotates. The fixed

blend weights wi needed to produce a vertical diver were automatically

computed by projecting a goal function centered on the vertical pose

onto the goal functions of each component controller. Using these fixed

blend weights in a naive weighted average fails to produce a vertical

dive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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from eight different initial angular velocities. The poses on the left were
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Chapter 1

Introduction

The development of advanced computer animation tools has allowed talented artists to

create digital actors, or characters, in films and commercials that move in a plausible

and compelling way. Remarkably, the technology has reached a point where digital

characters routinely share the screen with real actors. Even in completely digital

productions, artists exploit pseudo-physical principles to maintain an illusion of life

and engage the viewer [47].

In interactive applications such as video games or training simulators, however,

the artist has limited control over the final animation (Figure 1-1). Typically, a

game-engine uses kinematic techniques to stitch together or blend pre-animated clips

to respond to high-level direction provided by a user or computer AI. As a result,

animation in games can be quite repetitive. Worse, characters in interactive scenarios

can quickly get into situations that were not explicitly planned for by the animator.

Unexpected changes in the environment of the character or unexpected interactions

with dynamic elements of the virtual world can lead to implausible motions. For

example, consider the situation where an animator has created or captured a single

animation of a character walking on flat ground (Figure 1-2). In an interactive setting,

that character may encounter varied terrain or interact with other simulated objects.

Kinematic methods fail to do a convincing job of adapting the animator’s work to

these new situations.

This work investigates the use of physically-based simulation to animate char-
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traditional
animation

time time

pose pose

game engine
animation

clip 1

clip n user or AI
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animation

Figure 1-1: By drawing everything that’s seen on the screen a traditional animator has
total control over the final animation. The computer animator gives up some control
to save a lot of effort. The computer animator creates key poses through a user inter-
face and the computer interpolates those poses using an algorithmic scheme. In game
animation, these animations, which may originate from motion capture recordings,
are packaged into clips. A game engine than stitches these clips together or blends
them to match high level input from a user or AI to produce the final animation.

acter behaviors and aims to address some of the limitations of kinematic character

animation used in today’s interactive applications. Consider again, our walking char-

acter example. Now, instead of simply playing back the motion, we instead simulate

the motion by applying forces to the character’s limbs. Since motion is generated

procedurally using physics, the character will interact consistently and plausibly with

changes in terrain and dynamic disturbances. Furthermore, we should be able to vary

the motion by, as an example, changing the character’s mass properties. It is worth

noting that many of these same advantages are already being exploited for the ani-

mation of passive dynamics systems such as fluids, cloth, and rigid bodies [35, 13, 12]

in films and interactive applications. Character behaviors on the other hand are not

often simulated as it is difficult to simulate a character that does something besides

fall.
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repetitive

adapts
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Figure 1-2: Physically-based character animation has a number of advantages over
standard kinematic methods. A physically-simulated character adapts to changes
in the environment, reacts to dynamic disturbances, and offers an infinite range of
possible motions. This figure illustrates this point with some examples. Trying to
replay a motion that was animated walking on flat ground will lead to an implausible
result if the motion is replayed on a slope. If you simulate a ball hitting the character,
the character won’t react if you are simply replaying a kinematic method. Finally,
using pre-animated motions leads to repetitive motion, whereas, you could easily get
new motions in a physics based approach simply by changing the mass properties of
your character.

Simulating a character behavior presents a number of challenges, some of which

are familiar to researchers in robotics. Characters, like many robots, are governed by

non-linear, possibly non-smooth equations of motion. As opposed to passive systems,

these equations of motion are functions of the character’s state and a control input.

In order to get a character, or a robot, to move in a useful way as opposed to just fall

down, someone has to algorithmically specify a controller that uses this control input

to coordinate the character’s movement (Figure 1-3). Typical characters are under-

actuated, meaning they have more degrees of freedom than control inputs. Under-

actuation makes it difficult to design robust and efficient controllers. In addition,

interesting characters in graphics applications are typically very high-dimensional.

Even a simplified linked rigid body model of a humanoid character has on the order

of fifty degrees of freedom, which, when you include velocities, leads to a hundred

dimensional state space. In graphics, the problem can be even worse as it’s not
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simulationcontroller
forces

state

Figure 1-3: Simulating a character behavior requires a controller. A feedback con-
troller examines the current state of the character to compute forces which, when fed
into simulation, help the character achieve some goal. Designing robust controllers for
high-dimensional, non-linear dynamical systems is difficult. The task is even harder
when you also want the controller to produce life-like motions.

unusual to have characters with thousands of degrees of freedom; characters modeled

as deformable objects or fluids. Finally, whereas robotics is mostly concerned with

robustness, the style of the motion is important for graphics applications. For a

physically-based approach to be useful to graphics, an animator should retain some

say as to how the character moves. Beyond graphics, matching a particular style of

motion is also important for biomechanics applications if the goal is to explain the

motion of a particular biological creature.

This work approaches the problem of controlling a character from an optimal con-

trol perspective. Many existing approaches to controlling characters in graphics rely

on hand-crafted control schemes. In contrast, optimal control formulates an opti-

mization problem that searches for controls that minimize some metric of controller

performance while satisfying constraints [88]. This approach has many advantages

over more manual approaches that mainly rely on user intuition to control the char-

acter. One advantage is that it is easier for a user to specify a motion via constraints

than it is to achieve those constraints by hand-tuning a parameterized controller.

Also, by incorporating look-ahead knowledge of where the character is going, an
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optimal control approach can achieve life-like and efficient motions. Unfortunately,

solving non-linear, non-convex optimal control problems is computationally expensive

and brittle. As a result, optimal control has mainly been used as a tool for offline

animation and not in interactive applications [88, 60, 68, 53].

The contribution of this work is to show how one can use pre-computation and

some simplifying assumptions to apply optimal control principles to controllers in

interactive applications. First, we show how to derive controllers from motion capture

trajectories by pre-computing them from a simplified optimal control problem. Then,

we show how existing controllers can be combined to be reused for new tasks. A

surprising result is that combined controllers can be optimal for new tasks under

certain conditions. Key to this result is an alternative formulation of the optimal

control problem which leads to a linear condition for optimality. Beyond, combination

this work also shows that this alternative formulation allows for analytical and more

efficient solution techniques.

Using these methods, we were able to simulate a variety of humanoid character

behaviors including stepping and jumping motions. The resulting motion is often

as life-like as motion capture. Since we simulate the motion, we were able to make

interesting changes to the environment such as varying the terrain and introducing

other dynamic objects. In addition, we were able to combine controllers to interpolate

controller goals, allow for multiple goals, and expand the region of state space from

which we could successfully simulate. As a concrete example, we combined stepping

controllers to take steps of different lengths.

The characters we simulate typically have many more degrees of freedom than

robot systems and move much more naturally. Simulation is fast enough that the

controllers could soon be used to animate characters in interactive games. This will

improve realism and reduce the burden on animators and data acquisition. In ad-

dition, our approach to combining controllers often outperforms simpler approaches

and could be used to create controllers that traverse constrained environments such

as an environment where a character must step in certain regions of the floor.

In nature, people, animals, even bacteria have evolved highly robust strategies for
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moving around their environments. These strategies exploit the laws of physics to

make efficient use of the organism’s resources and rely on feedback from the environ-

ment to keep the organism safe. Finally, many organisms show a remarkable ability to

modify a strategy over time to improve performance and respond to changes. Identify-

ing movement strategies is a fundamental scientific challenge with broad implications

for many fields including biomechanics, neuroscience, and artificial intelligence. Re-

producing a motion in simulation is one way to identify a movement strategy and is

a first step to designing agile robots that move as efficiently as biological creatures.

While automatic synthesis of character motion is a grand goal of computer anima-

tion, this work is also a step towards a general simulation toolbox that can be used

to answer questions of importance beyond computer animation.

1.1 Organization

This work first presents some background material on simulating character behav-

iors and on relevant concepts from optimal control theory. Then, the exposition is

organized as follows.

Pre-computing Feedback Policies Chapter 3 of this proposal describes work

on pre-computing feedback controllers for legged character motions. By linearizing

the dynamics of the character around a given trajectory, we can simplify the task of

staying close to that trajectory.

The Linear Bellman Equation Chapter 4 reviews an optimal control formulation

that leads to a linear condition for optimality called the linear Bellman equation.

Solving the Linear Bellman Equation Chapter 5 discusses ways to solve the lin-

ear Bellman equation analytically and numerically. We show when the linear Bellman

equation can be solved analytically. We also show that solving the linear Bellman

equation has certain numerical advantages over solving standard Bellman equations

for the same optimal control problem.
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Combining Controllers Chapter 6 describes work on adding pre-computed poli-

cies together to achieve new tasks such as interpolating existing goal states or reaching

a goal state from multiple starting points. Using the linear Bellman equation, we show

under what conditions combined controllers are actually optimal for new tasks.
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Chapter 2

Background

This chapter introduces some necessary background on animation using physical sim-

ulation and optimal control. In physically based animation, a character is modeled

as a dynamical system whose state varies in time according to differential equations.

Below, we will describe in detail characters modeled as linked rigid bodies. We will see

that the equations of motion depend on a control input vector. This control needs to

be set somehow for the character to do something useful. As described in the second

part of this chapter, optimal control theory is one way to derive useful controllers for

characters. We focus on optimal control as it is the starting point for the methods to

be described later in this work. This chapter offers only a brief overview, but there

are good textbooks that cover rigid body dynamics [33] and optimal control theory

[19].

2.1 Physically Simulating Character Behavior

In computer graphics, the pose a character takes on the screen is a function of its

internal degrees of freedom called its kinematic state q ∈ Rn. A point y ∈ R3 on

the character can be described using a forward kinematics function y = g(q). In an

animation, the kinematic state varies with time q(t) causing the character to move. In

traditional computer animation, the animator controls this movement by specifying

a spline for each component of q. The kinematic state can also be specified using
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Figure 2-1: The pose a character takes on the display is a function of its kinematic
state. Here we see an arm modeled as two rigid links. To animate the arm, an artist
specifies a function for each degree of freedom of the arm over time. This function
can be defined using a smooth spline or can come from motion capture data.

motion capture data (Figure 2-1).

In physically-based animation, the kinematic state of the character varies in time

according to second order differential equations. By stacking the kinematic state and

velocity of each degree of freedom into a single vector

x =


 q
q̇


 ,

we can state the general equations of motion for any dynamical system as a first-order

system ẋ = f(x). To get the state of a passive dynamical system at some time, we

integrate this equation forward from an initial condition

x(t) = x(0) +

∫ t

0

f(x(τ)) dτ.

The system is deemed passive because once the initial conditions are given the only

thing that determines where it will be at some future time are the dynamics equations

f . Depending on the numerical integration scheme used and the dynamical system

being simulated, the particulars of implementing this equation vary. Though the
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simulation of passive dynamical systems is still an active area of research, this general

setup is regularly used to simulate fluids, cloths, deformable bodies, and other passive

systems in computer graphics applications [35, 13, 14].

2.1.1 Linked Rigid Bodies

The characters in this work, typically bipedal humanoid characters, are modeled as

linked rigid bodies. For example, we create links for the head, forearm, upper leg,

and so on giving each link inertial properties that roughly approximate the inertial

properties of a real person. Specifying inertial properties requires a little bit of extra

work to model the character than would normally be the case. Nevertheless, it is

fairly easy to set these properties given the shape of the link and assuming a uniform

density for the character. Then, the links are joined together using constraints that

model the joints of a real person. Modeling skeleton geometry and connectivity is a

requirement for kinematic animation as well.

One could represent the state of the character as the global position, orienta-

tion, linear, and angular velocity of each rigid link. This would require twelve times

the number of links numbers for a three-dimensional character. Since the links are

constrained together by joints, however, we can represent the state using many fewer

numbers. The parameterization used to describe the degrees of freedom of the charac-

ter, called generalized coordinates, determine the equations of motion via Lagrangian

mechanics. The recipe’s first step is to write down the Lagrangian of your system as

a function of the generalized coordinates and their time derivatives. The next step

is to apply the stationary action principle which yields the equations of motion in

generalized coordinates.

More formally, the Lagrangian of a system is defined as the kinetic energy minus

the potential energy

L(q, q̇) = K(q, q̇)− P (q).

The stationary action principle from classical mechanics yields the following equations
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of motion for a passive system

d

dt

δL

δq̇i
− δL

δqi
= 0.

One can model a controlled system by introducing generalized torques ui with the

relation
d

dt

δL

δq̇i
− δL

δqi
= ui

indicating the instantaneous change in generalized momentum.

To make the recipe more concrete, we can derive the equations of motion for a

bead on a circular wire in generalized coordinates. We will assume the wire has a unit

radius and is centered at a point one unit above the ground. Though the bead lives

in a three-dimensional space, it only has one-degree of freedom since it is constrained

to live on a wire. This degree of freedom is aptly described using the angular position

of the bead θ. The kinetic energy of the bead is

K(θ, θ̇) =
1

2
mθ̇2

where m is the mass of the bead. The potential energy is

P (θ) = mg(1 + sin(θ))

where g is the constant of gravitational acceleration. Applying our recipe, we get

mθ̈ −mg cos(θ) = u.

The bead is a simple oscillatory system, much like a pendulum. Note that, if we are

given the control input u we can solve for the angular acceleration of the bead θ̈ and

vice versa.

More generally, the kinetic energy of a linked rigid body can be written as

K(q, q̇) =
1

2
q̇>M (q)q̇
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where M (q) ∈ Rn×n maps generalized velocities q̇ to momentum. Plugging this into

the Lagrangian recipe gives us

M(q)q̈ +C(q, q̇)q̇ +
δP (q)

δq
= u. (2.1)

This equation is the equivalent to f = ma from Newtonian physics. The first term

M (q)q̈ is mass times acceleration. The gradient of the potential δP (q)
δq

are the gen-

eralized forces due to gravity. The middle term C(q, q̇)q̇ are forces that arise due to

rotational effects. These forces are balanced on the right hand side by our control

forces u.

To forward simulate, we must integrate the system ẋ = f(x,u). First, we must

solve for the generalized accelerations q̈ given the controls u in Equation (2.1). This

involves inverting the inertial matrix M . A straightforward forward dynamics algo-

rithm does just that, giving a running time of O(n3). In practice, we use recursive

O(n) algorithms [32]. It is often useful to solve the inverse dynamics problem, i.e.

compute the control forces given the generalized accelerations. Again, a straightfor-

ward implementation of inverse dynamics gives a O(n2) algorithm but a recursive

formulation can be applied to give a O(n) algorithm [32].

2.1.2 External Forces

The forces on the right hand side of Equation (2.1) are generalized forces. If we want

to simulate applying a force f to the character at some point, we have to map a

three-dimensional force into a generalized force u. This mapping can be derived by

relating the work done by the point force with the work done by the generalized forces.

These two quantities must be equal by the principle of virtual work: f>δx = u>δq.

Defining the Jacobian of the contact point J(q) = δx
δq

, we see that δq = J(q)δx

giving the desired mapping

u = J(q)>f .
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With external forces, Equation (2.1) becomes

M (q)q̈ +C(q, q̇)q̇ +
δP (q)

δq
= u +

∑

i

Ji(q)>fi. (2.2)

2.1.3 Contacts

In simulation, external forces arise due to collisions between objects. The simulation’s

job is to find contact forces that keep the objects from interpenetrating and resolve

any existing penetration. In addition, the simulation can model phenomena like

friction and restitution using appropriately chosen contact forces. There are a number

of methods for computing contact forces in the literature [12, 58]. In practice, many

simulators skip forces and directly apply impulses to velocities to model contact [73, 6].

Efficient and accurate contact resolution remains an active area of research [45]. Here,

we will focus on two contact models used in this work: penalty forces and analytical

contact forces.

Penalty-based Contact

A penalty force contact model creates imaginary springs between colliding objects.

The simulation checks designated vertices to see if they are penetrating another ob-

ject. If so, a virtual spring is anchored to the colliding point pc and a nearby point

on the object po. The contact force is then computed as

fc = ks(po − pc)− kd(ṗo − ṗc)

and applied as an external force to each object as described in the previous section.

The penalty method is very intuitive and scales well to complex geometry with many

contacts. It is not often used in practice, however, due to a number of drawbacks.

First, some amount of interpenetration is unavoidable. Depending on how the con-

stants ks and kd are set and the time step, there will be more or less penetration.

Increasing the stiffness of the penalty spring reduces penetration but may impact the

stability of the simulation. Finally, it is not straightforward to incorporate Coloumb
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friction using a penalty based method. In recent years, researchers have extended

the simple penalty method described here to include frictional dynamics and improve

stability [91].

Analytical Contact

Analytical contact methods use constrained optimization to insure that no interpen-

etration occurs. Here, we briefly describe an analytical contact model [12] and show

how to incorporate a Coloumb friction model.

If a point comes into contact with some geometry, it either must accelerate away

from the geometry in the normal direction or a non-zero force is needed to make the

acceleration zero in the normal direction. If we denominate the acceleration of the

point a and the contact force as fc, we require a · n ≥ 0, fc · n ≥ 0, and, since

constraint forces should do no work, (a ·n)(fc ·n) = 0. The normal of the contact is

denominated by n.

Recalling our definition for the Jacobian of a point, we see that the velocity of a

point on the character can be expressed as ẋ = J(q)q̇. Differentiating this by time,

we get an expression for the acceleration of the contact point

a = Jq̈ + J̇ q̇. (2.3)

From Equation (2.2), we see that, at any instant in time, q̈ and fc are related by

an affine expression. Substituting this into Equation (2.3) and introducing some

simplifying variables we get

a = Afc + b.

Putting this expression into our constraints, we see that two of the constraints are

linear and one constraint is quadratic in the unknown contact forces fc. Therefore, we

can find the contact forces numerically by solving a quadratic program (QP) where

we make the quadratic constraint the objective and retain the other linear conditions
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as constraints

min
fc

(fc · n)((Afc + b) · n)

subject to (Afc + b) · n ≥ 0

fc · n ≥ 0.

In practice, it’s more efficient to find the contact forces by formulating an equivalent

linear complementarity problem [12]. We’ll use QP’s again later in this work so we’ll

stick to this formulation.

The Coloumb friction model states that the ratio of any tangential friction forces

to the contact force in the normal direction must be less than some constant coefficient

of friction µ:
||fc − (fc · n)n||

fc · n
≤ µ.

Geometrically, this means that the contact force lies within some cone around the

contact normal. The ratio constraint is a non-linear expression so it cannot directly

be used as a constraint in a QP formulation. However, a simple trick allows us to

model Coloumb friction with a linear constraint. We can approximate the friction

cone with a polyhedral pyramid. Any vector in that pyramid can be expressed as

a positive linear combination of four basis vectors. Mathematically, we express the

contact force in a friction cone basis fc = V λ where we require λ ≥ 0. This trick

was first used in graphics for offline optimizations [30].

2.2 Control

At this point, all the tools needed to simulate a character modeled with passive linked

rigid bodies have been described. Simply set the control to zero u = 0 and run a

forward dynamics algorithm from some initial condition. However, under gravity, all

that the character will do is fall down. Many of today’s interactive games tout this

feature as rag-doll physics. Getting the character to do something besides falling,
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Figure 2-2: To simulate an arm that does something besides swing aimlessly, you
need a controller that feeds meaningful forces to a simulation. The simulation then
computes forward dynamics to update the state of the arm. Controlling an arm is
fairly straightforward if you can exert a torque at the shoulder and elbow.

requires setting the control input in a meaningful way (Figure 2-2).

A character described by Equation (2.1) is fully-actuated; it has as many degrees

of freedom as control inputs (q̈ ∈ Rn and u ∈ Rn). Controlling fully-actuated char-

acters is a pretty straightforward endeavor since we can easily compute generalized

forces that give us a desired acceleration from Equation (2.1). This is the principle

behind many industrial robots, for example. The control problem gets a little more

interesting if we want to maximize some performance measure or perform multiple

tasks simultaneously [4].

Unfortunately, interesting characters, biological creatures, and robots are under-

actuated; they don’t have as many control inputs as degrees of freedom in some or

all configurations (q̈ ∈ Rn and u ∈ Rm with m < n). This means that we can

no longer simply compute torques given desired accelerations. Later, we’ll see that

we can exploit contact forces in Equation (2.2) to achieve desired accelerations in

a least squares sense, but first, let’s review some existing approaches to controlling

under-actuated characters in computer graphics.
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2.2.1 Control in Computer Graphics

Automatic synthesis of virtual characters through physically based simulation is a

long standing goal of computer animation and robotics. Indeed, the first SIGGRAPH

conference featured work that modeled a two-dimensional human to be used as a

crash test dummy and proposed it could be used for other activities such as walking

[86]. As we have described active movements like walking, however, require a control

algorithm to apply the right forces at the right time. Finding these controllers has

proven difficult, though, and researchers in robotics and computer animation have

spent decades picking off various types of motion on various character and robot

models.

Initial control designs tried to cancel the effects of dynamics as much as possible

in order to simplify the control problem. For example, the earliest controllers for

legged creatures remained balanced by never allowing the projected center of mass

to leave the base of support and by moving slowly enough so that dynamics did not

have an impact on control [55, 65]. This static approach to balance restricts the style

of output simulations to slow, often unnatural motions, a critical restriction for the

application of computer animation.

An important advance was the ability to control legged creatures with active bal-

ance which allowed the simulation of more dynamic motions such as running, hopping,

and agile walking [59, 65]. Later these approaches were extended to create animations

of humanoids executing specific tasks [66, 39, 89]. Yin and colleagues recently intro-

duced a robust balancing mechanism for walking and running [94]. However, these

hand-crafted feedback controllers are difficult to tune to achieve a desired motion

style. For example, it would be difficult to manually tune such a controller such that

it produced a motion matching a given motion capture sequence.

Deriving controllers that mimic reference motions such as motion capture se-

quences is an active area of research in robotics and graphics. For robotics, it is

believed that human motions are more energy efficient. For graphics, starting from

a reference motion makes it easier to direct the style of the motion. A key difficulty
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in tracking a reference motion is that the motion cannot be tracked exactly while

still maintaining balance. Modifications are needed to maintain balance because of

dynamic inconsistencies between the system that generated the reference motion and

the system being simulated and due to disturbances from the dynamic simulation en-

vironment. Earlier approaches based on tracking either avoided the issue of balance

[95, 90, 92] or were restricted to tracking standing motions [96, 3]. Recently, re-

searchers have been able to simulate balanced motions by pre-computing closed-loop

control policies with randomized search algorithms [60, 70, 71].

Optimal control provides a more automatic approach to producing stylized char-

acter motion. Trajectory optimization, an optimal control tool, has been applied in

offline simulations to synthesize character motion [88, 63, 30, 74, 68, 53]. Trajectory

optimization involves expensive and finicky numerical computation. Furthermore,

solutions are feed-forward policies valid only for the specific initial condition and task

specified in the optimal control problem. These limitations make trajectory opti-

mization an inappropriate approach to controlling simulated characters in interactive

virtual worlds where the environment is dynamic. This thesis examines ways the tools

of optimal control can be adapted for use in interactive applications.

2.3 Optimal Control

Optimal control is the study of mathematical and algorithmic methods for computing

controllers that optimize a well-defined performance metric. Every controller has some

task it is trying to get the character to perform. Many times this task is implicit.

The starting point for an optimal control approach, however, is an explicit description

of the task in the form of an objective function. For example, an objective function

might try to minimize the amount fuel used to get a spaceship to the moon. For

the purposes of animation, it is much easier to describe a task with an objective

function than it is to find control forces that make a high-dimensional, non-linear,

under-actuated character model achieve that task from a given initial state. Below

we review optimal control theory and tools and review its application to animation.
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Optimal control is a rich topic, and here, we focus on small pieces that are relevant

to the rest of this work.

2.3.1 Measuring Performance

An optimal control policy minimizes an objective function of the form

g(xT ) +

∫ T

0

`(x,π, t) dt, (2.4)

where `(x,π, t), is a loss function applied at every time instant, and the desired state

at the end is described by the terminal cost function, g(x). The controller is defined

by a policy u = π(x, t). Typical loss functions penalize muscle exertion (some norm

on the policy) or deviation from some example trajectory. Typical terminal cost

functions describe some desired pose and velocity for the character. Note that here

we have assumed a finite duration for the simulation T . There are variants that, for

example, search for optimal controllers over infinite durations. This work focuses on

finite-horizon problems.

The time evolution of the character state is constrained by the equations of motion

for the system. We will focus on controlling systems with control-affine, stochastic

dynamics:

dx = [a(x) +B(x)u]dt+C(x)dω, (2.5)

where a ∈ Rd and B ∈ Rd×m are generally non-linear functions of state, and u ∈
Rm is the control action. The Brownian noise, ω, can be used to model physical

disturbances and modeling error with variance CC>. Characters modeled as linked

rigid bodies are control-affine as we can see from Equation (2.2).

2.3.2 Hamilton-Jacobi-Bellman Equations

Optimal policies produce trajectories which minimize the expected value of the objec-

tive function in Equation (2.4), but the policy is also optimal for sub-intervals. This

is known as the principle of optimality, due to Richard Bellman [17], and it leads to a
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necessary and sufficient condition for the optimality of a given policy. The condition

is that optimal policies satisfy a partial differential equation. Here, we will briefly

re-derive the condition. First, define an optimal value, or cost-to-go, function as the

minimum cost to get from the current state to the goal

v(x, t) = min
π
E[g(xT ) +

∫ T

t

`(x,π, t) dt]

By the principle of optimality, we know that the minimum cost to get from where

the character is now to the goal is equal to the minimum possible cost of being

where the character is now plus the minimum cost of where the character ends up.

Mathematically, this gives us a recursive definition of the value function

v(x, t) = min
u

(h`(x,u) + E[v(x + h(a(x) +B(x)u) + ε, t+ h)])

where h is a time step and ε is zero-mean Gaussian random variable with variance

hCC>. Finally, note that we have a boundary condition at the final time that

v(x, T ) = g(xT ). We can simplify the value function definition using a second-order

Taylor-series expansion. Setting ∆ = h(a(x) +B(x)u) + ε, we see that

v(x + ∆, t+ h) ≈ v(x, t+ h) + ∆>vx(x, t+ h) +
1

2
∆>vxx(x, t+ h)∆.

Using this approximation to compute the expected value on the right hand side of

the recursive expression for the value function, we get

E[v(x + ∆, t+ h)] = v(x, t+ h) + h(a(x) +B(x)u)>vx(x, t+ h)

+
1

2
Tr(hCC>vxx(x, t+ h))
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where second order expressions in h have been dropped. With this expected value

expression, we have

v(x, t)− v(x, t+ h)

h
= min

u
(`(x,u, t) + (a(x) +B(x)u)>vx(x, t+ h)

+
1

2
Tr(CC>vxx(x, t+ h))).

Taking the limit as h→ 0 gives us a partial differential equation

−vt(x, t) = min
u

(`(x,u, t) + (a(x) +B(x)u)>vx(x, t) +
1

2
Tr(CC>vxx(x, t))) (2.6)

which is known as the Hamilton-Jacobi-Bellman (HJB) equation. Note that deter-

ministic problems can be handled by this equation as well; the last term falls out

since C = 0.

2.3.3 Solving HJB Equations

The HJB equation is a non-linear pde with a boundary condition in time. Normally, it

does not have an analytical solution, so one must discretize it and solve it numerically.

Common algorithms for doing this are known as value iteration and policy iteration

in the reinforcement learning literature and are variants of dynamic programming

[19]. Later, we’ll see that certain HJB equations have an alternate formulation that

allow you to apply linear solution methods.

The main difficulty in solving the HJB equation is that the number of discretiza-

tion points you need to represent the value function grows exponentially with the

dimensionality of the state space. This is affectionately known as the curse of di-

mensionality. This curse makes it impractical to solve HJB equations directly for

complex, high-dimensional characters. Fortunately, there are work-arounds.

2.3.4 The Minimum Principle

Another way to attack the optimal control problem is to use calculus of variations

to minimize the objective function. This line of attack leads to Pontryagin’s mini-
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mum principle which gives a set of necessary conditions for optimal trajectories [78].

More importantly it leads to numerical tools that avoid the curse of dimensionality.

The price for this improvement is that the Pontryagin minimum principle is not a

sufficient condition for optimality. This means that you may find a trajectory that is

an extremal trajectory of the objective function but is not necessarily the optimum

trajectory. For concreteness, consider how the discovery of the Fosbury flop greatly

improved the performance of athletes in the high jump. For years, high jumping had

been stuck in local minima using inferior jumping methods.

An optimal trajectory is an extremal trajectory of a variational problem consisting

of the objective function augmented by Lagrangian constraints. This observation

leads to the following necessary conditions for optimal trajectories

ẋ(t) = f(x(t),u(t)) (2.7)

−λ(t) = `x(x(t),u(t)) + f>x (x(t),u(t))λ(t) (2.8)

λ(T ) = gx(x(T )) (2.9)

u(t) = arg min
u∗

(`(x(t),u∗) + f(x(t),u∗)>λ(t)). (2.10)

There are a number of interpretations of λ. It can be simultaneously viewed as

the gradient of the value function, the adjoint variables of a constrained optimization,

or the generalized momentum of a system. For now, we will just call it the adjoint

state. The Pontryagin minimum principle gives ODE’s governing the forward time

evolution of the state and the backwards time evolution of the adjoint state. This two-

point boundary value problem can be solved using a variety of numerical tools [20].

The methods can broadly broken down into two classes: direct methods and indirect

methods. Direct methods try to directly minimize the objective function whereas

indirect methods try to solve the boundary value problem given by the Pontryagin

conditions.
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Direct Methods

A common direct approach, known as direct transcription [20], is to represent the state

and control trajectories as piecewise polynomials. At some number of points on the

time interval, called collocation points, a defect equation is formulated that insures

that the equations of motion are satisfied at those points (the defect is zero). Given

state and control trajectories, the objective function is numerically integrated. This

allows the continuous optimization problem to be formulated as a discrete constrained

non-linear program.

An advantage of direct transcription is that it is straightforward to include addi-

tional constraints on the state or control trajectories. Furthermore, the programmer’s

job is made easier by not having to specify the adjoint equations. Due to these advan-

tages, most applications of optimal control in graphics have used direct transcription.

The biggest drawback to direct transcription is that computing the gradient of the

objective function with respect to the state and control variables is extremely ex-

pensive. If the number of unknowns in the linear program is n, then computing the

gradient is of the objective function is O(n2).

Indirect Methods

Indirect methods discretize the Pontryagin conditions and try and find state, control,

and adjoint state trajectories that satisfy the discretized problem. This approach is

cheaper since we do not need to compute the gradient of the objective function, but,

in practice, indirect methods are very hard to use [20]. The programmer must specify

the adjoint equations, and it is very difficult to add additional constraints on the state

trajectory. Finally, in addition to specifying initial guesses for the state and control

vectors, one must specify an initial guess for the adjoint variables. The adjoint state

does not have an intuitive physical interpretation making this difficult. As a result,

indirect methods are not very robust.
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The Adjoint Method

The adjoint method is a direct method that uses the adjoint equations to cheaply

evaluate the gradient of the objective function [56]. The gradient of the objective

function can be evaluated as

`u(x(t),u(t)) + f>u (x(t),u(t))λ(t). (2.11)

This allows us to use a simple gradient descent algorithm to optimize the objective

function. Given an initial guess for the control trajectory, forward simulate a state

trajectory using the forward simulator of your choice. Next, integrate Equation (2.8)

backwards in time to obtain a legal adjoint state trajectory. You can then use the

gradient calculation from Equation (2.11) to update the control trajectory and repeat

until the objective stops improving. While the programmer must specify the adjoint

equations to use the adjoint method, there is no need to specify an initial guess for

the adjoint state. In this work, we use the adjoint method to synthesize physically

valid and locally optimal motions. In practice, we couple the basic method described

here with a conjugate gradient descent algorithm and a line search.

2.3.5 Optimal Control in Computer Graphics

Value and policy iteration have recently applied to kinematic animation techniques in

computer animation. Researchers pre-compute policies to choose appropriate motion

clips in response to user input [54, 83]. These methods allow characters to avoid

obstacles and turn responsively. A key to getting these methods to work was keeping

the model of the character’s state space low-dimensional using tricks like decoupling

certain degrees of freedom. Similar approaches have been used in robotics to apply

value functions to controlling simple legged robots [77, 23].

As mentioned above, trajectory optimization, an optimal control tool, has been

applied in offline simulations to synthesize linked-rigid body character motion [88,

63, 30, 74, 68, 53]. The tools of optimal control have also been applied to control

more elaborate characters. For example, the adjoint method was used to generate
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animations of characters consisting of fluids [56]. In work not covered by this disser-

tation, my colleagues and I coupled the adjoint method with a reduced order model

of deformable body dynamics to synthesize physically plausible animations [16].

2.4 Summary

The kinematic state of a physically-simulated character varies in time according to

differential equations of motion. In this chapter, we sketched a derivation of the

equations of motion for linked rigid bodies in generalized coordinates using Lagrangian

mechanics. We saw how to apply external forces and how to compute contact forces

analytically and using a penalty-based method.

Getting a physically-simulated character to do something besides falling down re-

quires setting the control input, i.e. the character’s muscle forces, in a meaningful way.

Controlling fully-actuated characters is fairly straightforward, but most characters are

under-actuated. Most prior controllers for interactive under-actuated characters were

crafted by hand. Optimal control provides automatic, offline, tools for creating con-

trollers. Now that we have reviewed some concepts from optimal control, we’ll build

on them to create controllers for interactive characters.
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Chapter 3

Interactive Simulation of Stylized

Human Locomotion

Consistent interaction between characters, objects, and the surroundings can be dif-

ficult to achieve in dynamic environments. Simulation produces valid motions au-

tomatically but simulating human motion requires a control system that computes

internal muscle forces. Without such forces, a simulated human would simply fall to

the ground. The human form and the unstable dynamics of its bipedal locomotion

make it difficult to find muscle forces that maintain balance, particularly in complex

environments with unexpected disturbances. Its use in computer animation is further

complicated by the need to generate motions that are comparable to recorded mo-

tion data. This has been difficult to achieve and, except for rag-doll effects, human

simulation is rarely used in interactive animation systems.

This chapter describes controllers for interactive simulation of stylized human

locomotion. This control design precomputes a balance strategy for the given style

using a simplification of Equation (2.6) that provides an automated analysis of linear

time-varying systems. By tailoring the balance strategy in this manner, a controller

preserves the style better than a more cautious strategy. For example, a controller

can restrict the center of mass to be directly above the feet at all times, but in doing

so it can only accomplish slow robotic-like motions. In contrast, the controller in this

chapter can reproduce a variety of locomotion styles.
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Figure 3-1: Automated analysis of linear time-varying systems leads to a balance
feedback policy that accounts for the under-actuated dynamics in the human motion.
With balance taken care of, a control system can then reproduce a given locomotion
style by tracking every body joint. Quadratic programming combines the two feed-
back terms to compute control forces needed to simulate stylized locomotion in new
environments.

The automatic pre-computation, which typically completes in less than two min-

utes, determines a linear time-varying state feedback that prescribes desired accelera-

tions for the three largest body segments: the two legs and the torso. Simultaneously,

the second feedback loop tracks individual joint angles to compute the accelerations

needed to preserve the given style. As shown in Figure 6-1, a reference motion guides

both the style and balance feedback. The style feedback aims to preserve the nuances

of the motion, while the balance feedback seeks to adapt the motion of three balance-

critical segments. The control algorithm computes a final set of forces by maintaining

a desired tradeoff between the balance and style feedback.

Interactive animation systems could use this approach in addition to traditional

kinematic solutions. Physically based simulations automatically produce motions

that are geometrically and physically consistent. When paired with a control system

that produces high-quality motion, these simulations can animate lifelike human mo-
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tion in dynamic environments, which is difficult to accomplish with kinematics alone.

Furthermore, this process transforms a single recorded motion, valid for one environ-

ment only, into a general purpose action that can be used in many other settings or

even composed with other actions to create versatile characters in games and other

interactive applications.

3.1 Related Work

The ability to remain balanced affects the styles of motion a character can achieve

[85]. The earliest controllers for legged creatures remained balanced by never allowing

the projected center of mass to leave the base of support and by moving slowly enough

so that dynamics did not have an impact on control [55, 65]. This static balancing

approach restricts the style of output simulations to slow, often unnatural motions.

An important advance was the ability to control legged creatures with active

balance which allowed the simulation of more dynamic motions such as running and

hopping and more agile walks [59, 65]. Later these approaches were extended to create

animations of humans executing specific tasks [66, 39, 89]. These approaches simpli-

fied control design by decoupling the problem into different regulation tasks, which

were often understood by analyzing simple dynamics approximations. The controller

we describe also approximates the full dynamics to make it possible to compute op-

timal feedback for the approximation. However, rather than designing these policies

by hand, it precomputes feedback gains automatically. It also incorporates motion-

capture data to ease the generation of more natural motions.

An impressive array of motions can be simulated using manually designed feedback

controllers. These controllers can be composed to perform multiple tasks [22, 29].

However, these control policies are task, model, and environment specific. Changes

in task, character model, or simulation environment require careful redesign of a new

feedback policy and there is a nonintuitive relationship between controller parameters

and simulation output. Dynamic scaling rules and randomized search can help [38]

but it remains difficult for an artist to achieve a desired motion style using manually
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designed feedback controllers. In our approach, much of the control policy is computed

automatically by exploiting an explicit model of the character dynamics. In addition,

we take advantage of the fact that we know the desired motion ahead of time by

precomputing a balance policy tailored to that motion. This reduces the number of

manually adjusted parameters and improves the quality of simulated motion.

Others also take the approach of tracking a reference motion to improve the style

of simulated motions. Earlier approaches based on tracking either avoided the issue

of balance [95, 90, 92] or were restricted to tracking standing motions [96, 3]. Yin

and colleagues introduced a very effective balancing mechanism for SIMple BIped

COntrol (SIMBICON), which they also coupled with feedback error learning to track

cyclic walking motions [94]. The same balancing mechanism can also be coupled

with quadratic programming to track non-cyclic motions without relying on feedback

error learning [25]. This chapter explores another form of balance through subtle

body adjustments instead of swing-leg placement. It is more complex to implement,

but reduces parameter tuning and generates motions that are more similar to the

given reference, including possibly non-cyclic motions such as standing, stepping,

and transitions between the two.

Optimal control has been shown to produce stylistic human motions in offline sim-

ulations [88, 63, 30, 74, 68, 53]. It is conceivable that offline trajectory optimization

could be used to precompute a sequence of control actions that reproduce a motion

style. However, these computations are finicky and slow. In interactive systems, they

must be recomputed frequently because they are easily invalidated with unexpected

changes in the dynamic environment. In fact, even minor accumulation of integration

errors will disrupt such a policy after only a few simulation steps [48]. Laszlo and van

de Panne apply limit-cycle control to automate the derivation of closed-loop controls

from a given reference motion [48]. Approximating the step to step return map dy-

namics has the advantage of incorporating collision effects and time-varying dynamics

into the feedback policy. The balance policy in this chapter relies on optimization

and time-varying feedback to better match the given reference motion.

Recently, researchers have been able to simulate balanced motions by precomput-
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ing closed-loop control policies with randomized search algorithms [60, 77, 70, 71].

However, it is not known how to extend these approaches to higher dimensional search

spaces, an important limitation given the large number of degrees of freedom for a

3D human character. Instead of relying on a brute-force search, our pre-computation

approximates the dynamics of the character with a discrete-time linear time-varying

system (LTV) by differentiating system dynamics along the reference motion. This

allows us to automate our analysis and to precompute balance policies efficiently.

LTV approximations have previously been exploited for simple walking systems us-

ing differential dynamic programming [41, 10, 76]. In this work, we show how to

apply controls derived for simple walking systems to more realistic 3D characters and

how to incorporate desired motions from motion data.

3.2 Balance

A balance strategy determines the style of motion that can be reproduced in sim-

ulation. Conservative strategies may maintain balance by restricting the center of

mass to be above the foot support region at all times. This is a safe strategy but

it produces slow robotic motions. A regular walk requires excursions beyond these

regions of support and more stylized motions may require even more delicate bal-

ancing. Manual design of a balance strategy is possible but tedious, and it requires

some knowledge of the expected terrain. Our goal is to devise an inexpensive control

approach that tailors itself to the provided reference motion automatically. In this

section, we describe the pre-computation of a balance policy for a given reference

motion.

3.2.1 Balance As Optimal Tracking

Maintaining balance requires careful manipulation of all limbs to adjust the location

of the overall center of mass. We formulate balance control as an optimization that

tracks the provided reference motion. Consider a dynamical system with n degrees of

freedom and m actuators. A reference motion for that system is a sequence of states

55



x̄1, . . . , x̄T , where each state x̄t ∈ R2n includes generalized positions and velocities.

The current tracking error is the difference between the current and desired state

∆x = x − x̄. An idealized optimal controller, then, finds the sequence of control

actions, u ∈ Rm, that minimizes the total tracking cost:

arg min
u

∆x>TQT∆xT +
T−1∑

t=1

∆x>t Qt∆xt + u>t Rtut (3.1a)

subject to xt+1 = F (xt, ut). (3.1b)

The system function F expresses the discrete dynamics of the system. We use the

discrete expression instead of the continuous form, ẋ(t) = f(x(t), u(t)) because nu-

merical integrators fundamentally assume constant control force u(s) = ut over finite

intervals s ∈ [t, t+ δt] of short duration:

F (xt, ut) = xt +

∫ t+δt

t

f(x(s),ut) ds (3.2)

The tracking and control costs are determined by the (semi) positive definite

matrices, Qt ≥ 0 ∈ R2n×2n and Rt > 0 ∈ Rm×m, that express the desired compromise

or the optimal performance. For example, if Q weights the tracking error across all

joints equally, then the optimal control will reduce tracking errors in the wrist motion

as vigorously as it corrects errors in the upper leg motion. While this choice preserves

the style of hand and leg motion alike, it can also lead to poorly balanced motion

because the legs and the upper body play a more critical role in bipedal locomotion.

One possible approach to this issue is to apply inverse reinforcement learning [1].

Later, we will describe our approach which is to manually reduce the dimensionality

of the walking system.

3.2.2 Simplified Optimal Tracking

Interactive computation of the control policy according to Equation (3.1) remains

impractical. It is a non-convex optimization problem because of the nonlinear dy-
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namics of the character. These problems can be solved with smooth optimization but

they require a good initial guess and are still too slow for interactive simulation [20].

Moreover, the solution would only be valid for a single initial condition. In interactive

animation systems, we would also need to compute controls fast enough to reject any

new disturbances.

Linear Time-Varying Approximation Our solution approximates the nonlinear

dynamics of the character model with a discrete-time linear time-varying system

(LTV):

∆xt+1 = At∆xt +Bt∆ut. (3.3)

The time-varying system matrices At ∈ Rn×n and Bt ∈ Rn×m are computed by

linearizing the nonlinear system dynamics along the desired reference trajectories.

Given the system function G for the simplified dynamics (cf. Equation (3.2)), the

time-varying system matrices are the Jacobians At = ∂G
∂x

(x̄t, ūt) and Bt = ∂G
∂u

(x̄t, ūt)

of G with respect to the state and control.

We annotate sections of each reference motion to delineate different contact states.

An associated LTV is constructed for each single support phase. In a simple walk

cycle for example, there would be an LTV system for the right step and another for

the left (Figure 3-3). In our work, the LTV systems do not span collision events. In

principle, linear approximations could differentiate through contact transitions. For

example, Popović and colleagues do so for rigid body simulations with frictionless

impacts [62]. We take a simpler approach by approximating each single support

phase (e.g. alternating left and right steps for walking). During double support, the

control relies on another feedback mechanism (§3.3.1) to stabilize the character.

Feedback Policy The LTV approximation allows us to compute the optimal feed-

back policy for a problem with quadratic cost functions. We apply this idea to derive
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mapping reference states

Figure 3-2: The state of the character is geometrically mapped to the approximate
model. The user annotates sections of the reference motion corresponding to different
contact states. A simple model is constructed for each single support section of the
reference motion and the motion is retargeted geometrically to produce a sequence
of desired states for the simple model. At runtime, the same mapping is used to
determine the current tracking error for the three-link model.

balance control from this approximation of the original formulation:

min
∆u

||∆xT ||2 +
T−1∑

t=1

c||∆xt||2 + ||∆ut||2 (3.4)

subject to ∆xt+1 = At∆xt +Bt∆ut, (3.5)

The time window T is determined by the duration of the corresponding single support

phase in the reference motion. The scaling constant c determines the tradeoff between

tracking fidelity and additional control effort. We found a value of c = 0.1 yielded the

best results in our experiments, but many other values will yield motion of similar

quality.

The solution to this problem is a linear function of the tracking error, ∆ut =

Kt∆xt, which is known as the Linear Quadratic Regulator (LQR) [72]. The feedback
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start

left right

stop

Figure 3-3: The balance control approximates dynamics of each single support phase
with a linear time-varying system. Dwell times are determined manually by timing
corresponding phases in the reference motion. The balance control illustrated in this
diagram alternates between LTV systems for left and right step with the option to
pause and restart.

gains Kt are precomputed efficiently by numerically integrating Riccati equations

[43, 21, 72]. This solution is optimal for the given LTV system. Differential dynamic

programming is closely related to LQR and has been exploited for simple walking

systems [41, 10, 76].

Here we briefly re-derive LQR for a linear time-invariant system with no noise.

A linear time-invariant system has dynamics of the form Ax + Bu. If we assume a

quadratic objective of the form 1
2
x>Qx+ 1

2
u>Ru, we can carry out the minimization

on the right hand side of Equation (2.6) analytically. Differentiating with respect to

control, we see that the minimizer is

u = −R−1Bvx .

Plugging this solution into the HJB equation, we get

−vt(x, t) =
1

2
x>Qx + v>xB

>R−1Bvx + (Ax −BR−1vx)>vx .

If we guess that our value function is quadratic v = 1
2
x>Px, we can derive an ordinary

differential equation for the Hessian of the value function P . This ODE is the Riccati
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Figure 3-4: To prevent a fall, the LQR balance controller employs a flywheel strategy,
rapidly swinging the upper body in the direction of the fall and the swing leg in the
opposite direction. The strategy is depicted using snapshots from a simulation in
the leftmost image. The arrows indicate the direction and relative magnitude of the
applied torque. For this particular model, the controller can recover from an initial
error of about 20 degrees which corresponds to the projected center of mass being
approximately 36 centimeters away from the base of support. The time evolution of
the squared tracking error of this system is shown for various initial perturbations in
the plots on the right. Doubling the control cost slightly improves performance but
in either case the end result is the same.

equation mentioned above

−Ṗ = Q+ A>P + PA− PBR−1B>P.

Note that A and B can vary in time without changing the derivation here. Also, since

the value function is equal to the terminal cost function at the final time, we have

the boundary condition in time that P must equal the Hessian of the terminal cost

function at the final time.

3.2.3 Tracking a Simple Model

Control designers often make simplifying assumptions to make control design easier,

its analysis simpler, and its use more broadly applicable [65, 48]. Full and Koditschek

argue that simple models play an important role in neuromechanical hypotheses of

motion control [36]. Others have used simple models to simplify high-dimensional

non-convex optimizations [63, 30, 68]. We, too, will make similar approximations for

the stepping motions we are interested in controlling. Specifically, we use a simple

three-link model (Figure 3-5) that suppresses many details while preserving only those
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B

Character Model Three Link Model

Figure 3-5: A simple three link model is constructed from the geometric and iner-
tial properties of the character model. The inertial properties of each simple link
are created by summing the inertial properties of corresponding links on the simple
character. The base link is attached to the ground with a three-dof ball joint. Two
three-dof ball joints connect the other two links to the base link. The yellow dots
represent centers of mass, which are in agreement with the detailed character model.

aspects of dynamics that are most relevant for balance control.

The three-link model is under-actuated like the full human character with its mass

distributed over the three-links. These are important features for recreating human

motion strategies which manipulate total linear and angular momentum to maintain

balance [2, 42, 64]. The base link approximates the contact between the foot and the

ground with an unactuated ball joint. The next link is attached to the base with a

ball joint like the upper body in the human figure. This allows it to speed up and slow

down by leaning forwards and backwards. Lastly, the third link is attached to the

upper body with a ball joint just like a swing leg whose motion is used to anticipate

the next contact. We then adapt the same control formulation in Equation (3.1) using

the state of the simple model and the system function derived from the dynamics for

the three-link model: ẋ(t) = g(x(t), u(t)), where x ∈ R18 consists of three rotations
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and three angular velocities, and u ∈ R6. The inertial properties for the dynamics of

the simple model are constructed automatically by accumulating inertial properties

of corresponding links in the full model.

We calculate the reference trajectory, x̄, using a simple geometric mapping from

the character to the simple model (see Figure 3-2). The ankle of the supporting leg

of the character is mapped to the base joint of the simple model. Then, the location

of the center of mass of the support leg relative to the ankle is used to determine the

angle of the base link on the simple model. This angle determines the location of the

“hip” on the simple model. The relative locations of centers of mass of the upper

body and swing leg are similarly used to determine the orientation of the remaining

links on the simple model. The relative velocities of the centers of mass on the full

character determine the angular velocities of the simple model.

Advantages The simple model makes it much more computationally feasible to

precompute feedback policies. We use iterative optimization to estimate the match-

ing control forces ū for the mapped reference motion [52]. The optimization usually

converges in less than five iterations and the total time needed to compute the LTV

matrices typically completes in less than two minutes. This step is typically much

more costly for an unreduced model. Using a simplified model also simplifies compu-

tation of LTV approximations. Multi-body simulators typically solve linear comple-

mentarity programs to compute frictional contact forces [12, 5] which are non-smooth

mappings of the current state. Instead, our simple model approximates this contact

with an unactuated joint whose action is a smooth function of the state. Second, the

computation of the optimal feedback gains is faster. The computation of LQR control

is O(Tn3) where T is the number of time samples. Since the simple model has fewer

degrees of freedom (9 versus 60), the computation of optimal feedback gains is faster.

Third, the simple model reduces the memory needed to store the optimal feedback

gains. The optimal gain matrix requires O(Tn2) space, which makes it less practical

to store feedback gains for the full human model, especially for many reference mo-

tions. The simple model, on the other hand, requires only a small fraction of that
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space.

We have now described the pre-computation portion of our controller which finds

a set of time varying gain matrices to stabilize the motion of an approximation of

our character. What makes our approach unique is that we make the entire analysis

automatic and its application efficient by exploiting the information in provided ref-

erence motions. In the next section, we describe a didactic example that illustrates

one application of our control: standing balance recovery.

3.2.4 Example: Balance Recovery

We illustrate the behavior of LQR control on a balance recovery task for our simple

three-link model. Pratt and colleagues develop another balance strategy for an equiv-

alent under-actuated model [64] and many other approaches are also discussed in the

literature. Unlike most of this prior work, our approach relies on fully automated

analysis with linear approximations and optimal state feedback. And we will use the

same systematic approach to reduce the need for manual tuning when controlling

more complex stylized motions.

The task for our control is to recover balance by returning to the “inverted-

pendulum” configuration, an unstable equilibrium point for the model. The reference

motion is a single pose indicating the inverted-pendulum configuration. The reference

forces are zero in this case because the desired pose is a static equilibrium point. Since

there is no particular time the pendulum should return to the equilibrium point, the

optimal feedback forces are determined by the solution to an infinite-horizon problem:

min
∆u

∞∑

t=1

∆x>t Q∆xt + ∆u>t R∆ut (3.6)

subject to ∆xt+1 = A∆xt +B∆ut, (3.7)

where the discrete-time approximation is time-invariant because the linearization is

around a single point instead of a trajectory.

The feedback control derived from this formulation is quite effective. For a model
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designed with rough human-like inertias and dimensions, the controller recovers for a

range of leaning angles up to the maximum lean of 20 degrees. This maximum lean

corresponds to a deviation of 36 centimeters between the projected center-of-mass

and the base of the support leg.

The precise manner of recovery is controlled by the tracking Q and control R

costs, with a very wide range of possible settings. We show one time-lapse sequence

of recovery in Figure 3-4 for the case when the velocity errors are permitted by setting

their costs to zero while both the position and control are weighed equally by setting

their cost matrices to the identity. The controller recovers by rapidly swinging the

upper body in the direction of the fall while simultaneously swinging the non-stance

leg in the opposite direction. Once the center of mass is safely over the support leg,

the model slowly returns to its balanced equilibrium.

3.3 Applying Pre-Computed Controls

We apply the pre-computed linear feedback policy indirectly. First, we use it to

compute desired accelerations for the full character model. Then, we formulate a

quadratic program that allows us to compute torques that achieve those accelerations

given the current configuration of the character and its contact points. Applying the

pre-computed linear feedback policy directly does not work well. The pre-computed

balance gains are tailored to a given reference motion in order to emulate the motion

of a three link walker with point feet. Our character has more links and block feet.

To resolve this, we use a second style feedback control to compute accelerations that

greedily try and track the original reference motion. These two feedback policies,

balance and style, produce different versions of the best action to take. We arbitrate

between these two suggestions using the quadratic program which finds the feasible

forces that best achieve some weighted combination of the two suggestions. Note that,

the resulting controller is a non-linear function of character state making it hard to

evaluate its robustness analytically. In the results section of this chapter, we describe

some ways to measure robustness.
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3.3.1 Style Feedback

The style feedback determines the joint accelerations as needed to track the reference

motion:

as = ¨̄q + k1D(q̄, q) + k2( ˙̄q − q̇), (3.8)

where the comparison function D uses quaternion arithmetic to compute the angular

acceleration needed to eliminate the difference between current and desired joint

orientation [14]. This feedback acceleration tracks the root of the full human figure.

So, although it primarily maintains style, it also plays a role in maintaining balance.

In a standing motion, for example, any motion of the root produces accelerations that

dampen this motion.

If desired joint accelerations are met with properly chosen control forces, the error

on each joint will behave as a spring-damper mechanism. The stiffness k1 and damping

k2 gains determine the rise, settling time, and the overshoot for the error-cancellation

curve. We keep things simple in our experiments with gain settings for a critically

damped spring k2 = 2
√
ks, leaving only one parameter value ks for each joint. The

values change for each human figure, but in many cases, the same values are used for

all motions with that character model (Table 3.1).

3.3.2 Balance Feedback

The balance feedback determines the stable motion of the simple model using the

precomputed state feedback gains Kt. We compute this control by mapping the full

state of the character (q, q̇) onto the reduced state of the simple model x as described

in Section 3.2.2. The balance control is then a function of measured deviations ∆x

and precomputed reference forces: ut = ūt + Kt∆xt. To map this motion back

onto the full character, we use forward dynamics of the simple model to compute the

center-of-mass accelerations ab for all three limbs in the simple model given the new

ut. The balance control for the full character will then seek to find joint accelerations

that match center-of-mass accelerations of the simple model.
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3.3.3 Quadratic Programming

Our control computes the final forces for the simulation with quadratic programming

(QP). The QP solution arbitrates between style and balance feedback by finding joint

torques that are close to a weighted combination of the two suggested accelerations.

This is done carefully to ensure that computed torques are consistent with the feasible

ground reaction forces:

min
u,q̈,λ

ws‖as − q̈‖2 + wb‖ab − J̇cq̇ − Jcq̈‖2 (3.9a)

subject to q̈ = f
(
(q, q̇), u+ J>p V λ

)
(3.9b)

Jpq̈ + J̇pq̇ = 0, λi ≥ 0. (3.9c)

The objective function is a weighted sum of the style and balance feedback terms.

The balance feedback terms are desired accelerations for three points on the body

and are active during single support. The Jacobian matrix Jc relates the acceleration

of these points to the generalized configuration of the character. The constraints

maintain a physically consistent relationship between joint accelerations q̈, control

torques u, and contact forces V λ by enforcing the contact dynamics equations at the

current time instant [3]. Note that u ∈ Rn−6 is the control signal for the character

and not the simple balance model.

The manipulator equations (3.9b) encode the dynamics of the linked rigid body

structure representing the character. These equations can be derived by Euler-

Lagrange mechanics and can be evaluated efficiently [32]. For a fixed position and ve-

locity, the manipulator equations express a linear relationship between applied forces

and acceleration. Similar expressions are exploited in computed torque methods to

control industrial robots [51]. Our formulation follows a more general formulation [3]

that also includes unilateral constraints on ground reaction forces and mixed objec-

tives.

The remaining constraint equations (3.9c) prevent the ground reaction forces from

accelerating the contact points. The expression J>p V λ maps external ground reaction
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forces expressed in a discretized friction cone basis, V , into generalized torques using

the Jacobian for the contact points Jp [30]. The inequality constraint ensures that

ground reaction forces do not pull on the character (λi ≥ 0).

The behavior of the QP is controlled by the relative weights of the objective func-

tion, wb, and ws. In practice, it is not too difficult to find values of these parameters

that work and similar values typically work for many motions on the same character.

We use a recursive implementation of linked rigid body dynamics [32] and SQOPT

to solve QP problems [37].

Adjustment with PD. Following our formulation in previous work [25], the con-

troller adjusts the QP solution with a low gain proportional-derivative (PD) compo-

nent. The desired pose (i.e. set point) of the PD component is the current pose of

the reference motion. The gains for the PD component were set to gains used in pre-

viously published work [71, 94] and then further reduced by multiplying with a factor

smaller than one. Using lower gains allows the control to be less stiff which leads to

more stable simulations. The values used are listed as the “Strength” parameters in

Table 3.2. At run time, the gains for a joint are scaled by the composite rigid body

inertia of all child links [96, 25].

The PD adjustments accomplishes two tasks. First, it guides the character through

contact transitions. The QP’s model of dynamics assumes a fixed contact configura-

tion while we would like to track motions that make and break new contacts. Second,

the PD component adjusts the QP solution at each simulation step. The QP step

typically takes two to three milliseconds on a Pentium 4 2.8 Ghz processor. To allow

the simulation to run faster, the QP is solved every ten to one hundred simulation

steps. The PD component is calculated at each time step allowing it to react to

disturbances instantly.
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3.4 Results

The new controller produces high-quality motions for a large variety of reference mo-

tion styles. In many instances, simulations are almost indistinguishable from input

motions. Moreover, it succeeds in the presence on unexpected disturbances, allowing

it to generate physically valid motions even in the environments that are quite dif-

ferent from the one used during motion capture. Our comparisons with prior work

reveal that customized balance strategy yields motions that better match the style

of a given reference motion. The final results and these comparisons are best seen in

video [26].

3.4.1 Style

The automatic derivation of our controller simplifies simulation of stylized human

motions. We demonstrate this versatility by simulating motions acquired from sev-

eral different sources: the dataset assembled by Sok and his co-workers [71]; motions

generated by the SIMBICON controller [94]; and our own dataset of stylized mo-

tions recorded in a motion-capture studio. Time-lapse snapshots of some example

simulations are shown in Figure 3-8.

Changing styles with our controller is straightforward. Once a good set of con-

troller parameters have been found for one motion, those parameters typically work

for many reference motions. Listed are the parameter settings for each of the styles

simulated by our controller. Table 3.1 lists several of the styles simulated by our con-

troller and the parameters that had to be changed. The first two datasets required

very little tuning; the same parameter setting worked for all motions in many different

environments. Simulating our own stylized motions required some tuning, but this

still reduced to changing only two real-valued parameters.

Highly stylized motions require more expressive simple models. For example,

we were not able to track a motion where the subject swayed his arms and upper

body from side to side to imitate a charging monkey. The simple model used in our

experiments so far does not capture that balance strategy because it lacks arms, which
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Motion ks wb

2D Data
Walk 500 0.1
Uphill 500 0.1
Backwards 500 0.1
March and Walk 500 0.1
3D SIMBICON
Walk 1000 0.1
Downhill 1000 0.1
3D Mocap
Sideways Steps 1200 0.2
Monty Python 1200 0.01
Monty Python See-Saw 1200 0.01
Stop and Start 1200 0.01
Dance 1800 0.01
Sumo Stomp 1200 0.01
Turn 1200 0.01

Table 3.1: Changing styles with our controller is usually straightforward. Once a
good set of controller parameters have been found for one motion, those parameters
typically work for many reference motions. Listed are the parameter settings for each
of the styles simulated by our controller. The style feedback parameter is ks. Finally,
wb determines the weight of the balance feedback policy. The style weight, ws, was
fixed at 0.5 for every result.

play a critical role for the balance of this motion. We expect that adding additional

links to our simple model would address this mismatch.

The balance policy used by a controller determines which types of motions can be

simulated by that controller. In the extreme case, a controller that cannot balance

will simply fall down which is probably not the style intended. The controller can

be better at reproducing the reference style by customizing its balance policy for the

given reference motion. We compared the tracking quality with two recently proposed

controllers [25, 71]. Although some amount of tracking error is unavoidable (due to

many differences between the simulation and the real world), the controller with the

heuristic balance policy exhibits an irregular gait [25]. In contrast, the controller with

a tailored balance policy yields motions that are smoother and more faithful to the

original reference motion. Direct visual comparison also shows reduced oscillation for

a backwards walk when compared to the results presented by Sok and colleagues [71].
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2D Model
Link Strength Mass Inertia
head 150 3 0.011
upper arm 200 2 0.022
lower arm 150 1 0.009
torso N/A 10 0.176
thigh 200 7 0.121
shin 200 5 0.077
foot 200 4 0.019

3D SIMBICON
Link Strength Mass Ix Iy Iz
hip N/A 16.61 0.0996 0.1284 0.1882
trunk 30 29.27 0.498 0.285 0.568
head 1.5 6.89 0.0416 0.0309 0.0331
upper arm 1.5 2.79 0.00056 0.021 0.021
lower arm 1.5 1.21 0.00055 0.0076 0.0076
hand 0.1 0.55 0.05 0.2 0.16
thigh 9 8.35 0.145 0.0085 0.145
shin 3 4.16 0.069 0.0033 0.069
foot 0.3 1.34 0.0056 0.0056 0.00036

3D Mocap
Link Strength Mass Ix Iy Iz
hip N/A 12.8 0.174 0.148 0.12
trunk 100,400 17.02 0.335 0.167 0.281
head 30,120 4.067 0.02 0.0176 0.0248
clavicle 40,100 2.51 0.0111 0.0111 0.00691
upper arm 40,100 1.42 0.0133 0.0014 0.0132
lower arm 30,120 0.57 0.003 0.0003 0.003
hand 30,120 0.09 0.00008 0.00002 0.0001
thigh 400,1600 9.013 0.204 0.0356 0.208
shin 400,1600 3.91 0.0585 0.0087 0.06
foot 100,400 0.29 0.0002 0.0004 0.0003
toe 5,20 0.23 0.0002 0.0002 0.0002

Table 3.2: Model parameters used for our results. The joint stiffness values are low
when compared to uses of these models in other controllers. This is because much of
the control effort is generated by the QP component of our controller. The units are
as follows: newtons per radian for the gains, kilograms for the mass, and kilogram
meters cubed for the inertias. For the model used to track motion capture results,
inertial properties were generated by integrating a fixed density over geometric models
of each limb. The dimensions of the character were chosen to match the dimensions
of our capture subject. Also, for this model, we used two sets of gains for the PD
component of the controller as indicated by comma-separated strength values.
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Figure 3-6: We plot the horizontal components of the root link’s up vector. The x axis
is the lateral component and the z axis is the forward component (the character is
walking down negative z). The first plot was created using our controller on a slope of
five degrees tracking the output of a manually designed PD controller on flat ground.
The second plot was created using our controller on an uphill slope of five degrees
but with the same parameters as the downhill plot. Note that in the uphill plot,
the up vector has a more negative forward component in the upright phase (lateral
component equal to 0) indicating that the character is leaning forward as compared
to the downhill plot. In either case, the character achieves a stable gait.
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3.4.2 Balance

An effective balance policy allows the controller to adapt the motion to new envi-

ronments. In practice, the animator can change the terrain or the environment to

produce numerous variations from a single reference motion. We adapted reference

motions to sloped terrain, steps, and moving platforms. These animations would be

difficult to create using traditional key framing tools or spacetime optimization. In

addition to varying the terrain, the animator can introduce external disturbances.

As a test case, we manually tuned a PD controller which balances through a foot

placement strategy to walk on flat ground 1. The same controller also works on a

downhill slope of two degrees but fails on slopes of three degrees or higher. To walk

down steeper slopes, one could readjust the target poses of the manual controller and

its gains. However, our controller does this automatically. Given the reference output

from the successful simulation on flat ground, our approach can derive controllers

that successfully simulate the same motion on slopes of up to five degrees. This

experiment demonstrates that controller adapts to new ground slopes even without

any user intervention (see Figure 3-6).

Our controller was not designed to handle higher level motion planning tasks.

For example, it does not know how to adapt a normal walk to walk up large steps.

Applying our controller would result in the character stubbing its toe and falling. One

approach to this problem is to build a set of primitive actions with our controller and

to compose them together at runtime using the surrounding feedback. Our approach

in this chapter allows us to build such simple actions and we leave their automatic

run-time composition for future work.

3.4.3 Composing Controllers

A library of motions can be used to derive many controllers, which can be composed

together to produce complex actions. Similar ideas have been proposed in the past

[29, 94, 71], but the approach in this chapter may make it simpler to derive such

1A SIMBICON controller produces stable walks on steeper slopes by departing from the original
gait in a different way, namely by increasing step lengths and forward velocity[94].
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controls for a wider range of motions. Moreover, the new control produces high-

quality motions that could be used along with kinematic motion graphs [46, 7]. we

used the action graph in Figure 3-7 to jump between normal and marching styles

including transitions between starting and stopping. In fact, even our simple walks

are transitions between controllers for the left and right leg. Currently, the allowable

transitions are specified manually. In the future, we hope to construct these action

graphs automatically by precomputing optimal transitions based on character state

as has been done for kinematic controllers [54, 83].

start

left right

soldier 
left

soldier 
right

stop

Figure 3-7: An action graph consisting of controllers for normal and marching styles
of walking. Currently, allowable transitions are found manually. An interesting area
of future work is constructing action graphs automatically by precomputing optimal
transitions based on character state.

3.4.4 Experimental Setup

Physical Modeling and Simulation The motions were simulated using three

different physical character models. The physical properties of these models are pro-

vided in Table 3.2. These models were constructed either to match the properties

used from previous papers [71, 94] or to match our motion capture subject. We set

bone lengths to match the subjects dimensions and computed inertial properties by

integrating a density over a polygonal human-like mesh [87]. The joint stiffness gains

are significantly lower than those used in previous controllers since most of the control
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effort is generated from the QP component of our controller. This makes the control

less stiff which leads to more stable simulations. The motions were simulated in Open

Dynamics Engine (ODE) with scenes created in DANCE [69].

Foot Clean up The raw mocap data is noisy, particularly for toes and ankles which

are essential for stepping motions. We cleanup these motions to ensure that contact

between the feet and the flat ground is consistent. First, a constant offset is applied

to the ankle joints to align the feet. It is computed using a reference frame where

the feet are assumed to be flat. Next motion edits are performed to constrain the

character’s toes to be flush against the ground when in contact. We use a “per-frame”

kinematic fix with hierarchical B-spline smoothing, similar to the approach employed

by [49]. We manually annotate the segments of the motion with toe contacts and

then compute the global transformation of the toe by projecting its position and

orientation in the first frame of each segment onto the ground plane. A fast, analytic

IK then adjusts the ankle, knee and hip joints minimally so that they connect with

the positioned toe segments. The result of this per-frame adjustment is smoothed

over the adjacent frames with a hierarchal B-spline. The displayed reference motions

have all been fixed in this manner, except for the motions used in the previous work

[71], which were used as is.

3.5 Summary

A control system that reproduces stylized locomotion has two major advantages.

First, it can adapt motion-capture data to physically consistent dynamic environ-

ments. Second, it can produce large repertoires of simple actions. Both of these

features are needed to create versatile characters in games and other interactive ap-

plications. In this chapter, we demonstrated such a control system for control of

human stepping motions.

We showed that automatic analysis of linear time-varying systems enables efficient

pre-computation of balance strategies. These strategies can be combined with a sim-
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ple style feedback to simulate stylized human stepping motions. A possible additional

application of our approach is combining it with existing controllers to improve their

stability. For example, in the results section, we took a PD controller and extended

its ability to walk on steeper slopes. Further investigation is needed to determine

whether this additional feedback can improve stability of other controllers.

Large disturbances require higher level planning and more significant deviation

from the reference motion. For example, a push might require taking several steps

to retain balance. In this chapter, we demonstrate manual composition of a few

actions stabilized by our control system. In the future, higher-level planners should

be developed to accomplish similar tasks automatically to improve robustness and

respond to user input. Using a complex graph of simple actions, a higher-level planner

could monitor the current state of the character, its environment, and the provided

user input to simulate versatile characters in rich physically simulated environments.

The pre-computed balance policy was derived by making some simplifying as-

sumptions that allowed us to massage the HJB equation (2.6) into something that

could be tractably computed. Furthermore, by focusing on controlling the character

near a trajectory, we were able to represent a high dimensional value function while

avoiding the curse of dimensionality. In the coming chapters, we’ll see that related

assumptions can help us turn the non-linear HJB equation into a linear equation.

This will make it easier to solve the HJB equation, and will allow us to combine

solutions together. We can use trajectory-based representations of value functions to

do this for high-dimensional problems.
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Figure 3-8: Some examples of the styles of motion simulated by our controller. Start-
ing from motion capture makes it easy to simulate motions like a sumo maneuver.
We can simulate reference motions in new environments, such as adapting a sideways
stepping motion or a turning motion to walk down steps. The backwards walk is
adapted to walk over a dynamic seesaw. The entire sequence is simulated creating
a realistic motion that would be difficult to animate by hand, motion capture, or
synthesize kinematically.
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Chapter 4

The Linear Bellman Equation

In the previous chapter, we saw that assuming linear dynamics and quadratic loss

functions allowed us to turn the HJB PDE into a Riccati ODE. This allowed us to

efficiently pre-compute feedback policies for characters near reference trajectories. In

this chapter, we review a slightly more general set of assumptions and a change of

variables which transforms the non-linear HJB PDE into a linear PDE. In subsequent

chapters, we will see that this linearity enables us to solve optimal control problems

more easily and also allows us to combine existing solutions together.

Here we summarize the derivation of the linear HJB equation for finite horizon

control problems. Note that the derivation here is a special case where noise acts on

the system as if it were acting on control inputs. More general derivations where noise

acts in different subspaces are possible [80] . The linear form of the Bellman equation

was originally discovered in the context of computational physics [40]. Holland showed

that the non-linear HJB equation was equivalent to the Schrodinger equation using

a change of variables.

Suppose we have a control-affine system as in Equation (2.5) and a loss function

`(x,u, t) = q(x, t) +
1

2
u>u. (4.1)

This loss function is more general than the strictly quadratic loss functions used in

the last chapter. The penalty on control effort is quadratic but the position penalty
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q(x, t) can be any positive function. Recall that the optimal value function satisfies

the HJB equation

−v̇(x, t) = min
u
{`(x,u, t) + L(v(x, t),u)} (4.2)

v(x, T ) = g(x). (4.3)

For control-affine, stochastic systems, the operator L can be thought of as taking

an expectation of the value function at an infinitesimal point in the future given the

control action. Its functional form is

L(v(x, t),u) = (a(x) +B(x)u)>∇v(x, t) +

1

2
tr[B(x)B(x)>∇2v(x, t)].

Given the form of the loss function in Equation 4.1, the right hand side of the HJB

Equation 4.2 can be minimized analytically with the policy

u = −B(x)>∇v(x, t)

This control law is plugged into Equation 4.2 to yield

−v̇(x, t) = q(x)− 1

2
∇v(x, t)>B(x)B(x)>∇v(x, t)

+ a(x)>v(x, t)

+
1

2
tr[B(x)B(x)>∇2v(x, t)]

which is a non-linear partial differential equation as there are terms which are quadratic

in the value function. We now use the change of variables

z(x, t) = exp (−v(x, t)) ,
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and observe that the transformed HJB equation is

ż(x, t) = q(x)z(x)− (a(x)>∇z(x, t)

+
1

2
tr[B(x)B(x)>∇2z(x, t)]

+
1

2 z(x, t)
∇z(x, t)>B(x)B(x)>∇z(x, t)

− 1

2 z(x, t)
∇z(x, t)>B(x)B(x)>∇z(x, t).

Note that the non-linear terms cancel, leaving a linear, second-order PDE. To solve,

one can discretize the PDE into the form

zt = Mzt+δt

where M can in general vary with time. In the next chapter, we’ll see that solving

control problems in the linear space is often advantageous. In addition, linearity will

enable a new application: combination of existing controllers.
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Chapter 5

Solving Linear Bellman Equations

Optimal value functions for continuous dynamical systems satisfy the Hamilton-

Jacobi-Bellman (HJB) equation, a non-linear partial differential equation (PDE).

This PDE can be solved using value iteration [19]. However, as we saw in the pre-

vious chapter, the HJB equation can be solved using an equivalent linear PDE for a

large class of control problems. Linear PDEs can be solved with a number of stable

and highly accurate numerical methods. Surprisingly, there has been no exploration

of how to solve linear Bellman PDEs directly either in closed-form or with finite-

difference or spectral numerical schemes. Instead, these linear Bellman PDEs have

been solved using Monte Carlo integration [44]. The integration can be accelerated

using importance sampling but solutions are only valid for a single initial condition.

Recently, a linearly solvable Markov Decision Process [79] was shown to be equivalent

to the continuous problem in the limit of infinitely fine grids [80]. This formulation

produces solutions over regions of state space but requires the use of stochastic control

policies.

In this chapter, we explore closed-form, finite-difference, and spectral methods for

solving linear Bellman equations. In particular, we identify a subclass of problems

for which there is a closed-form solution. The solution is computed through the

use of Fourier series and highlights the connection of the Bellman equation to the

heat equation. PDEs associated with control problems for non-linear systems such as

a three-wheel omnidirectional autonomous vehicle, cannot be solved in closed-form.
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However, we show how to discretize these PDEs with finite-difference and spectral

methods. Depending on the particulars of the PDE, some methods will converge

faster and be more accurate than value iteration.

Solutions to linear Bellman equations generate optimal control policies for a va-

riety of dynamical systems. As a proof of concept, we generate policies for a one

dimensional particle. This example has a closed-form solution which allows us to

verify the accuracy of various numerical solution methods including value iteration.

We show that a standard value iteration scheme for this problem is less accurate

and more expensive than the easy to implement implicit schemes used to solve the

linear Bellman form of the equation. We repeat this experiment for a second order

dynamical system and show that a simple finite-difference scheme outperforms value

iteration. Finally, we generate navigation feedback policies for an autonomous vehicle

with three omnidirectional wheels. In three-dimensional problems, memory resources

can be quickly exhausted when using fine grids. It’s beneficial in this case to be able

to use larger time steps while not having to sacrifice spatial accuracy.

5.1 The Linear Bellman Equation

Optimality for a control problem involving a stochastic dynamical system is described

by a non-linear HJB equation. This equation describes the backwards time evolution

of the optimal cost function. With quadratic control costs and certain noise models,

a change of variables leads to a linear Bellman equation [34, 44, 79, 80]. This linear

PDE describes the backwards time evolution of the optimal reward function:

zt(x, t) = q(x, t)z(x, t)− L(z(x, t)) (5.1)

z(x, T ) = exp(−g(x)) = h(x) (5.2)

where the dependence on z is linear [34, 44, 79, 80] and

L(z(x, t)) = a(x)>∇z(x, t) +
1

2
Tr(C(x)C(x)>∇2z(x, t)).
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The boundary condition of the PDE is given by the terminal cost function g(x)

transformed into the linear Bellman space by exponentiation. The optimal value

function can be recovered from the solution to the PDE by v(x, t) = − log
(
z(x)

)
.

The optimal policy then descends the gradient of the optimal value function as closely

as possible,

u∗ = −B(x)>∇v(x) = B>∇ log(z(x)) =
B>∇z(x)

z(x)
.

The PDE described by Equation 5.1 is a Fokker-Planck equation typically found

in physics applications [67]. The PDE resembles a convection-diffusion equation with

an extra reaction term. The convection term at each grid point depends on the

passive dynamics (control equal to zero) of the system. The standard diffusion term

depends on the directions that control actions can change the system. The reaction

term depends on the position cost.

Typically, non-linear HJB equations are solved in cost space using value iteration.

For the class of problems which lead to a linear Bellman equation, the standard

value iteration algorithm solves a non-linear advection equation with an explicit time

stepping scheme. This leads to stability problems when using large time steps with

fine spatial grids. In the linear reward space, it is easy to apply implicit schemes that

allow for larger time steps. Furthermore, as described in the next section, certain

special cases can be solved in closed-form.

5.2 A Closed-Form Solution

The linear Bellman equation is a convection-diffusion equation. As with the heat

equation in physics, the linear Bellman equation can be solved in closed-form when

the convection and diffusion coefficients are constant. This allows us to derive a

closed-from solution for control problems of the form

min
π
E

[
g(x) +

∫ T

0

c+
1

2
u>udt

]
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where c is a constant. The terminal cost function g need not be quadratic, making

this a more general solution than the related linear quadratic regulator problem [19].

In this case, the linear Bellman becomes −zt = azx + 1
2
B2zxx where the position

cost is assumed to be zero. Also, we stick to the one-dimensional case for now but

the solution can generalize to many dimensions. The solution is found by assuming

a Fourier series solution z =
∑
ẑi(t)e

ikx. Plugging this guess into the PDE yields

−
∑

˙̂zi(t)e
ikx = a

∑
ikẑi(t)e

ikx − 1

2
B2
∑

k2ẑi(t)e
ikx.

By orthogonality of the wave functions eikx, we have

− ˙̂zi = (aik − 1

2
B2k2)ẑi,

which has the solution

ẑi(t) = ẑi(0)e( 1
2
B2k2−aik)t.

This solution has an intuitive behavior. Starting from the final time and going back-

wards, the terminal reward function exp(−g(x)) is translated and diffused, where the

higher frequencies are attenuated more rapidly. One can get a solution for the case

where q(x) = c is constant by linearity. The effect is extra frequency-independent

smoothing of the terminal cost function.

It is rare for optimal control problems to have closed-form solutions. While the

assumptions here are fairly restrictive, this solution method could be useful as an

approximation for controlling high-impedance robots. It could also be useful for local

approximations of control problems. In this chapter, we use the closed-form solution

to analyze different numerical solutions as an alternative to value iteration.

5.3 Numerical Solutions

For non-linear dynamical systems and more general position costs, linear Bellman

PDEs must be solved numerically with a time-stepping method. Fortunately, linearity
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allows us to apply any number of well-studied numerical tools. For example, stability

analysis of finite-difference schemes state that the convergence of an explicit method

requires a specific relationship between the time-step and grid size. For schemes

that solve the non-linear HJB, like value iteration, evaluating convergence is more

complicated. Furthermore, implicit methods which are unconditionally stable with

respect to time-step and grid size are readily applicable to the linear Bellman form

of the problem. Implementing an implicit value iteration scheme, in contrast, would

be difficult and inefficient as it would require solving a non-linear equation.

Even in the linear case, there are issues that can arise depending on the solution

method and the particulars of the equation being solved. This is true especially

in the case when diffusion terms are lacking. This can make it difficult to solve

advection using higher-order linear methods. In this chapter, we evaluate a number

of finite-difference schemes and a pseudospectral method combined with explicit and

higher-order implicit time-stepping schemes.

5.3.1 Time-Stepping

Since the PDE is linear, the derivative operator can be expressed as a matrix M

making it easier to describe each time-stepping scheme. Recall that the linear Bellman

equation runs backwards in time, so that in each scheme below, zi+1 is known and

we are solving for zi. The time step is h.

Forward Euler (FE)

zi = zi+1 − hMzi+1.

In practice, this time stepping method is difficult to use. In addition to be-

ing only first order accurate, the scheme is always unstable when coupled with

negative-definite derivative operators such as those that arise from central dif-

ferencing schemes. With symmetric differencing schemes, one must take care to

restrict the time step to be smaller than the CFL condition for the particular

dynamical system [50].
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Implicit Euler (BE)

zi = zi+1 − hMzi.

This time stepping method is unconditionally stable but only first order accurate

[50].

Crank-Nicolson (CN)

zi = zi+1 − 1

2
h(Mzi + Mzi+1).

Crank-Nicolson is second-order accurate and unconditionally stable implicit

scheme [50].

Implicit Runge-Kutta 3 (IRK3)

zi = (
1

3
I +

2

3
M̂(

3

4
I +

1

4
M̂M̂))zi+i

where M̂ = I − hM. This update is a third order and implicit Runge-Kutta

3 method which was combined with pseudospectral estimates of the spatial

derivatives.

The implicit time stepping schemes can be performed efficiently by first doing an

LU decomposition of the update matrix and using back substitution for each update.

5.3.2 Spatial Derivatives

The linear Bellman equation includes first and second derivatives of the transformed

value function. Here we evaluate three finite-difference and spectral methods: an

upwind method, central differences, or a Fourier spectral method. Each method has

its own accuracy and stability requirements. The upwind method computes the first

derivative by applying the two-point stencil 1
∆x

(−1, 1) in the direction of the advection

field. Upwind can be overly diffusive and is only first order accurate. However, this

artificial diffusion can also prevent strong oscillations from developing when advection

terms in the linear Bellman are not coupled with real diffusion terms. The central
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difference method computes the first derivative by applying the three-point stencil

1
2∆x

(−1, 0, 1) and the second derivative with the three-point stencil 1
∆x2 (1,−2, 1).

Central-difference operators are second- order accurate but non-symmetric, so they

must be coupled with implicit time stepping schemes. We also evaluate a matrix

based Fourier spectral method. The differencing matrix consists of columns of the

form (. . .,−1/2 cot(2∆x/2), 1/2 cot(1∆x/2), 0, 1/2 cot(1∆x/2), . . . )) (see [82] for a

reference on spectral methods). This method can give very accurate results when

coupled with a high order time-stepping scheme. However, even a simple upwind

method can yield superior results to value iteration.

5.4 Results

We evaluate our closed-form and numerical solution methods on a set of three test

cases: a one-dimensional particle example, a two-dimensional brick on ice problem,

and a three-dimensional robot navigation example.

5.4.1 One-Dimensional Particle

The simplest possible example that can be controlled using the linear Bellman for-

mulation is a one-dimensional particle with the dynamics

dx = (1 + u)dt+ dω.

where x is the position of the particle and u is the control, in this case a commanded

velocity. The cost function used is

2x(T )2 − x(T )4 +

∫ T

0

1 +
1

2
u(t)2 dt.
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With this periodic cost function and dynamics, the closed-form solution can be used

to verify numerical results. The linear Bellman PDE for this problem is

−zt = zx +
1

2
zxx − z (5.3)

z(x, T ) = 2 x(T )2 − x(T )4 (5.4)

z(−1, t) = z(1, t). (5.5)

5.4.2 Brick on Ice

For a two-dimensional problem, we study a second order system

d


 x

v


 =




 v

0


+


 0

1


u


 dt+


 0

1


 dω,

where x is the position of the brick, v is the velocity, and u is the lateral force on the

brick. In this case, control cannot directly alter the position of the brick. The cost

function is

100x(T )2 + 10 v(T )2 +

∫ T

0

100x(t)2 + 10 v(t)2 +
1

2
u(t)2 dt.

This cost function places more emphasis getting to the position zero than velocity

zero. The linear Bellman PDE for this problem is

−zt = vzx − (100x(t)2 + 10 v(t)2)z (5.6)

z(x, T ) = 100 x(T )2 + 10 v(T )2 (5.7)

z(x ∈ ∂Ω, t) = 0. (5.8)

5.4.3 Three Omni-Wheeled Robot

The third example examines the control of a three wheeled robot as shown in Figure

5-1. Each wheel can move in any direction though certain directions are faster than

others. We assume that the velocity of the wheels can be controlled directly leading
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Figure 5-1: Solutions to the linear Bellman equation can be used to generate op-
timal trajectories for a three-wheeled vehicle shown here on the left (image from
http://www.cs.cmu.edu/∼reshko/PILOT/). The wheels can move in any direction
but some directions are faster than others. This causes the vehicle to move along
circular paths to get to the goal as quickly as possible as shown in the center plot.
In the figure on the right, the vehicle first moves to the right to allow itself room to
avoid the obstacle.

to the following first order system dynamics:

dx =
2

3




− sin(θ1) − sin(θ2) − sin(θ3)

cos(θ1) cos(θ2) cos(θ3)

1/2 1/2 1/2


 (u dt+ dω)

where θ1 is the orientation of the first robot with respect to the horizontal axis,

θ2 = θ1 + 120, and θ3 = θ1 + 240. The state is three dimensional consisting of the

position and orientation of the robot. The control is the commanded velocity of each

wheel.

In this case, two cost functions are used:

1

2

(
(x(T )− x̄)2 + (y(T )− ȳ)2 +

∫ T

0

(x(t)− x̄)2 + (y(t)− ȳ)2 + u(t)>u(t) dt

)

where x̄ and ȳ are the desired position of the robot (there is no desired orientation),

and
1

2

(
(x(T )− x̄)2 + (y(T )− ȳ)2 +

∫ T

0

1 + u(t)>u(t) dt

)
.

Note that we also modify this objective function to penalize certain states where there

are obstacles. For long time periods, this cost function approximates the minimum
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Figure 5-2: On the left is an error analysis of various numerical schemes for the
one-dimensional particle example. These plots were generated by comparing the
numerical solution at the final time (in this case the reward function at time 0)
with the closed-form solution using the ` − ∞ norm. The middle is the trajectory
of a one-dimensional particle under the numerically computed (IRK3 spectral) and
closed-form policies. The two trajectories are indistinguishable even though there are
some small errors in the numerically computed policy. For this plot, the grid size is
0.0126, though similar results are obtained for grids as coarse as 0.3927 units per grid
point (500 versus 16 grid points). The figure on the right compares value iteration of
the non-linear HJB with an implicit method for solving the linear Bellman equation.
Shown is the largest error in the value function for the particle test case after half a
second. The error for value iteration is shown in red while the error for the implicit
Euler method is shown in blue. For equal time steps and grid sizes, solving in reward
space is more accurate than using value iteration in cost space.

time problem. The minimum time problem determines the quickest way to get to a

desired location while using as little velocity as possible. Interestingly, all possible

solutions for this problem have been enumerated through analysis of the minimum

principle [11]. We will use the linear Bellman equation to generate trajectories for

the robot that avoid obstacles. The linear Bellman equation in this case is

−zt =
2

9
((sin2(θ1) + sin2(θ2) + sin2(θ3))zxx

− 2(sin(θ1) cos(θ1) + sin(θ2) cos(θ2) + sin(θ3) cos(θ3))zxy

− (sin(θ1) + sin(θ2) + sin(θ3))zxθ1 + (cos2(θ1) + cos2(θ2) + cos2(θ3))zyy

+ (cos(θ1) + cos(θ2) + cos(θ3))zyθ1 +
3

4
zθ1θ1)− z.

(5.9)
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5.4.4 Error Analysis

The one-dimensional test problem has constant drift, diffusion, and reaction terms.

This problem can be solved in closed-form and the infinity norm was used to evaluate

numerical solution methods. A plot of the error for various numerical methods is

shown in Figure 5-2. Not surprisingly, the most accurate method is the third-order

spectral method. Interestingly, the Crank-Nicolson time stepping with spectral ap-

proximation of the spatial derivatives had a slightly larger error constant than the

central difference version. Computationally, the central difference method is much less

expensive than the spectral method because the spectral method involves inverting a

dense matrix.

In the end, the computed solution generates a feedback policy to control the

dynamical system. Errors in the solution result in higher costs of trajectories as

given by the objective function for the problem. However, the feedback policies are

typically robust to these errors as shown in Figure 5-2. While the system may end

up slightly farther from the goal, it does not veer wildly off course due to small errors

in the solution.

5.4.5 Comparison to Value Iteration

An alternative to solving the linear Bellman equation in reward space is to solve the

original non-linear HJB problem in cost space using value iteration. However, with

the linear form it is easier to determine the accuracy and stability of the numerical

approach. Furthermore, the simplest implicit time stepping scheme often outperforms

value iteration in accuracy and computational performance. We demonstrate these

properties in Figures 5-2 and 5-3. Shown are two experiments demonstrating the

performance and accuracy advantages of solving the linear Bellman form of the control

problem over using value iteration to solve the non-linear HJB form. Value iteration

is less accurate and stable because it uses an explicit update rule. It would not

be straightforward to implement an implicit version of value iteration. Also, value

iteration is computationally more expensive because it requires computing the optimal
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Figure 5-3: The left figure plots the convergence rates of value iteration and the
implicit Euler method with upwind differencing for the brick problem. The middle
figure compares the running time of value iteration of the non-linear HJB versus an
implicit method solving the linear Bellman form for the brick on ice problem. Solving
the linear Bellman is considerably faster than value iteration. Finally, the rightmost
figure shows the ratio of the total cost of the policy computed by solving the linear
Bellman over the total policy cost as computed by value iteration. For the same grid
size and time step, the linear Bellman policy is less than a third of the cost of the
policy computed by value iteration.

policy at each time step, simulating it for each grid point, and interpolating the value

function at each result. Finally, the policies that value iteration computes for a given

grid size are more costly than the corresponding policies computed by solving the

linear Bellman form of the problem.

5.4.6 Navigation policies

Two objective functions were used to create controllers for the three-wheeled vehicle.

One controller tried to reach a point as quickly as possible while minimizing squared

velocity. The other tried to reach a point while avoiding a costly region of state space

(costly because there is an obstacle there for example). Figure 5-1 shows the trajec-

tories of the three wheeled robot under these policies. As predicted by analysis of the

Pontryagin minimum principle [11] for the minimum time problem, the vehicle moves

in a sequence of circular arcs and shuffles. In three-dimensions, memory requirements

become an issue when storing time-varying policies. It is important that the solution

method is as accurate as possible with the limited resources available. With the linear

form of the control problem, it is easier to apply more accurate methods.
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5.5 Discussion

The continuous linear Bellman equation describes (after a non-linear transformation)

the reverse time evolution of the optimal value function. It is a convection-diffusion-

reaction equation. The passive dynamics of the system determine the advection terms,

the control directions determine the diffusion terms, and the cost function determines

the reaction term. Under the PDE, the terminal cost function is advected and blurred.

Near the terminal time, the optimal value function is a slightly warped and blurred

version of the terminal cost function. Far from the terminal time, it is hard, in general,

to predict what the optimal value function will look like. However, with the linear

Bellman formulation, one can apply many stable and accurate methods to compute

this numerically. The value function then gives optimal control policies.

This chapter has shown that linearity allows one access to several useful theoretical

and numerical tools for solving stochastic optimal control problems. For dynamical

systems with constant convection, diffusion, and constant running terms there is

closed-form solution. This solution may prove useful for local approximations to

more complicated control problems. For more general problems, the PDE can be

solved efficiently using standard finite-difference or spectral methods. Solving the

linear PDE provides a faster and more accurate alternative than value iteration. The

linear PDE is not applicable to all control problems, however, and value iteration

is more generally applicable to problems without control affine dynamics, quadratic

control penalties, or bounds on control.

As in value iteration, a key limitation of solving the linear Bellman equation using

standard grid techniques is that it is limited to low dimensional problems. Humanoid

robots have tens of degrees of freedom. These problems cannot be solved on a grid.

Based on the accuracy of the spectral method presented with high-order time step-

ping, it is conceivable that one could go beyond three dimensions. An interesting

direction would be to use sparse grid representations like particle methods coupled

with model reduction on the system dynamics to solve even higher dimensional prob-

lems. Particle methods are ideally suited to solving advection PDEs.
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Another consequence of linearity is that we can apply superposition to add solu-

tions of the linear Bellman equation together. In the next chapter, we will exploit this

to combine pre-computed controllers to perform new tasks at almost no computational

cost. We will introduce a method for approximating solutions for high-dimensional

problems.
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Chapter 6

Linear Bellman Combination for

Control of Character Animation

Physically-based animation of active characters requires controllers that find forces

that achieve the goals of the animator. While controllers exist for a variety of human

activities [94, 24, 39, 96, 71] and even complex, non-human activities [56, 31, 18],

creating a controller that achieves the animator’s goal usually involves either intensive

manual tuning or expensive computational optimization.

Given the difficulty of creating individual controllers for given tasks, a goal of

this work is to reuse pre-computed controllers for new tasks by combining them. For

example, if two controllers can reach different goals, we want to blend them to reach

end states in between. Simple linear combination of controllers is not sufficient and

can lead to unpredictable results due to the complex relationship between control

forces and the resulting animation. In this chapter, we present a new method for

combining controllers that naturally weights each component controller by its rele-

vance for the current state and goal. Combined controllers can interpolate goals or

coordinate between multiple controllers. Coordination between controllers trained

for different parts of state space can broaden the domain that can be handled. Co-

ordination between controllers trained for different goals can yield a controller with

multiple acceptable outcomes.

Our approach is based on the control formulation where controllers (equivalently,
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control policies) are measured by an objective function which quantifies how well they

achieve the goals of the animator [19, 78, 88]. For example, this function can em-

phasize reaching a particular state at a particular time or tracking a given trajectory

for the character. In computer animation, improving a controller with respect to this

objective is difficult because there are often many control parameters. Also, the rela-

tionship between these parameters and the resulting value of the objective function is

non-linear, due to the cost functions used to describe the task and the dynamics that

govern the motion of the character. This relationship is encapsulated by a partial

differential equation, the Hamilton-Jacobi-Bellman (HJB) equation, whose solution

defines the optimal value function [17]. The optimal value function maps a character

state to the lowest possible cost of reaching the goal. The best policy seeks to follow

the gradient of the optimal value function. Non-linearity of the HJB equation is the

reason tuning, optimizing, or combining controllers is so difficult.

Our approach, which we call linear Bellman combination, derives from the linear

form of the Bellman equation as described in the previous chapters. We’ve shown

that the linear form is advantageous for solving optimal control problems. In this

chapter, we observe that linearity allows us to apply the superposition principle to

combine temporally aligned optimal policies for similar tasks with different boundary

conditions. The resulting controller is provably optimal for the new task under some

conditions. In practice, we need to combine controllers that might not be optimal.

Still, linear Bellman combination performs accurately and robustly and we provide

empirical evidence that it outperforms alternatives. Furthermore, it is simple to use

and can be applied to many control schemes as it treats controllers as a black box,

using only their outputs to compute combinations.

Evaluating a controller using linear Bellman combination requires representations

of each component controller’s policy and value function. Often these mappings are

lacking and the common approach for low-dimensional systems is to tabulate the

policy and value function. In this chapter, we also describe a method capable of

controlling character motions with many more degrees of freedom. We demonstrate

linear Bellman combination on value functions which are approximated around sam-
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Figure 6-1: Overview. Linear Bellman combination creates a new controller using
pre-computed controllers optimized for related tasks of finite duration. The tasks
share a common integrated cost,

∫ T
0
q(x) + 1

2
u>udt, but have different terminal costs

gi(x). The output of each controller, ui, is scaled by a reward function, zi(x, t) =
exp

(
−v(x, t)

)
and by the amount the controller’s terminal reward function, hi(x) =

gi(x), overlaps the desired terminal reward function, h̄(x). These weighting factors
are normalized and the resulting control action is a sum as in Equation 6.6.

ples from example trajectories.

Control-inspired approaches are used in many areas of graphics, offering many

potential applications of the linear Bellman equation. For this approach, we focus on

several animation tasks. As an example application, we demonstrate taking steps of

varying length and jumps of different heights. Controllers that bring a gymnast to an

upright position on a high bar from different initial conditions are combined to work

from a range of initial conditions. We use coordination to combine controllers for

walking on flat and hilly terrain. We show that linear Bellman combination outper-

forms simple linear blending and other tracking approaches. The main limitation of

the presented formulation is that combined controllers must cover the same duration

of time. In the conclusion, we sketch possible extensions to address this limitation.

6.1 Related Work

The goal of our work is to combine pre-computed controllers to perform new tasks.

Others have explored parameter tuning for specific control schemes to achieve new

tasks such as adapting running controllers from larger characters to smaller charac-
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ters [38], modifying jumping controllers [61], or walking under various environmental

constraints [93]. In contrast, we treat existing controllers as a black box which we do

not modify directly. These existing controllers may be hand-crafted [89] or computer

optimized [88]. Rather than manipulate the parameters of the controller, our method

achieves new tasks by combining the output of each component controller.

Some prior work has explored interpolation of existing controllers in order to

achieve new tasks [84]. Yin et al [93] observed that simple linear interpolation of

SIMBICON [94] parameters can be used to adapt the walking controller to condi-

tions that are ”in-between” the conditions expected by example controllers. This

observation was expanded upon to build a controller capable of taking different step

lengths to avoid holes in the terrain [24]. In this chapter, we show that simple lin-

ear interpolation of feedback controllers can be suboptimal both in terms of the goal

and the amount of control effort being exerted. In some cases, sub-optimality results

in visual imperfections while in others it results in failure to accomplish the task.

In practice, this can be overcome by placing optimized examples closer and closer

together, but these optimized examples are difficult to obtain.

Controllers can also be sequenced to create composite controllers that achieve new

tasks [22, 29]. In our approach, multiple component controllers may be active at any

one time. The total control effort is a weighted sum of the output of each component

controller. In contrast to a sequencing approach, combining controllers allows us to

achieve tasks that are not executed by any of the component controllers.

Sok et al [71] and Erez et al [28] also interpolate example controllers to achieve

robust execution of biped locomotion maneuvers. These approaches rely on hand-

crafted metrics to determine the blend weights to place on each example controller.

In contrast, the metric used to weight component controllers in our approach is au-

tomatically computed given a mathematical description of the current goal. This

allows our composite controller to look ahead to determine the best course of action

to achieve this goal.

Linear Bellman combination builds on the observation that the non-linear HJB

equation can be linearized under a change of variables [34]. The same general idea
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also appears in the study of stochastic diffusion processes [40]. Recently, this linearity

has been exploited to derive methods for computing low-dimensional optimal value

functions using a power method [79] and importance sampling [44]. In our work, we

observe that linearity of the HJB equation allows one to apply linear superposition

to combine existing controllers for new tasks for a variety of systems. Concurrent

with our work, Todorov also explored linearity for the composition of control laws

and applied it to a first-exit control problem of a discrete two-dimensional particle

[81].

For high-dimensional characters, linear Bellman combination uses multiple quadratic

expansions of the value function in a non-parametric representation to track multiple

trajectories. A related non-parametric representation was proposed by Atkeson et al

[9]. In our case, example trajectories need not be optimized for the same task. In

addition, rather than switch between example controllers discretely using whichever

example is closest to the current state, controls are smoothly interpolated using the

value function. Some recent work [27, 15] has adapted feed-forward controllers using

linear quadratic regulators (LQR) to track a single example trajectory. Earlier work

on this topic was pursued by Brotman and Netravali in graphics [21] and Atkeson in

robotics [8]. However, LQR controllers are only valid near the example trajectory. We

show that linear Bellman combination can coordinate multiple controllers to improve

controller robustness.

6.2 Linear Bellman Combination

Linear Bellman combination produces a new controller by combining existing control

policies. For example, given two policies for stepping near and far, the combined

policy can step in between. A control policy u = π(x, t) defines the actions (forces)

u ∈ Rm needed to drive the system from the current state x ∈ Rd and time t to

some goal in the future. Liner Bellman combination blends a set of control policies

99



π1, . . . ,πn to produce a combined policy:

π(x, t) = α1(x, t)π1(x, t) + · · ·+ αn(x, t)πn(x, t).

Setting these coefficients, αi, such that the resulting controller achieves a well defined

goal can be difficult given the non-linear dynamics of the systems typically controlled

in physically based animation. Linear Bellman combination enables a principled

derivation of these coefficients.

Linear Bellman combination uses carefully computed time-varying coefficients,

αi(x, t) =
wizi(x, t)∑n
i=1 wizi(x, t)

, (6.1)

that can—under certain conditions—generate optimal control actions for a well de-

fined task. The blending formula weights each component policy by how appropriate

it is for the current state and goal (see Figure 6-1). The reward function, zi(x, t),

indicates how appropriate the policy is for the current state, while the fixed (in-time)

weights, wi, determine the goal of the controller. The time-varying reward weights

are computed automatically given the controller’s value function. The fixed weight

parameters are also computed automatically given a new desired goal function. The

resulting control can either interpolate goal functions or coordinate the component

policies. Coordination combines controllers that share the same goal but were created

for different regions of state space. Coordination can also create a goal function with

multiple acceptable outcomes.

The blending formula is derived from a linear form of the Bellman equation. In this

section, we review the Bellman equation to associate solving this partial differential

equation with the computation of optimal control policies. We then state the linear

form of this partial differential equation and apply the linear superposition principle

to derive Linear Bellman combination. Finally, we discuss the conditions for which

this combination yields an optimal control policy.
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exp(−v)

− log(z)

Original Cost Space New Reward Space

non-linear linear

zv

w1z1 + w2z2

w1h1 + w2h2

solution to

w1v1 + w2v2

usually not a solution

w1g1 + w2g2

Figure 6-2: Cost Space-Reward Space. The HJB equation is a non-linear partial
differential equation describing the time derivative of the cost-to-go function. Non-
linearity means that linear combinations of optimal value functions are not a new
optimal value function. However, using a non-linear mapping from cost to rewards
space leads to a linear PDE for the time evolution of a reward function. In this space,
linear combinations are solutions to an optimal control problem.

6.2.1 Linear Bellman Equation

As illustrated in previous chapters, using an exponential mapping that maps costs v

into rewards z = exp (−v), the HJB equation can be transformed into the following

form:

Dt[z(x, t)] = q(x, t)z(x, t)− L(z(x, t)) (6.2)

z(x, T ) = exp
(
− g(x)

)
= h(x) (6.3)

where the dependence on z is linear [34, 44, 79, 80] and the differential operator no

longer depends on control:

L(z(x, t)) = a(x)>∇z(x, t) +
1

2
tr[C(x)C(x)>∇2z(x, t)].
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state

reward h̄(x)

h1(x) h2(x)

Figure 6-3: Projecting Terminal Cost Functions. Since we restrict terminal cost
functions, g(x), to be quadratic, we have Gaussian reward functions, h(x), after
exponentiating. To compute the fixed blend weights, wi, we must project the desired
terminal reward function, h̄(x) onto the example terminal rewards associated with
each component controller, h1(x) and h2(x).

The core observation of this chapter is that linearity allows us to apply superposi-

tion to derive a combined controller that solves a new task (see Figure 6-2). Suppose

we have several solutions to Equation 6.2 zi(x, t) for different boundary conditions,

i.e. terminal reward functions hi(x). Then, by superposition we also have the solution

to the same PDE with the terminal reward function

h(x) =
n∑

i=1

wihi(x). (6.4)

The solution is

z(x, t) =
n∑

i=1

wizi(x, t). (6.5)

To get back to standard value function space, we apply the inverse transforma-

tion, v(x, t) = − log z(x, t). Applying this transformation, we see that superposi-

tion automatically gives a solution to the HJB equation with the terminal condition,

g(x) = − log
(
w1h1(x)+· · ·+wnhn(x)

)
. Later, we will describe how to determine the

weights wi by projecting a desired terminal cost function onto the example terminal

cost functions.
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6.2.2 Time-Varying Coefficients

To derive the coefficients of the linear Bellman combination of Equation 6.1, note that

the optimal policy for control problems with control-affine dynamics and loss functions

that are quadratic in control actions is −B(x)>∇v(x, t) [19]. This policy descends

the value function in the steepest direction allowed by the current configuration of

the system. Using this policy, we see that Equation 6.5 leads to

π(x, t) = B(x)>∇ log

(
n∑

i=1

wizi(x, t)

)
.

Taking the derivative of the log and applying the chain rule leads to:

π(x, t) =
1

z(x, t)

n∑

i=1

wizi(x, t)πi(x, t), (6.6)

6.2.3 Summary

In summary, given a set of control policies, linear Bellman combination creates a new

policy that optimizes a new terminal reward function which is a weighted combination

of example terminal reward functions. The combined policy weights each component

policy by how inexpensive it is as indicated by its reward function zi and by its

relevance to the goal indicated by the weight wi.

The optimality of policies described by Equation 6.6 depends on several factors.

First, the form of the linear PDE in Equation 6.2 must be shared by each solution

in order for superposition to hold. Changing the dynamics of the system changes the

PDE as does changing the loss function. In addition, the component policies must also

be optimal for the combination to be optimal. In practice, it is difficult to compute

optimal policies for high-dimensional systems. However, our experiments show that

linear Bellman combination is more effective than naive blending approaches even

when the component policies are known to be suboptimal.

The presented formulation was derived assuming continuous system dynamics.

In many simulation engines, character dynamics can be discontinuous as a result of
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contact with the environment. In experiments involving contact, we used penalty

based contact forces to make our dynamics as smooth as possible. The disadvantage

of this is that contact constraints cannot be enforced exactly. Incorporating discrete

jumps in character state into the linear Bellman formulation in order to allow for

exact constraint enforcement requires further study.

6.3 Coordination and Interpolation

Given a set of optimal controllers and their associated value functions, linear Bellman

combination is optimal for a task with the following terminal cost function:

g(x) = − log

(
n∑

i=1

wihi(x)

)
.

This allows us to create controllers which interpolate the terminal cost functions of

the component controllers. It also allows us to create goal functions with multiple ac-

ceptable outcomes (multiple minima). The fixed blend weights w determine whether

the combined controller is interpolating terminal cost functions or coordinating be-

tween multiple policies. These weights can either be set automatically given a new

terminal cost function or manually. This section describes these weight settings and

the behavior of the resulting control policy.

6.3.1 Control Interpolation for New Tasks

One application of linear Bellman combination is interpolating existing controllers.

For example, this can be used to combine a controller for a long step with a controller

for a short step to generate steps of intermediate length. Given a desired terminal

cost function ḡ, we can automatically find the weights wi such that g approximates ḡ

as well as possible. Working in reward space, this can be accomplished by projecting

the function h̄ = exp (−g) onto the potentially non-orthonormal basis functions, hi

(see Figure 6-3). Non-orthonormal projections are carried out by solving a linear

system Aw = b where Ai,j = gi · gj and bi = gi · ḡ. For low-dimensional systems,
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=

0 1

+w1 w2

state

reward

0 1 state

reward

Figure 6-4: Unintuitive Projection. Depending on how example terminal cost
functions are sampled, weighted combinations may produce unintuitive new terminal
cost functions. For example, if the examples are too far apart, a weighted combina-
tion will produce a terminal reward function with two acceptable outcomes. Here a
terminal cost function centered on zero and another centered on one are scaled such
that weighted combinations produce local minima in the reconstructed terminal cost
function.

the functions can be sampled at points in state space. For higher-dimensional sys-

tems, we restrict terminal cost functions to be quadratics (which are Gaussians after

exponential transformation) and compute their inner product analytically.

The terminal cost functions of the component policies may form a poor basis for

representing the desired terminal cost function, ḡ as depicted in Figure 6-4. A good

indicator is if the weights computed from projection are negative and do not come

close to summing to one. The quadratic cost functions should share the same scale

factor which is inversely proportional to the square of the distance between each

minimum point. Otherwise, it may not be possible to smoothly interpolate points

in state space as potential targets for the combined controller. Note that this scale

factor also has an effect on the stiffness of the resulting control policy, as steeper cost

functions lead to larger control actions. This can be mitigated by scaling control costs

in the objective function.
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6.3.2 Coordinating Multiple Controllers

Linear Bellman combination can also coordinate the operation of multiple controllers.

Coordination is useful for two types of tasks as depicted in Figure 6-5. The first is

a task where there is a set of acceptable outcomes. For example, in a subway car,

you can balance by holding onto the wall of the car either in front of you or behind

you. Coordination is also useful for tasks where controllers share a single desired

outcome but are optimized for different parts of state space. As an example, consider

continuing a walk after taking a longer or shorter step. In this case, the value function

for each component controller would be the same if the component controllers were

actually optimal, but this might not be the case due to approximations that are valid

in some localized neighborhood of state space. Coordination will smoothly choose

the controller with the best chance for success.

Coordination between component controllers is achieved by equally emphasizing

the goal of each controller wi = 1. If the assumptions for optimality are satisfied as

described above, then the resulting controller π is optimal for an objective function

with a terminal cost:

g(x) = − log

(
n∑

i=1

exp
(
− gi(x)

)
)
.

First, we consider the case where all the terminal cost functions are equal, i.e. gi = g

for all i. For high-dimensional systems, it is typically only possible to represent

policies that cover a portion of state space. For example, we may have feedback

controllers optimized to accomplish the swing up task from different initial conditions

of a simple gymnast character. Combination can be used to arbitrate between each

of these policies.

Next, consider the case where the gi’s are quadratics with minimums at different

spots in state space:

gi(x) = (x − x̄i)>Q(x − x̄i).

Then, the combined terminal cost g has at most nminimum points. This means that
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multiple acceptable 
goals

one goal

state

Figure 6-5: Coordinating Multiple Controllers. Linear Bellman controllers can
track multiple trajectories at once, smoothly choosing whichever is appropriate at the
given state and time. For example, we may have multiple controllers that start a step
in different configurations but end in the same state. Or we may have controllers that
start in the same state but end up in an acceptable outcome.

the combined policy will try to reach the goal of one of the policies depending on which

ever is the most convenient given the current state of the character. As a concrete

example, consider the case where a character is pushed forward or backwards and

must grab onto something to maintain balance. In this case, the character should

activate a controller that reaches forwards or backwards based on the push. The

results section describes such an example.
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6.4 Approximating the Value Function

Linear Bellman combination requires policies πi and their associated value functions

vi. In practice, we often start with policies without value functions. To get a value

function, we first specify an objective function as in Equation 2.4. Once the objective

is identified, we can represent the value function for each controller in a manner that

allows for the interpolation necessary in Equation 6.6. The details of the representa-

tion depend on the dimensionality of the system being animated.

6.4.1 Defining the Objective

Each component controller is assumed to be optimal with respect to an objective

function of the form of Equation 2.4. Specifying an objective of this form requires

making several choices if the objective function is not known. There is the scale of

the control cost relative to the other terms, the form of the state penalty q and the

form of each terminal cost function gi.

The control penalty determines the stiffness of the policy. Decreasing the control

penalty results in more control effort (i.e. stiffer feedback control) but gets the char-

acter closer to the terminal condition. Overly stiff control has an adverse effect on

simulation stability and can lead to undesirable reactions to disturbances. However,

placing a large cost on control effort will compromise the accuracy of the controller

at achieving the final goal state.

The position penalty q(x) is not used for some tasks, i.e. it is simply set to zero.

For other tasks, excluding the position cost leads to undesirable feedback strategies

that stray far from the example motion. Since the position cost must be consistent for

each controller, we set q to be a quadratic penalty centered on some average trajectory

or pose. This approach is similar to many other position penalties used in trajectory

optimization approaches to character animation [63, 68, 74].

The terminal cost term is free to vary for each controller. We use quadratic

functions of the form

gi(x) = (x − x̄i)>Q(x − x̄i),
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where x̄i is the state of the system at the end of the ith controller’s execution. As

described in the previous section, restricting terminal cost functions in this way is

important for determining what the composite controller is trying to accomplish and

allows us to take inner products analytically. The scale of the terminal cost function

Q affects the accuracy of the control and determines how closely examples must be

sampled in order to allow for smooth interpolation.

While we specify the objective function manually, there exist algorithms for au-

tomatically determining objective functions given example trajectories [53, 1]. A

generalization of this process to multiple trajectories would be a nice complement to

other applications of linear Bellman combination.

6.4.2 Sampling the Value Function

Once an objective function is defined for each controller, the construction of each vi

depends on the dimensionality of the problem. There are two cases: low-dimensional

systems of dimension less than five, and high-dimensional systems with tens of state

variables. We discuss each case in turn.

Low-Dimensional Systems. For low-dimensional systems, we discretize the prob-

lem by constructing a regular grid over the area of interest in state space. Then,

dynamic programming [19] solves for the optimal policy and value function at each

point in this grid. At run-time, the value function is evaluated in the grid using

barycentric interpolation of the values at grid points[75]. Low-dimensional optimal

control has been used in character animation [54, 83].

High-Dimensional Systems. For high-dimensional systems, memory costs pre-

vent us from building a grid in state space due to exponential growth of storage

requirements. Instead, we generate an example trajectory using an execution of the

controller from an initial condition. We then optimize this trajectory using an adjoint

method [56] or differential dynamic programming (DDP) [41]. The output of the op-

timization is a state and control trajectory x̄t and ūt that define a value function
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along the trajectory:

vi(x̄i, t) = gi(x̄i, T ) +

∫ T

t

q(x̄i, s) +
1

2
ūi(s)

>ūi(s) ds.

These samples may not equal the globally optimal value function in general if the

control actions are suboptimal.

Given the set of value function samples along the optimized trajectory, we linearize

the dynamics about that trajectory and use differential dynamic programming (DDP)

[41] to compute a quadratic approximation for each trajectory:

v̂i(x, t) = vi(x̄i, t) + pi(t)
>∆x +

1

2
∆x>Pi(t)∆x (6.7)

where the vector pi(t) and matrix Pi(t) are computed by solving standard Ricatti

equations [41], and ∆x = x − x̄i. This local approximation is valid within some

neighborhood of the optimized trajectory. This is an efficient representation as there

are large regions of the state space which do not represent realistic states for the char-

acter. We considered other interpolation schemes such as radial basis functions but

the advantage of this approach is that it avoids setting or determining interpolation

parameters.

The approximation in Equation 6.7 is used with the linear quadratic regulator Ki

[41] to compute the combined controller as

π(x, t) =
n∑

i=1

αi(x, t)(ūi(t) +Ki(t)∆x),

where

αi(x, t) =
wi exp

(
− v̂i(x, t)

)
∑n

j=1wj exp
(
− v̂j(x, t)

) .

The exponential remapping used to compute α maps large costs to small rewards

which can lead to precision errors with the normalization step. Also, other local

approximations to the policy can be used instead of a control tape. For example, the

optimization that generates the value function samples may optimize the parameters

110



of a feedback policy rather than a feedforward control tape. These policies can be

blended using Equation 6.6.

6.5 Results

There are two applications our control formulation supports: controller interpolation

and coordination. In this section, we evaluate the performance of both applications in

several different simulation scenarios. We also provide empirical evidence that more

naive combination schemes can lead to undesirable animation outcomes.

6.5.1 A Low Dimensional Example

To provide intuition for how linear Bellman combination operates, we first demon-

strate it on a low-dimensional, non-linear toy system. The dynamics of the system

are described by

ẋ = sin(4πx) + u.

One can think of this system as describing a particle with no momentum on a rolling

landscape. The non-linear system is first-order, so the controls, u, can directly set

the velocity of the system, ẋ.

The task in this case is to minimize the amount of control used and to arrive at a

certain location at the end of the simulation. In other words, we want to find policies

of the form

π = arg min
π

1

2
||xT − x̄T ||2 +

∫ T

0

1

2
||ut||2 dt.

Since the system is one-dimensional, we can represent the value function directly

using a grid over a region of state space and find the optimal policy using dynamic

programming. Two solutions are shown in Figure 6-6. The first policy, π1, drives

the particle towards x̄T = 1.35. The second policy, π2, drives the particle towards

x̄T = 0.35. Finding these policies takes about half a minute in Matlab.

Once we have solved for optimal policies we can then use them to drive the par-

ticle to points in the interval [0.35, 1.35]. Given a new desired state in this interval,
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we project a Gaussian centered on that state onto the Gaussians associated with the

terminal cost functions for each example policy. This yields a new terminal cost func-

tion which, after exponential remapping, is a weighted combination of the example

terminal cost functions, as shown in Figure 6-6.

The combined policy as computed by Equation 6.6 is approximately optimal for

the new terminal cost function. Without having to solve a new optimization problem,

we have combined our existing controllers to create a new policy that outperforms

any other policy when measured according to the objective function. For the terminal

cost function shown in Figure 6-6, x̄ = 1.2, a simple policy which linearly blends the

two example policies drives the particle to xsimple,T = 0.82 and has a total cost of

70,076 when the particle starts at the origin. The combined policy drives the particle

from the origin to xc,T = 1.23 and has a final cost of 63,574. Note that the optimal

policy sacrifices a little accuracy in the final position of the particle to save on exerted

control effort. The advantage of optimality can vary depending on the desired end

goal. The costs for various desired states are given in Figure 6-7.

6.5.2 Control Interpolation for New Tasks

Linear Bellman combination can be used to interpolate control tasks. Here we demon-

strate this application using several animation tasks: diving, stepping, and jumping.

We also highlight some important factors that go into the construction of an effective

combined policy.

Diving. Optimizing any diving motion using trajectory optimization can be a time-

consuming task. We can use blending to produce multiple diving examples from just

two optimized solutions. In this case, one solution does a reverse dive that under

rotates ending up short of the desired vertical position while the other dive over

rotates and goes past vertical. Blending the resulting feedback policies creates dives

that under rotate more or less or hit vertical.

In Figure 6-8, we compare linear Bellman combination for interpolation with a

naive approach that averages the output of the each component controller using fixed
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weights. This approach fails to produce a vertical dive. The simple approach can

be made to work by tuning a set of time-varying blend weights. Linear Bellman

combination produces blend weights automatically given the desired terminal cost

function.

An important aspect of linear Bellman combination is that it uses less control than

standard proportional derivative control. For graphics, this is important not only for

simulation stability, but also for aesthetics. An overly stiff controller does not react

to disturbances. As an example, we added random forces to the diver. Using linear

Bellman combination, one can see the effects of this added force and watch how the

control compensates for it. With a standard proportional-derivative dive controller,

the effects of the applied disturbances are not immediately visible, although the final

outcome is altered. With PD control, disturbances are invisible even when the applied

forces are scaled by a factor of four.

Stepping. It is important while walking to be able to avoid stepping on obstacles

[24]. Linear Bellman combination can create a stepping controller which can take

steps of various lengths. For this application, two example steps, a short step and

a long step, are combined to interpolate the step lengths. A complete walk can be

constructed by sequencing step controllers together.

Jumping. The height of a jump is determined by the speed of the character at the

moment of takeoff. Once in the air, the character cannot adjust its momentum to fly

higher or further. As such, we use linear Bellman combination to interpolate takeoff

controllers to jump over obstacles in the scene or to grab onto objects at different

heights. Linear Bellman combination interpolates desired takeoff conditions more

accurately than a naive approach. To test this, we created a tracking controller that

lands a jump for a given initial condition. We then used this initial condition as the

target for the linear Bellman combination. The resulting jump lands successfully. A

weighted average controller using the same weights fails to land as it falls outside of

the region of competence for the tracking controller.
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Objective Function. In each of these cases, we found it important to include a

term in the integrated cost of the objective which penalized deviations from some

form of average trajectory. In other words, each example minimizes an objective of

the form

(x(T )− x̄i(T ))>QT (x(T )− x̄i(T ))

+

∫ T

0

(x(t)− x̄(t))>Q(x(t)− x̄(t)) +
1

2
u(t)>Ru(t) dt.

If the integrated cost term is not included in the objective, the resulting controller

will make significant departures from the example trajectories to try and meet the

terminal goal. It may also employ feedback strategies that result in undesirable

motions.

6.5.3 Coordinating Multiple Controllers

Some recent work has used linear quadratic regulators (LQR) to track a single example

trajectory [27, 15]. However, these tracking controllers are often valid only near the

example trajectory. If a perturbation takes the character outside of this neighborhood,

the tracking controller will fail to recover. Our solution to this problem is to combine

many tracking controllers that cover different parts of the state space.

Simple Gymnast Example. We first demonstrate this idea using a high bar gym-

nastics task. In this case, the gymnast has two links and can only exert torques at

the hip (this model is known as the acrobot model in robotics). Its state space con-

sists of two joint angles and two joint velocities. The goal is to build a controller

that brings the gymnast to a hand-stand position on the high bar while minimizing

exerted torque. We build such a controller by combining multiple tracking controllers

using Equation 6.6 with fixed weight one to create a combined policy π. The track-

ing controllers track example trajectories which solve the swing up task for different

initial conditions. These solutions are synthesized using an adjoint method solving
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an objective of the form

g(x) +

∫ T

0

1

2
u(t)>u(t) dt,

resulting in two feedforward trajectories u1 and u2 which solve the swing up task

from two different initial conditions.

Figure 6-9 compares several approaches to solving the swing up task for an

initial condition which does not have an associated pre-computed policy, x(0) =

(−105,−15, 0, 0) where the angles are in degrees. The first attempt uses only a single

tracking controller which tracks a solution initialized at x(0) = (−90, 0, 0, 0). The

second attempt also uses a single tracking controller but this one is initialized at

x(0) = (−110,−20, 0, 0). The third approach simply sums the results of the two

tracking controllers. None of these approaches come as close to the ideal handstand

as a controller created using linear Bellman combination of the two tracking poli-

cies. The hand-stand position is an unstable equilibrium point of the character. It

is important to come as close as possible so that a stabilizing controller can easily

maintain that position.

Diving. We use a diving example to illustrate that combining multiple controllers

can outperform using a single tracking controller. We construct a controller using

linear Bellman combination of three components which enter the water vertically for

three different initial angular velocities: 0.85, 1, and 1.15, radians per second. A

tracking controller is constructed from the dive that starts with an initial angular

velocity of 1 radian per second. We sampled a number of different initial angular

velocities for the diver. The combined controller does a better job recovering to a

vertical pose on entry than a single tracking controller, see Figure 6-10.

Push Recovery. The idea of coordination can also be used to build simple push

recovery controllers. We created a controller which chooses to reach forwards or

backwards to prevent a fall based on an initial push. In Figure 6-11, we plot the

blend weight of a coordinating controller indicating which controller has the most

influence at each point in time. In the simulation depicted, the arm is tugged back
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and forth causing changes in the blend weight.

Stepping. Coordination was also used to combine two SIMBICON [94] walkers.

One walker was tuned to walk on flat ground, while the other was tuned to walk on

an incline. When placed on an incline of ten degrees, the flat ground walker does

not fall, but fails to advance up the hill. We constructed a combined controller that

walks on flat and hilly terrain. As the combined walker encounters a hill, the blend

weights shift to weight the hill component more heavily.

6.5.4 Implementation Details

Simulation. The examples involving linked rigid bodies were simulated using our

own minimal coordinates simulation engine. For the examples involving contacts, we

used a penalty-based method with parameters as described in Yin et al’s SIMBICON

simulation [94].

Physical Models. The two-link gymnast is a point-mass model with unit masses

and unit length limbs. The diver is a seven link, planar character with physical

parameters as described by Sok et al [71]. A version of the diver with both sets of

extremities was used for the broad jump examples that land. The step example uses

the same 2D model as SIMBICON [94]. The vertical leap examples use the the same

3D model as described in Limit Cycle Control [48].

Optimization. Linked rigid body examples were optimized using one of two meth-

ods. One method was a conjugate gradient descent algorithm where the derivative of

the objective function with respect to the control parameters is calculated using the

adjoint method. The other method was differential dynamic programming. We found

that differential dynamic programming consistently converged in fewer iterations but

sometimes settled in a different local minimum than the adjoint method. The op-

timizations often needed a decent initial guess to converge to good solutions. The

diving and jumping examples were initialized using PD controllers similar to those
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described by Wooten et al [89]

It is important to note that, as opposed to low-dimensional systems, high-dimensional

systems require local optimization methods that avoid the curse of dimensionality by

finding the solution for a single initial condition. However, it is not guaranteed that

the resulting policy is optimal. This violates the assumptions required for optimality

as described in §6.2, so in practice, all high dimensional examples are using sub-

optimal policies.

6.6 Discussion

This chapter introduces linear Bellman combination as a method for joining control

policies to derive new control strategies. Combination can interpolate two policies to

obtain a strategy that accomplishes a different goal. Or, it can coordinate two policies

to obtain a strategy that combines different functionalities. For example, coordination

can combine policies designed for two different preconditions (or outcomes) to derive

a composite strategy valid for either precondition (or outcome).

The combined strategies are modular because they only blend the control forces

of constituent policies. The individual building blocks could therefore be arbitrary

control schemes. Furthermore, the combination amortizes the cost and the difficulty of

generating individual control policies. Policies can be painstakingly crafted once and

then repurposed many more times in various combinations. With some assumptions,

the combination can even combine optimal policies to compute another optimal policy

for a different terminal cost.

When many related optimal control problems must be solved, there is an advan-

tage to using linear Bellman combination over direct non-linear optimization. Even

on simple problems, direct optimization can be too costly to compute controllers

in real-time applications. Linear Bellman combination computes a new controller

essentially instantly. However, linear Bellman combination is not intended as a re-

placement for direct non-linear optimization in offline applications. An alternative

for real-time applications is model predictive control. Model predictive control may
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be preferable to combination when feasible as in autonomous control of aircraft [57]

or character models over short time horizons [76, 25].

One difficulty in applying linear Bellman combination to high-dimensional char-

acters is that value functions are required to add controllers together. Obtaining a

value function for a low- dimensional system can be done using standard techniques

and one can be certain that linear Bellman combination will yield near-optimal con-

trollers. Getting value functions for high-dimensional systems is not straightforward

for a couple of reasons. First, you may not know what objective function a controller

is trying to optimize a priori. Second, there is no standard method for representing

high-dimensional value functions. Currently, we use a local approximation of the

value function around example trajectories from the controller and a manually speci-

fied objective function to construct an approximate value function. This approach has

the advantage that it is correct for optimal controllers of linear dynamical systems.

Unfortunately, the systems we wish to control are non-linear. An interesting area

of future work would be to automatically infer value-function approximations given

observations of previously successful trajectories. This would allow us to learn con-

trol strategies from observations of human performances recorded by motion capture.

Another useful addition to this work would be a mathematical tool for quantifying

the error due to the local approximation of the value function.

A major limitation of linear Bellman combination, as presented here, is that the

component controllers must share the same duration. We would like to devise a

strategy for indexing component controllers using non-time based indices in order

to blend policies of different duration. One could use any monotonic feature of the

motion to reindex time such as the angle between the ankle and hip in a walk. In

addition, it should be possible to extend combination to first-exit policies where the

policy terminates when a certain state region is first reached.

In this chapter, combination was computed assuming a shared integrated cost

between all component controllers. This assumption is easily lifted, however. If the

position cost q(x) is expressed in a finite linear basis q(x) =
∑k

i=1 cibi(x), then

solutions for each basis function bi(x) can be pre-computed and combined as they
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are when terminal cost functions are expressed in a finite linear basis. An interesting

area of future work is to exploit this added flexibility to combine controllers that are

optimized for specific tasks rather than combining controllers for generic tasks as we

have done here.

Linear Bellman combination complements the trajectory based trackers described

earlier. While the trajectory trackers allow one to adapt motion capture trajectories

to new regions of state space, they will eventually fail far from the reference motion.

Combination can smoothly switch between trajectory tracking controllers to cover

larger regions of state space. In addition, we can use interpolation to track to new

terminal states that were not in any reference motion.
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Figure 6-6: Toy example- sine particle. Shown on the top half of the figure
are the time-varying optimal value functions for two control problems involving a
one-dimensional particle with non-linear dynamics. The optimal policies descend the
gradient of the value function to drive the particle to the indicated target. The plots
on the bottom half are the exponentially remapped terminal cost functions. In blue
is h1(x) = z1(x, T ) = exp

(
− v1(x, T )

)
, the remapped terminal cost function for a

control problem where we want the particle to land at x̄T = 0.35 at the final time.
This corresponds to the top row of the top value function image. In green is the
remapped terminal cost function for a control problem where we want the particle to
end up at x̄T = 1.35. This corresponds to the top row of the second value function
image. In red is hc(x) = w1h1(x) + w2h2(x), the combined terminal cost function.
The combined policy as described in Equation 6.6 solves this control problem without
having to solve an expensive dynamic programming problem.
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Figure 6-7: Total cost comparison. Shown are the total cost of policies that
drive a 1D particle with sinusoidal dynamics to the desired state, x̄. Linear Bellman
combination always give a lower cost although the size of the advantage depends on
the desired state.
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Naive Blend Linear BellmanTarget

Figure 6-8: Naive Blend vs Linear Bellman. Shown are the final frames of two
dive simulations. The simulation on the right used linear Bellman combination to
compute time-varying weights to combine a dive controller that under rotates and
a dive controller that over rotates. The fixed blend weights wi needed to produce a
vertical diver were automatically computed by projecting a goal function centered on
the vertical pose onto the goal functions of each component controller. Using these
fixed blend weights in a naive weighted average fails to produce a vertical dive.
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Figure 6-9: Tracking Multiple Swing Up Trajectories. Here we compare the
final position of the simple gymnast under four policies. Tracker 1 and 2 are LQR
policies used to track optimized trajectories for the swing up task starting from the
indicated locations. Simulations starting from the test location using these trackers
fail to come near the upright position. A simple linear blend fairs better but is not
as close as a controller created using linear Bellman combination. The results of all
these trackers can be improved by placing examples closer to the test configuration.
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Figure 6-10: Diving Coordination. Shown are the final poses of a diver starting
from eight different initial angular velocities. The poses on the left were controlled us-
ing linear Bellman combination of three dive controllers. The poses on the right were
simulated using a single tracking controller. The single tracking controller does not
reach a vertical configuration for some initial conditions and has an inferior objective
score in each case.
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Figure 6-11: Balance Coordination. Shown is the time varying blend parameter
of a coordinating controller created using linear Bellman combination of a controller
which catches itself falling forwards and another falling backwards. In this simulation,
the arm of the character was tugged forwards and backwards causing the combined
controller to vacillate before settling on the backwards strategy.
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Chapter 7

Conclusions and Open Problems

This work has presented methods for controlling characters in physical simulations.

These control methods allow even a novice animator to easily produce realistic charac-

ter behaviors that would be difficult for expert animators to create. More importantly,

even the most expert animator cannot possibly account for every possible scenario

a character will encounter in an interactive simulation. The control methods in this

work can adapt the animator’s input to new scenarios, reducing the burden on the

animator while producing more convincing results.

The key to controlling characters in interactive simulations is making effective

use of pre-computation. While moving around the world may seem natural, con-

trolling non-linear, high-dimensional, and under-actuated characters is challenging.

This challenge is even harder in animation because the animator wants to dictate the

style of the character’s movement. Optimal control has been shown to be an effective

tool for producing stylized animations in offline applications. In this work, we have

shown how optimal control methods can be applied to online control problems by

using pre-computation.

The Hamilton-Jacobi-Bellman equation, the starting point for each of the methods

in this work, provides a systematic method for computing optimal controllers, but is

typically intractable to solve directly. Depending on the assumptions we make, we

can derive tractable optimal control formulations suitable for pre-computation. For

example, by assuming we are close enough to a nominal trajectory, we can use a linear
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approximation to the character’s dynamics. This, coupled with quadratic tracking

penalties, allows us to pre-compute tracking policies. We also saw that a slightly more

general set of assumptions leads to a linear Bellman equation. This let us compute

optimal control solutions efficiently using linear PDE solvers. Furthermore, linearity

allows you to combine pre-computed solutions together at nearly no cost.

7.1 Optimality

While solving the HJB equation can give you optimal controllers, in practice many

challenges conspire to limit your ability to guarantee optimality. The main challenge

is the high-dimensionality of characters, but there are other challenges as well. For

example, character dynamics are sensitive to changes in contact configuration. To deal

with this, we described how to use quadratic programming to adapt LQR policies to

the current contact configuration. While we observed this approach to be much more

robust that applying LQR forces directly, it’s hard to analyze the robustness of this

non-linear control scheme.

The main road-block to using the HJB equation to derive controllers for character

behaviors is the curse of dimensionality. Our approach has been to approximate the

value function locally along example trajectories. It can be very difficult to get optimal

example trajectories or even good example trajectories. Another drawback to using

local approximations is that we do not, as of yet, have a good measure of how good

those approximations are away from the trajectory. There are discretization errors

for low-dimensional problems as well, but at least there is a well-defined relationship

between grid resolution and solution accuracy. For example, when solving the linear

Bellman equation on a grid, we can predict the order of the errors in the solution

given the particular integration scheme we are using. There is no equivalent tool

for trajectory based representations of the value function. Such a tool would be

immensely useful as it would tell us where new samples of the value function are

needed.
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7.2 Tracking Motion Capture

Tracking a recorded motion trajectory is a good strategy for getting realistic looking

motions. However, a single motion does not tell you much about why a particular

motion looks the way it does. This makes it hard to deviate significantly from that

motion. Even using combination, you must capture many motions to handle a large

number of tasks very accurately. A better approach would be to look at one or

more motion trajectories and learn some physical principles that lead to this type of

motion. Such an approach could potentially generalize better than a tracking based

approach and has been proven to work well for offline animation [53]. Furthermore,

while analyzing data from a tracking simulation could be useful, ultimately a more

fundamental approach is needed to explain why animals move the way they do.

7.3 Beyond Animation

The focus of this dissertation has been to apply control to animating characters

in interactive simulations. Ultimately, it is unclear whether animators, noted control

freaks, will be comfortable with the possibility of the character getting into an infinite

number of states. However, there are a number of other potential applications for

this work. In particular, the methods described could be adapted to controlling real

robots. One difficulty will be the discrepancy between the controller’s model of physics

and the actual physics governing the motion of the robot. In particular, it would

be interesting to combine the methods described here with a systems identification

approach. Beyond robotics, our tools can be used in biomechanics to generate data

for analysis but also to test different hypotheses of motion.

7.4 Closing Remarks

Physically-based animation already allows artists to create movies that would oth-

erwise be impossible to animate using manual tools. Coupling control with physical

simulation will extend this benefit to characters in movies and games, help us design
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real-world autonomous characters, and answer questions about how real creatures

move. This dissertation has argued that an effective way to use control is to start

from an idealized optimal control perspective. At first glance, such an approach may

seem intractable. However, by applying domain appropriate assumptions, we can

often arrive at a tractable and practical solution.
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[25] M. da Silva, Y. Abe, and J. Popović. Simulation of human motion data using
short-horizon model-predictive control. Computer Graphics Forum, 27(2), 2008.
In press.

[26] Marco da Silva. Interactive simulation of stylized human locomotion.
http://hdl.handle.net/1721.1/42003, 2008.

[27] Marco da Silva, Yeuhi Abe, and Jovan Popović. Interactive simulation of stylized
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