
A New View

of Intellectual

Property and

Software

COMMUNICATIONS OF THE ACM March 1996/Vol. 39, No. 3 21

ach time there appears to be a lull in the
controversy about legal protection for soft-
ware, we are quickly jolted by the battle
being joined anew. The difficulties won’t
soon disappear, we believe, because there
is a deep-seated problem here: existing
intellectual property laws are fundamen-

tally ill-suited to software. The problems are rooted in the core
assumptions in the law and their mismatch with what we take to be
important about software.

We believe a durable solution requires a new approach to the prob-
lem. We suggest one such approach that is founded on the notion of
market preservation, that is, constructing just enough machinery to head
off the ways in which marketplaces fail. We outline here how to do this
using a law focused on short-term protection against clones and that
solves the market failure problem without interfering unduly with the
ability to reuse incremental innovation. A more extensive discussion of
our ideas is found in [3]. This overview focuses on the technical issues
of particular interest to this audience.

Preliminaries

Two brief points will help establish context. First, in talking about the
software marketplace, we are focusing primarily on mass market soft-
ware, which basically means personal computing software (though we
believe much of what we offer carries over to other software markets).
Where product volume is small enough (e.g., mainframe software) to
permit it, individual sales contracts can be negotiated to meet the indi-
vidual needs of buyer and seller. When products are sold in the tens of
thousands to millions of units, only standard, agreed-on rules are feasi-
ble, rules of the sort provided by intellectual property law.

Second, some of what we say will seem obvious to a technical audi-
ence and perhaps even seem anticlimactic. This happens because our
effort over the past few years has been in part one of debugging,
uncovering the unarticulated assumptions and unspoken misconcep-
tions in both the legal and technical communities that lay at the source
of the problem. As in many debugging efforts, understanding the
source of the difficulty was the hard part; the steps needed for repair
may by comparison be relatively simple. Nevertheless, we argue with
some vigor that while the changes may be small, they are necessary; the
existing system cannot work in the long term.

E

Report

Randall Davis

Pamela Samuelson

Mitchell Kapor

Jerome Reichman

Report

What’s Wrong?

There is considerable and fundamental controversy over intellectual
property laws for software. In this area (and in a variety of other high-
technology areas) the stakes are significant and the controversies are
basic: What aspects of a program are copyrightable? How much more
than the literal work is covered? What elements of software can be cov-
ered by a patent? Cases routinely arise in applications of intellectual
property law to traditional subject matter such as novels, movies, and
so forth, but there the issue is typically one of fine tuning the rules at
the margins, not making the sort of fundamental decisions that rou-
tinely arise in software cases.

Our industry lacks an agreed-on set of rules for competition. What
are, or ought to be, the rules of fair following?

The rules are not only unclear, they keep changing. In copyright,
for example, the past decade has seen a sequence of cases that have
made major differences in the interpretation of the law.1

Supporters of the existing legal system suggest the solution is simply
to wait (translation: the uncertainty is a transient that will soon damp
out). They point out, correctly, that software law is relatively young and
that the U.S. legal system has successfully been adapting to technologi-
cal innovation for more than 200 years (photographs, motion pictures,
audio and video recorders). This argument is credible and needs to be
taken seriously. However, we believe it is incorrect.

e suggest the problem is more
fundamental: existing legal
concepts frame the issues badly
when it comes to software, and
additional experience will only
produce more thrashing.

As one example of the con-
ceptual difficulty, consider
that, according to the copy-
right law, software is a “liter-
ary work,” but not a “useful

object.” While this may regrettably be true for some programs, we sug-
gest it is not, in general, a good description of software. The legal
notion of “useful object” is important and instructive: copyright is
inherently about the expressive (read artistic) elements in a work, it
does not cover the utilitarian elements, that being the domain of
patents. To the copyright scholar, a crucial characteristic of software is
its creation in the medium of text; the fact that that text happens to do
something useful is irrelevant, because useful behavior is explicitly out-
side the scope of copyright law. This is so in part because the Constitu-
tion set the tone of dividing the world into “Science and the useful
Arts” believing there are “authors and inventors” each of whom shall
have “the exclusive Right to their respective Writings and Discoveries”
(article I, Section 8, italics added). Almost exactly 100 years later, a
Supreme Court case (Baker vs. Selden, 1879) made it explicit that copy-
right and patents were considered as covering mutually exclusive
domains, and indicated that copyright can’t cover technology, as that
was the intent of patents.

We have attempted to capture some of this conceptual confusion with

22 March 1996/Vol. 39, No. 3 COMMUNICATIONS OF THE ACM

Our industry

lacks an agreed-

on set of rules for

competition. What

are, or ought to

be, the rules of

fair following?

1For example: Whelan vs. Jaslow (1986); Lotus vs. Paperback (1990); Computer Associates vs. Altai (1992);
Apple vs. Microsoft (1992); Lotus vs. Borland (1990); the 1995 appeals court decision in Lotus vs. Borland,
and now the Supreme Court’s decision on that case.

W

a pseudo-paradox, pointing out that software is a machine whose
medium of construction happens to be text. This captures the insepara-
bly dual nature of software: it is inherently both functional and literary,
both utilitarian and creative. This seems a paradox only in the context of
a conceptual framework (U.S. law) that cannot conceive of such objects.

What’s Important About Software?

To make clear the extent of the mismatch between the legal and tech-
nical views, we need to consider both the nature of software and char-
acter of the existing intellectual property system. Our observations
about software are straightforward; the interesting thing is their conse-
quences. Given their familiarity to this audience, we offer these obser-
vations briefly:

• Programs behave. They are written to do something.
• Program behavior and source code text are only loosely connected. For exam-

ple, subroutines in the text of a program can be arbitrarily re-
ordered, without having any effect on the behavior of the program.
As another example, two programs with different texts can produce
identical (external) behavior.

• Program behavior is valuable. Behavior must be valuable, otherwise why
else would you pay for software in the retail market? In that situation
there is, by explicit arrangement, nothing else in the package: you
don’t get the source code and the standard shrink-wrap license pro-
hibits all sensible ways (disassembly or decompilation) of examining
the object code. All you can do is run it; behavior is all you get.

• Program behavior can be utilitarian or expressive. Much of the behav-
ior of entertainment (game) software, for example, is expressive.
Such expressive behavior is appropriately covered by existing
copyright law; we focus here on the problematic part: utilitarian
behavior of software.

• Program behavior can be very complex; programs use conceptual metaphors
to organize that behavior. A spreadsheet program, for instance, con-
tains a great many behaviors; even the earliest versions had more
than 100 different things they could do. But when using the pro-
gram we don’t think about a collection of 100 distinct behaviors,
the very notion of a spreadsheet organizes and gives coherence to
that collection. The situation is similar for word processors (the
metaphor of editing text) and the metaphor of the desktop in
operating systems.

• Program metaphors are valuable. As one obvious example, the spread-
sheet metaphor so completely transformed the experience of using a
computer that it is widely acknowledged as the first “killer app,” one
that virtually created the personal computing market.

• Programs are machines in many senses. Like machines, they are valued in
a large part for their behavior. They could just as well be machines,
given the equivalence of hardware and software.

• Program behavior arises in part from the industrial design of its internals.
For instance, programs work because their inner workings are, like
machinery, carefully created, designed, and crafted. The design is
possible because of the skilled know-how of the programmer; that
skilled know-how is an important part of the value in a program.

• Progress in software is typically innovative, not inventive. The character
and pattern of technical advance is not uniform across fields [2].
Some fields are characterized by discrete inventions, such as phar-
maceuticals, where the discovery and use of one drug generally pro-
ceeds independent of others. Other fields, such as aviation and
automobiles, involve complex systems of interacting components,

COMMUNICATIONS OF THE ACM March 1996/Vol. 39, No. 3 23

According to the

copyright law,

software is a

“literary work,”

but not a

“useful object.”

Report

and are as a result characterized by cumulative advances in which
new developments build on features of the existing technology. Soft-
ware involves complex systems and is fundamentally cumulative.
Advances in software are, moreover, more often innovative.
Improvements are incremental rather than inventive in the patent
sense of nonobvious. Few of the daily, valuable improvements in
programs pass the relatively high threshold of inventiveness
demanded of patents.

• Programs often bear much of their know-how on and near their face, espe-
cially as compared to physical products. That is, the good ideas in
programs are often evident from simply using them. This is true
for many reasons, among them being that software is a tool, and
often, to be useful, a tool has to give away its insights. Its utility is
often in the way it aids in conceiving of a task (spreadsheets), and
to be useful it must convey that conception to the user. Know-how
not evident on the face can at times be uncovered through decom-
pilation, hence our use of the phrase “near the face.” There are, of
course, programs whose know-how is not readily evident, such as
complex optimizing compilers, or those with obscure algorithms
(Karmarkar’s). The point is comparative, not absolute: compared
with physical products, software more often bears its know-how on
or near the face.

• Know-how on or near the face is vulnerable to copying. Perhaps the most
famous example is the visit of Steve Jobs to the Xerox Palo Alto
Research Laboratory in 1979, for a tour that included a demonstra-
tion of Xerox’s Alto computer and its graphical user interface (GUI).
The visit resulted directly in the use of the GUI in the Lisa and Mac-
intosh. Referring to the GUI, the head of the Xerox Lab subse-
quently recalled: “To allow Jobs to see the power of the system . . .
was a dumb thing to do . . . Once he saw it, the damage was done; he
just had to know that it was doable” [4]. The know-how was all there
on the face. Know-how on or near the face is immediately accessible
to any observer and hence cannot be kept secret.

What’s Important About Intellectual Property Law?

The second half of the case for the mismatch between legal and tech-
nical views concerns the existing intellectual property system. For our
purposes, we can focus on just a few crucial properties of the three
standard mechanisms of intellectual property protection.

One essential element of copyright is that the work be expressive,
that is, artistic rather than functional. As noted earlier, copyright does
not cover useful objects, or even the useful parts of a decorative object.

One essential element of patent protection is that the advance pass
the relatively stringent threshold of inventiveness: the advance must be
nonobvious to someone familiar with the technology.

One essential element of trade secret protection is that the trade
secret remain secret; information emerging into public view via reverse
engineering is then available for use by anyone.

The fundamental mismatch is now easily seen:

• If much of the value in software is in its useful behavior, copyright
is a fundamentally inappropriate mechanism because it does not
protect useful behavior.

• If most software is innovative rather than inventive, most software is
not patentable, and therefore most value in software can not be pro-
tected using patents. (We believe this to be true despite the abun-
dance of software patents being granted, some significant percentage
of which do not appear to pass the test of nonobviousness to an

24 March 1996/Vol. 39, No. 3 COMMUNICATIONS OF THE ACM

One essential

element of copy-

right is that the

work be expressive,

that is, artistic

rather than

functional.

observer skilled in the art.)
• If software bears much of its know-how on its face, trade secret pro-

tection can’t work, for we can rarely keep the improvement a secret.

The problem is fundamental: intellectual property law gives us three
traditional mechanisms, yet the value in software is not well protected
by any of them.

The history of attempts to use copyright to protect software is particu-
larly instructive here. As we have seen, in the copyright world, the funda-
mental property of software is that it is an original textual work; hence,
copyright on software is protection for a program’s text. But because
text and behavior are relatively independent, protecting text won’t pro-
tect behavior, no matter how hard we try. And if we do not protect
behavior, we fail to protect one of the things at the core of the value in
software. Copyright protection is still useful, of course, because there is
value in the literal text of a program, but that’s only a part of the value.

Should Software be Treated Differently?

If, as we have argued, software falls outside existing intellectual prop-
erty laws, it is hardly alone. Innovative (rather than inventive) improve-
ments occur in many fields and are at times found “on the face” of the
product. In such areas, copying (in the form of reverse engineering
and cloning) is a fact of life, yet those areas seem to survive without
disastrous effect. Is software different enough to require distinct treat-
ment? We believe software (and its brethren) should be treated differ-
ently, and argue that the crucial factor lies in the distinction between
physical goods and information goods, and the evolution of economies
from those based primarily on manufactured physical goods to those
increasingly based on information products.

In any economy, mass producing something requires a number of
processes, including design, manufacturing, large-scale production, dis-
tribution, service, and support. Importantly, where physical goods are
involved, each of those processes produces some amount of lead time
for an innovator. (By lead time we mean the typically brief period dur-
ing which an innovator has a market niche to itself by virtue of being
an innovator.) The creation of a substantially improved automobile
engine, for example, requires time to design, time to build the proto-
type, time to develop large-scale production processes, time to create
production facilities, time to create distribution networks, as well as the
creation of field service and support providers.

second-comer wishing to compete in
this market will need to go through each
of these processes, even if he or she
competes purely by copying the innova-
tor’s successful (unprotected) product.
All of these processes will take time to
put in place, producing lead time during
which the innovator will have the market
niche to itself, enabling it to charge a
price that reflects R&D expenses, and
thereby fund future innovation.

Now consider the same circumstance when the innovative product is
software. Design still takes time, as does manufacturing (coding). Mass
production (copying disks) requires considerably less time and capital
investment than facilities for physical products. Distribution is similarly
faster and less capital intensive, especially with the growing use of soft-

COMMUNICATIONS OF THE ACM March 1996/Vol. 39, No. 3 25

The problem is

fundamental:

intellectual

property law gives

us three

traditional

mechanisms, yet

the value in

software is not

well protected by

any of them.

A

Report

ware delivery over networks, where the distribution network is already in
place (not to mention inexpensive, available 24 hours, and virtually
immediate). Service and support require time and capital expense (prin-
cipally training and maintaining staff), but the time and expense can be
substantially lower than with physical products; the support staff can all
be in one place, available via phone (hence no branch offices needed),
and much of the support can be automated, with the use of fax-back,
downloading patches via the Internet, user bulletin boards, and so forth.

The point is straightforward: software in particular, and information
goods generally, have far less inherent lead time because their mass
production, distribution, and servicing typically require less time and
capital than physical goods.

This discrepancy between lead times of information products and
physical products is increased further by the tendency of software to
bear its know-how on its face. Reverse engineering a physical product
(where know-how may take the form of proprietary production
processes) can be a time-consuming, and lead-time preserving, activity.
But products with their know-how on the face present no such chal-
lenge, increasing the disparity between most software and most physi-
cal products in inherent lead time.

ne additional property of software
magnifies the significance of this lack
of lead time: software products can
often be copied at a much lower cost
than their original development
expenditure. The most radical exam-
ple of this is straightforward piracy,
where programs that may have taken
years and millions of dollars to
develop can be copied at essentially
zero cost. The phenomenon holds

true even for the less radical example of independent cloning—pro-
grams whose behavior is intended to mimic a first-comer’s, but whose
source code is independently created—as in Paperback’s independent
reimplementation of Lotus’s 1–2–3. While there is considerable effort
involved here, that effort is still significantly less than that required in
the initial research, development, testing, and ongoing evolution of the
original product. Paperback, for example, was able to take advantage of
the years of development and experience that Lotus had invested, with-
out having to go through the same extensive and costly experience.

The overall issue is that for software (among other products) the
competition cost of the product (the second-comer’s cost to create a
competitive product once the original is available) is often far less than
the innovator’s research and development cost. Paperback entered the
market with a detailed and comprehensive clone of 1–2–3 with a street
price of approximately $69, at the same time Lotus was selling 1–2–3 at
a street price of roughly $300.

The software marketplace thus has two distinctive factors that produce
a significant impact: there is a relative lack of lead time as compared to
physical products, and the cost of producing a competing software prod-
uct is often far less than the cost of innovating that product. Both of these
have a significant effect on the innovator’s ability to get a return on
investment. The inherently shorter lead time reduces the innovator’s win-
dow during which it can charge a price reflecting the need to recover
research and development expense. The wide gap between the competi-
tion cost and the R&D cost means that when lead time runs out and the

26 March 1996/Vol. 39, No. 3 COMMUNICATIONS OF THE ACM

The point is

straightforward:

software in

particular, and

information goods

generally, have far

less inherent lead

time because their

mass production,

distribution, and

servicing typically

require less time

and capital than

physical goods.

O

competitor arrives, the impact on revenue will be quite significant.
The problem is not unique to the software market. It can occur

wherever lead time is inherently short and where the ratio of R&D cost
to competition cost is large. Note, too, that our claims are fundamen-
tally comparative, not absolute: the issue is the character of software
and its market, relative to markets for physical goods.

As a consequence of all this, software is far more vulnerable to a
phenomenon we call comparatively trivial acquisition of behavioral equiva-
lence, the speedy appearance of cheaper products with equivalent
behavior. Behavioral equivalence matters because much of the value of
software is in its behavior. Triviality of acquisition matters because triv-
ial acquisition destroys lead time, thereby destroying the innovator’s
chance to recoup R&D investment. Finally, we say “comparatively triv-
ial” because the second-comer’s effort may be far from trivial consid-
ered on its own terms (e.g., Paperback’s effort in cloning 1–2–3).
However, it can be trivial compared to the effort of the innovator.

In the short term this phenomenon is beneficial. The appearance of
competitive products is the essence of markets and even the very fast
emergence of less expensive rivals is useful to consumers who benefit
from lower prices. But in the longer-term innovation can suffer. Who
will be willing to invest substantial time, effort, or capital if there is lit-
tle chance to recover cost, much less profit?

We view this as a form of market failure, that is, a situation in which
parties are unable to consummate a mutually beneficial transaction. In
this case, the relevant parties are consumers who would be willing to
pay for an innovation and software developers who would be willing to
create it for a price. The potential of comparatively trivial copying
means innovators have no way to ensure that they will be paid. Realiz-
ing this, they won’t expend effort on innovation. Hence, investment in
innovation falls for reasons other than lack of demand for products.
We find this concept a central leverage point in confronting the prob-
lem of protecting software and suggest that a new framework for pro-
tection of software (and other information products) can appropriately
be developed around the core concept of avoiding market failure.

A New Framework

We begin sketching a new framework by specifying first what we would
like the framework to achieve, then suggest what machinery might be
needed. This enables discussion to proceed on the question of what we
want to accomplish; agreeing on that can clear the way for further
work on finding appropriate machinery.

Any framework should be designed to protect the sources of value
in software. There is value in the literal code, in the useful behavior
produced by the code, in the compilation of applied know-how
embodied in the program’s internal construction, and in the overall
design of the program (its metaphor).

Second, we believe the software marketplace is and will continue to
be a breeding ground of innovation. A legal regime for software
should seek only to ensure that innovators have the opportunity, in the
form of lead time, to test the value of their innovations in the market-
place and reap any consequent reward. The marketplace will offer its
unsparing test and issue its final word on worth and value; we seek for
innovators only the opportunity for their contributions to be evaluated
in the marketplace before they are copied by others.

Third, we suggest that to provide an appropriate scope and duration
of protection, the legal regime should be tuned to the “basal metabolic
rate” of the market. Markets have a kind of basal metabolic rate that
determines the length of product development cycles. For software, it

COMMUNICATIONS OF THE ACM March 1996/Vol. 39, No. 3 27

Software is far

more vulnerable to

a phenomenon we

call compara-

tively trivial

acquisition of

behavioral

equivalence,

the speedy

appearance of

cheaper products

with equivalent

behavior.

Report

may be the one or two years required to create and to test a new prod-
uct, or the roughly 12- to 18-month interval required to develop and to
test a new release of a product. The rate is not arbitrary, but a real
empirical phenomenon dependent on a wide range of factors, includ-
ing the underlying technology (how long it takes to develop and debug
a program) and human psychology (how soon consumers will buy an
upgrade after purchasing the original program).

Fourth, we believe the legal regime can help avoid market failure by
rewarding the innovator, not just the marketer. Xerox PARC may have
been the innovator of the desktop metaphor, but Apple was clearly the
successful marketer. We suggest everyone benefiting from an innova-
tion should contribute to the costs of R&D.

Machinery for a New Framework

Four mechanisms go a long way toward achieving these goals.

• Traditional copyright protection for literal code;
• Protection against behavior clones for a market preserving period;
• Registration of innovation to promote disclosure and dissemina-

tion; and
• A menu of off-the-shelf liability principles and standard licenses.

In protecting the sources of value, the literal code of a program is well
taken care of by traditional copyright, hence we begin by building on the
existing foundation of copyright, limiting its use to literal program text.

No existing mechanism protects innovative program behavior and
design. To remedy this we suggest that cloning of software innova-
tions—-copying innovative behavior and design—-be restricted for a
brief, market-preserving period of time.

One obvious and difficult question is, what’s the correct period of time?
The authors of this article spent considerable effort attempting to answer
this question. After a thorough study of the issue we realized: We don’t
know. What’s equally important here is neither do you.

There is an interesting, important, unsolved question here that is
open to empirical investigation: What is (are) the metabolic rate(s) of
the software marketplace(s)? How long is long enough for the market
to establish the worth of an innovation? The issue need not be the stuff
of invective and opinion; we have some real homework to do to come
to understand our industry. The authors suspect the right number is far
closer to about 2 to 5 years than it is to the 17 years of a patent or the
75 years of a copyright. But suspicions are not the issue, real research is.

If we are to provide lead time by restricting behavior clones, we will
inevitably have to make the judgment call of how similar two programs
must be in order for one to be a clone of the other. That is, what is
similar enough to precipitate market failure? We have developed a
metric based on three properties: 1) what was cloned (the extent and
significance of the behavior and design overlap); 2) how it was created;
and 3) the proximity of the second-comer’s product and market.

Market failure is clearly more likely if 1) the amount and significance
of the behavior and design taken is substantial (a near complete over-
lap); 2) the second-comer’s development effort is rapid, easy, and
highly dependent on the first-comer’s product (based on extensive
black-box testing of the innovative product); and 3) the products are
nearly identical and are to compete in the second market. The converse
is also true: The smaller the taking, the less dependent the creation, the
less similar the results and less proximate the markets, the less likely it is
that a second-comer’s borrowing will undermine the ability of an inno-
vator to recoup its R&D expenses and invest in further innovations.

28 March 1996/Vol. 39, No. 3 COMMUNICATIONS OF THE ACM

We believe the

legal regime can

help avoid market

failure by

rewarding the

innovator, not

just the marketer.

Working out the details of this metric will of course be a substantial
effort, but we believe it proceeds from the appropriate foundation.

We also propose a copyright-like registration of software innova-
tions, in order to facilitate automatic licensing. We suggest a mecha-
nism similar to that of the Semiconductor Protection Act (SCPA),
which normally provides two years of automatic anti-cloning protection
to semiconductor designs; the period can be extended if the design is
registered. Under our proposal, a software developer might register a
new user interface design or an innovative way of accomplishing some
behavior (the innovator would not have to register the product as a
whole, as under SCPA). In today’s networked environment, an elec-
tronic repository of such registered materials would enable licensing
on standard terms electronically, thereby reducing transaction costs.

Finally, we are concerned with transaction cost. No approach is work-
able if it costs too much to use. This is of particular importance in a situa-
tion where our explicit goal is to facilitate the workings of the marketplace.
Under a traditional intellectual property regime, the negotiations involved
in acquiring rights to use someone else’s creation can be sufficiently time-
consuming as to render the attempt pointless. As one example, a number
of planned CD-ROMs were never made simply because of the difficulty and
expense of acquiring the necessary rights to each one of the small frag-
ments of works that were to be included [1]. This is a clear example of
market failure due to high transaction cost overhead.

We believe transaction costs can be kept modest by basing our system
on the notion of liability rules rather than the property rules common to
an intellectual property approach. Under a liability rule, the market
resembles a cafeteria; all innovations you see are available for sale, all you
have to decide is whether they are worth the price indicated. This would
entail a form of compulsory license: all innovations would be licensable,
for an appropriate royalty. While setting the terms and machinery of such
a system would be a substantial undertaking, we argue in detail elsewhere
[3] why we believe it can be workable for software.

We also believe that significant benefits accrue from a shift away from
a traditional intellectual property view. Perhaps most important for the
character of the industry, the use of liability rules fundamentally changes
the nature of the decision made by a software developer attempting to
compete in the market. In today’s property-oriented world, the central
question is, what is legal?, or, what can I do and still not get sued?

In a world of liability rules the question is economic rather than
legal. Is licensing the innovation worth it to me as the second-comer? Will it
grow the market for my product sufficiently as to be worth the licensing cost? If
so, then it makes good business sense for me to do so; if not, I should
consider the alternatives. As one example, I can wait out the (relatively
short) lifetime of the protection for the innovation, then use it for
free. Of course I may be losing market share during that time, but
that’s the point: it’s now a market-driven decision, not a question of
whether I’m about to step on a legal landmine.

Conclusion

Our approach can be summarized by saying that we propose a law
focused on innovative behavior, aimed at avoiding market failure by
preserving lead time, and that keeps transaction cost low via a menu of
standard liability rules. We focus on behavior and program design
because literal text is well taken care of by traditional copyright, and
because behavior and the design that produces it are major sources of
value in software. We focus on innovation rather than invention
because most software is innovative, not reaching the patent standard of
invention. We seek to preserve lead time because information products

COMMUNICATIONS OF THE ACM March 1996/Vol. 39, No. 3 29

We propose a law

focused on innov-

ative

behavior, aimed at

avoiding market

failure by

preserving

lead time, and

that keeps

transaction cost

low via a menu

of standard

liability rules.

Report

(and information-rich products) are particularly vulnerable to market
failure from comparatively trivial acquisition of behavioral equivalence.
And we work from a menu of liability rules rather than property rules
in order to have software companies re-focus their attention on business
and economic questions, rather than on legal questions.

There is clearly a considerable amount left to do. What is the meta-
bolic rate of the software market? How many such markets and rates
are there? How does the rate change as the markets mature? How
should the standard licenses look? How do we ensure that whatever
mechanism we propose doesn’t calcify?

There is much to do, but we believe the framework proposed pro-
vides a foundation well matched to the realities of the technology, the
law, and the marketplace.

A Look Further Forward

We end by considering briefly how the software problem illustrates a
larger issue. We believe the useful behavior of software is one example
of a larger category we term “intangible industrial know-how,” the
skilled effort produced by experienced engineers and designers of
many sorts in many fields. That know-how is not currently well pro-
tected under any existing intellectual property regime; it is too utilitar-
ian for copyright and insufficiently inventive for patent. That
know-how is often carried on the face of products, rendering trade
secret ineffective. As a consequence, the know-how can suffer from the
same lead-time erosion and resulting market failure as in software.

In the larger sense, we suggest the appropriate item to be protected
in the world of increasingly information-rich artifacts is an industrial
compilation of applied know-how, bearing its know-how on its face. A
computer program is only one such information-rich artifact; other
examples include semiconductor chip designs, databases, and perhaps
even gene sequences.

The framework proposed here may work not only for software, but
for a wide variety of information products, and information-rich prod-
ucts. As our economies become increasingly information-based, we
believe that a new framework is needed for such products.

Our near-term goal is to begin what may prove to be an extended
discussion of the kinds of rules and structures best suited to our indus-
try. In the best case, the outcome of such a discussion will be a consen-
sus view of what the community believes to be appropriate. In the
longer term the goal is to encourage our industry to take an active role
in designing its own economic and legal future.

References
1. Cox, M. Multimedia: In making CD-ROMS, technology proves easy compared with

rights negotiations. Wall Street Journal, (June 28, 1993), Sec. B, 1.
2. Merges, R. P. Nelson, R. R. On the complex economics of patent scope. Colum. L.

Rev. 839, 4 (May 1990), 839–916.
3. Samuelson, P., Davis, R. Kapor, M. Reichman, J. A manifesto concerning the legal

protection of computer programs. Colum. L. Rev., 2308, 94 (Dec. 1994), 2308–2431.
4. Smith, D. Alexander, R. Fumbling the Future. Morrow and Co., New York, 1988, pp.

241–242.

Abut the Authors:
RANDALL DAVIS (davis@ai.mit.edu) is a professor of Computer Science at MIT and
associate director of MIT’s Artificial Intelligence Laboratory. PAMELA SAMUELSON
(samuelson@law.mail.cornell.edu) is a visiting professor of law at Cornell Law School.
MITCHELL KAPOR(mkapor@kei.com) is Adjunct Professor of Media Arts and Sci-
ences at MIT. JEROME H. REICHMAN (jreichma@law.vanderbilt.edu) is a profes-
sor of law in the field of contracts and intellectual property, Vanderbilt University.

© ACM 0002-0782/96/0300 $3.50

C

30 March 1996/Vol. 39, No. 3 COMMUNICATIONS OF THE ACM

There is much to

do, but we believe

the framework

proposed provides

a foundation well

matched to the

realities of the

technology, the

law, and the

marketplace.

