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Abstract

The dot product model was defined in 1998 as a combinatorial
method for efficiently representing graphs. More recently,
randomized versions of this model have been shown to generate
networks with small world properties and a vector embedding based
on this model provides an effective framework for statistical inference
for stochastic block models. In this talk I will describe a generalized
version of the dot product model for networks with weighted edges
focusing on the relationship between community structure and the
vector embedding.
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Dot Product Models

Dot Product Graphs

Definition (Dot Product Graph)

G is a dot product graph of dimension d if there exists a map
f : V (G)→ Rd such that (i, j) ∈ E(G) if and only if 〈f(i), f(j)〉 > 1.

• Initial work: Fiduccia et al. (1998)2

• Planar graphs: Kang et al. (2011)3

• NP–Hard: Kang and Muller (2012)4

• n
2 critical graphs: Li and Chang (2014)5

2C. Fiduccia, E. Scheinerman, A. Trenk, and J. Zito: Dot Product Representations
of Graphs, Discrete Mathematics, 181, 1998, 113–138.

3R. Kang, L. Lovasz, T. Muller, and E. Scheinerman: Dot Product Representations
of Planar Graphs, Electronic Journal of Combinatorics, 18, (2011), 1–14.

4Sphere and Dot Product Representations of Graphs: Discrete Computational
Geometry, 47, (2012), 548–568.

5B. Li and G. Chang: Dot Product Dimension of Graphs, Discrete
Applied Mathematics, 166, (2014), 159–163
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Dot Product Models

RDPM

(RDPM 1): Select the number of nodes n.

(RDPM 2): Select the latent dimension d.

(RDPM 3): Select a distribution W over Rd with
P (〈X,Y 〉 ∈ (0, 1)) = 1 where X and Y are drawn independently
from W .

(RDPM 4): For each node, 1 ≤ j ≤ n, draw a vector, Xj ∈ Rd
from W .

(RDPM 5): Form an adjacency matrix, A, form a network with
Aj,` drawn from Bernoulli(〈Xj , X`〉) for j 6= ` and Aj,j = 0 for all
1 ≤ j ≤ n.
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Interpretations

• Since each node is associated to a vector, it is natural to try and
interpret the properties of the node from the vector

• 〈x, y〉 = ||x|| · ||y|| cos(x, y)

• Angle – Community assignment

• Magnitude – Centrality
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Angle – Community Assignment

(a) Vectors (b) Graph
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Magnitude – Centrality

(c) Vectors (d) Graph
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Network Properties

• Initial work: Kraetzel et al. (2005)6

• General distributions: Young and Sceinerman (2007)7

• Small world networks

• Clustering
• Small diameter
• Degree distribution

6M. Kraetzel, C. Nickel, and E. Scheinerman: Random Dot Product
Networks: A model for social networks, Preliminary Manuscript, (2005).

7S. Young and E. Scheinerman: Random Dot Product Models for Social
Networks, Algorithms and Models for the Web-Graph, Lecture Notes
in Computer Science, 4863, (2007), 138–149.
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Dot Product Models

Statistical Applications

• Inverse problem: Scheinerman and Tucker (2010)8

• Iterative SVD for approximating Ai,j = 〈Xi, Xj〉
• Angular k-means

• Spectral Embedding and Statistics: Priebe Lab (2012–present)

• Adjacency embedding9

• Hypothesis testing10

• Limit theorems11

8E. Scheinerman and K. Tucker: Modeling graphs using dot product
representations, Computational Statistics, 25, (2010), 1–16.

9D. Sussman, M. Tang, D. Fishkind, and C. Priebe: A consistent adjacency
spectral embedding for stochastic blockmodel graphs, Journal of the American
Statistical Association, 107, (2012), 1119–1128.

10M. Tang, A. Athreya, D. Sussman, V. Lyzinski, and C. Priebe: A
nonparametric two–sample hypothesis testing problem for random graphs, Arxiv:
1409.2344v2, (2014), 1–24.

11M. Tang and C. Priebe: Limit theorems for eigenvectors of the
normalized Laplacian for random graphs, ArXiv:1607.08601, (2016), 1–52.
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Why Generalize?

• Weighted Data

• Multiplex Networks

• Missing aspects from previous attempts (mostly network related)

• Statistical results for WSBM12

12C. Aicher, A.Jacobs, and A. Clauset: Learning Latent Block
Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.
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WRDPM

(WRDPM 0): Select a probability distribution P (p1, p2, . . . , pk) for
the edge weights. Let Si ⊆ R the domain for pi.

(WRDPM 1): Select the number of desired nodes n.

(WRDPM 2): For each parameter pi, select a dimension di.

(WRDPM 3): For each parameter pi, select a distribution Wi

defined over Rdi so that P(〈Xi, Yi〉 ∈ Si) = 1 where Xi and Yi are
drawn independently from Wi.

(WRDPM 4): For each node, 1 ≤ j ≤ n, select k vectors
1 ≤ i ≤ k (one from each parameter space), Xj

i ∈ Rdi , according to
distribution Wi.

(WRDPM 5): Finally, construct a weighted adjacency matrix, A,
for the network, with Aj,` drawn according to

P (〈X`
1, X

j
1〉, 〈X`

2, X
j
2〉, . . . , 〈X`

k, X
j
k〉) for j > `, Aj,` = A`,j for

j > ` and Aj,j = 0 for all 1 ≤ j ≤ n.
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Example: Gaussian Edge Weights

0) Take P to be the normal distribution with parameters µ and σ2

1) Select n = 10.

2) Choose dµ = 3 and dsigma2 = 2

3) Take Wµ to be be independently normal in each component with
mean 0 and variance 1 and Wσ2 to be uniform on [0, 1]× [0, 1].
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Example: Gaussian Edge Weights

4)

(e) Mean Vectors (f) Variance Vectors

Figure: Draws from Wµ and Wσ2
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Example: Gaussian Edge Weights

5)

(a) Mean Dot Products (b) Variance Dot Products

Figure: Dot products for the vectors drawn in step 4.
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Example: Gaussian Edge Weights

5)

(a) Sample Graph (b) Sample Graph

Figure: Once the dot products are computed we can draw graphs from the
distributions determined by the vectors.
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Example: Uniform Noise

0) Take P to be the Poisson distribution with parameters λ.

1) Select n = 150.

2) Choose dλ = 3

3) let Y be a normal random variable with mean 0 and variance .1 and
take Wλ to be be defined by:

Wλ =


e1 + Y e1 + Y e2 + Y e3

1
3

e2 + Y e1 + Y e2 + Y e3
1
3

e3 + Y e1 + Y e2 + Y e3
1
3
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(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors

(d) All Vectors

Figure
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Example: Uniform Noise

(a) Dot Products (b) WRDPM Network
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Example: Multiresolution Communities

0) Take P to be the Poisson distribution with parameters λ.
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2) Choose dλ = 3

3) Let X be an exponential random variable with exponent 2, and take
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(c) Community 1 Vectors (d) Community 2 Vectors (e) Community 3 Vectors

(f) All Vectors
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Example: Multiresolution Communities

(g) Dot Products (h) WRDPM Network



WRDPM

Special Cases

Edge Parameterized Models

Theorem

Let n be a fixed positive integer. For each pair (i, j) with 1 ≤ i < j ≤ n
let ai,j = aj,i ∈ R. Then there exist n real numbers a`,` for 1 ≤ ` ≤ n
such that the matrix Ai,j = ai,j is positive definite.

Proof.

Let the ai,j be selected arbitrarily. For 1 ≤ ` ≤ n choose a`,` ∈ R so that
a`,` >

∑
j 6=` |aj,`|. Form a matrix A with Ai,j = ai,j . This is a real

symmetric matrix and so by the spectral theorem A has real eigenvalues.
Applying Gershgorin’s Circle Theorem to A gives that the eigenvalues of
A lie in the closed disks centered at a`,` with radius

∑
j 6=` |aj,`|.

Intersecting these disks with the real line gives that the eigenvalues of A

must lie in
⋃n
`=1

[
a`,` −

∑
j 6=` |aj,`|, a`,` +

∑
j 6=` |aj,`|

]
⊆ R+. Thus, all

eigenvalues of A are positive and A is positive definite.
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Special Cases

Edge Parameterized Models

Corollary

Any generative network model, on a fixed number of nodes n, where the
edge weight between each pair of nodes is drawn independently from a
fixed probability distribution, possibly with different parameters for each
pair, can be realized under the WRDPN.

Proof.

Let P be the k–parameter distribution from which the edge weights are
drawn and for 1 ≤ i ≤ k let aij,` = ai`,j be the value of the ith parameter

between nodes j and `. Applying Theorem 1 to the collection aij,` = ai`,j
gives a positive definite matrix Ai. Thus, there exists an n× n matrix Xi

such that (Xi)TXi = A.
To form the WRDPM that matches the given generative model we take
di = n for all 1 ≤ i ≤ k and to each node 1 ≤ j ≤ n assign the collection
of vectors given by the jth columns of the Xi for 1 ≤ i ≤ k.
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Special Cases

Examples

• Erdos–Renyi
• Single vector for W
• Simplest null model

• Chung–Lu

• One–dimensional model
• Expected degree distribution
• Poisson version: Ranola et al. (2010)13

• WSBM

• Finite W
• Community structure
• Inference

13J. Ranola, S. Ahn, M. Sehl, D. Smith, and K. Lange:
A Poisson Model for random multigraphs, Bioinformatics, 26, (2010), 2004–2011.
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Special Cases

Weighted Clustering Coefficient

(i) Assortative Null Model

(j) Multiresolution Null Model
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• Clustering
• Small diameter
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Inference

Methodology

Want to find a collection of d× n vectors {Xi} in order to approximate
the entries of Ai,j by 〈Xi, Xj〉. Equivalently, XTX ≈ A.

• Positive semi–definite approximation

• Extra degrees of freedom along diagonal

• Introduce a diagonal term

• Alternating, iterative optimization14

14E. Scheinerman and K. Tucker: Modeling graphs using dot
product representations, Computational Statistics, 25, (2010), 1–16.
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Unweighted Collaboration Network

(k) Collaboration
Network

(l) Unweighted 2–Embedding (m) Unweighted 3–Embedding

15

15V. Batagelj and A. Mrvar: Pajek datasets, (2006), URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/.
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Inference

Weighted Collaboration Network

(n) Collaboration
Network

(o) Weighted 2–Embedding (p) Weighted 3–Embedding

16

16V. Batagelj and A. Mrvar: Pajek datasets, (2006), URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/.
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Interpretability

• Community structure: For most networks with assortative
community structure, the approximation algorithm prioritizes
separating distinct communities into nearly orthogonal components.
Thus, the choice of dimension heavily influences the community
representation.

• Centrality: Nodes that connect communities are assigned to longer
vectors. This is related to betweeness centrality. Since length
depends on community structure this is also affected by the choice
of dimension.
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Inference

Examples

(q) Disjoint Cliques (r) Weighted Clusters (s) Connecting Clusters

(t) Embedding of (q) (u) Embedding of (r) (v) Embedding of (s)
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Inference

Dimension Selection

Since the dimension of the embedding is intrinsically related to the
realized community structure it is natural to try and make use of this
relationship to determine the right choice of d. Motivated by the case of
disjoint communities, where if we have an effective, normalized
embedding we should have

〈Xi, Xj〉 =

{
1 i and j belong to the same community

0 i and j belong to different communities

Thus, the sum of intra–community dot products should be
∑`
i=1

(
z`
2

)
.

Similarly, the sum of the inter–community dot products should be 0. we
define a stress function s depending on the community assignments after
embedding.

s(d) =

d∑
i=1

(
zi
2

)
− sintra(d) + sinter(d)
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Inference

Dimension Example

(w) Weighted Network (x) 2-Embedding (y) 3-Embedding

(z) Stress Function

Figure: Comparison of WRDPN embeddings of a weighted network (a) as the
dimension of the embedding varies. As expected, the minimum value occurs at
d = 3, matching the correct structure.
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Inference

Coauthorship Revisited

Figure: Comparison of stress values for the computational geometry
coauthorship network between the weighted and unweighted realizations. The
weighted embedding significantly outperforms the binarized model.
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Inference

Voting Data

J. Lewis and K. Poole: Roll Call Data,
voteview.com/dwnl.html.
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Current Work

Multiplex Networks and Multigraphs

• Frequently studied as aggregate objects17

• If the layers are independent these should be binomial

• Survey data and social networks

• No unbiased estimators18

• However, edge data is sparse and has large number of observations

• Synthetic examples

• Karnataka Villages data

17D. Taylor, R. Caceres, and P. Mucha: Detectability of small communities in
multilayer and temporal networks: Eigenvector localization, layer aggregation, and
time series discretization, ArXiv 1609.04376, 1–14.

18A. DasGupta and H. Rubin: Estimation of binomial parameters when
both n,p are unknown, Journal of Statistical Planning and Inference,
130, (2005), 391-404.
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Current Work

Multiplex Networks and Timeseries

• Estimating parameters for the edge weights requires more than a
single sample for multivariate distributions

• Block models
• Multiplex networks
• Time series data

• Fits into a broader program of robust network models for time series
data

• Correlation Networks

• World Trade Web
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Conclusion

Summary

• Network–theoretic analysis of the (W)RDPM

• Generalizes many previously studied models

• Natural interpretation of vector properties

• Dimension selection

• Current work:
• Multiplex networks
• Time series
• Null models
• Manifold properties
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Conclusion

That’s all...

Thank You!
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