Introduction

Generalized Random Dot Product Models¹

Daryl DeFord

Dartmouth College Department of Mathematics

ACMS Talk Dartmouth College November 8, 2016

¹Joint work with Dan Rockmore

Abstract

The dot product model was defined in 1998 as a combinatorial method for efficiently representing graphs. More recently, randomized versions of this model have been shown to generate networks with small world properties and a vector embedding based on this model provides an effective framework for statistical inference for stochastic block models. In this talk I will describe a generalized version of the dot product model for networks with weighted edges focusing on the relationship between community structure and the vector embedding.

Outline

Introduction
Dot Product Models
WRDPM
Special Cases

- Generative Structure
- 6 Inference
- Current Work
- 8 Conclusion

• Embedding data in mathematical objects

- Embedding data in mathematical objects
- Use mathematical properties to analyze data

- Embedding data in mathematical objects
- Use mathematical properties to analyze data
- Discover interesting mathematical questions

- Embedding data in mathematical objects
- Use mathematical properties to analyze data
- Discover interesting mathematical questions
- Make more efficient use of all of the data

WRDPM Introduction

Generative Models

• Noisy data

WRDPM Introduction

Generative Models

- Noisy data
- Null models

Generative Models

- Noisy data
- Null models
- Mathematical tractability

Generative Models

- Noisy data
- Null models
- Mathematical tractability
- Example networks

Dot Product Graphs

Definition (Dot Product Graph)

G is a dot product graph of dimension d if there exists a map $f: V(G) \to \mathbb{R}^d$ such that $(i, j) \in E(G)$ if and only if $\langle f(i), f(j) \rangle > 1$.

⁵B. Li and G. Chang: Dot Product Dimension of Graphs, Discrete Applied Mathematics, 166, (2014), 159–163

 $^{^2\}text{C}.$ Fiduccia, E. Scheinerman, A. Trenk, and J. Zito: Dot Product Representations of Graphs, Discrete Mathematics, 181, 1998, 113–138.

³R. Kang, L. Lovasz, T. Muller, and E. Scheinerman: Dot Product Representations of Planar Graphs, Electronic Journal of Combinatorics, 18, (2011), 1–14.

⁴Sphere and Dot Product Representations of Graphs: Discrete Computational Geometry, 47, (2012), 548–568.

Dot Product Graphs

Definition (Dot Product Graph)

G is a dot product graph of dimension d if there exists a map $f: V(G) \to \mathbb{R}^d$ such that $(i, j) \in E(G)$ if and only if $\langle f(i), f(j) \rangle > 1$.

- Initial work: Fiduccia et al. (1998)²
- Planar graphs: Kang et al. (2011)³
- NP-Hard: Kang and Muller (2012)⁴
- $\frac{n}{2}$ critical graphs: Li and Chang (2014)⁵

 $^5\text{B}.$ Li and G. Chang: Dot Product Dimension of Graphs, Discrete Applied Mathematics, 166, (2014), 159–163

²C. Fiduccia, E. Scheinerman, A. Trenk, and J. Zito: Dot Product Representations of Graphs, Discrete Mathematics, 181, 1998, 113–138.

³R. Kang, L. Lovasz, T. Muller, and E. Scheinerman: Dot Product Representations of Planar Graphs, Electronic Journal of Combinatorics, 18, (2011), 1–14.

⁴Sphere and Dot Product Representations of Graphs: Discrete Computational Geometry, 47, (2012), 548–568.

(**RDPM 1**): Select the number of nodes n.

(RDPM 1): Select the number of nodes n.(RDPM 2): Select the latent dimension d.

RDPM

(RDPM 1): Select the number of nodes n. (RDPM 2): Select the latent dimension d. (RDPM 3): Select a distribution W over \mathbb{R}^d with $\mathbb{P}(\langle X, Y \rangle \in (0, 1)) = 1$ where X and Y are drawn independently from W.

RDPM

- (**RDPM 1**): Select the number of nodes n.
- (RDPM 2): Select the latent dimension d.

(RDPM 3): Select a distribution W over \mathbb{R}^d with $\mathbb{P}(\langle X, Y \rangle \in (0, 1)) = 1$ where X and Y are drawn independently from W.

(RDPM 4): For each node, $1 \le j \le n$, draw a vector, $X_j \in \mathbb{R}^d$ from W.

RDPM

(**RDPM 1**): Select the number of nodes n.

(RDPM 2): Select the latent dimension d.

(RDPM 3): Select a distribution W over \mathbb{R}^d with $\mathbb{P}(\langle X, Y \rangle \in (0, 1)) = 1$ where X and Y are drawn independently from W.

(RDPM 4): For each node, $1 \le j \le n$, draw a vector, $X_j \in \mathbb{R}^d$ from W.

(RDPM 5): Form an adjacency matrix, A, form a network with $A_{j,\ell}$ drawn from Bernoulli $(\langle X_j, X_\ell \rangle)$ for $j \neq \ell$ and $A_{j,j} = 0$ for all $1 \leq j \leq n$.

• Since each node is associated to a vector, it is natural to try and interpret the properties of the node from the vector

- Since each node is associated to a vector, it is natural to try and interpret the properties of the node from the vector
- $\langle x, y \rangle = ||x|| \cdot ||y|| \cos(x, y)$

- Since each node is associated to a vector, it is natural to try and interpret the properties of the node from the vector
- $\langle x, y \rangle = ||x|| \cdot ||y|| \cos(x, y)$
- Angle Community assignment

- Since each node is associated to a vector, it is natural to try and interpret the properties of the node from the vector
- $\langle x, y \rangle = ||x|| \cdot ||y|| \cos(x, y)$
- Angle Community assignment
- Magnitude Centrality

WRDPM Dot Product Models

Angle – Community Assignment

Magnitude – Centrality

(d) Graph

Network Properties

- Initial work: Kraetzel et al. (2005)⁶
- General distributions: Young and Sceinerman (2007)⁷

⁶M. KRAETZEL, C. NICKEL, AND E. SCHEINERMAN: *Random Dot Product Networks: A model for social networks*, Preliminary Manuscript, (2005).

⁷S. YOUNG AND E. SCHEINERMAN: *Random Dot Product Models for Social Networks*, Algorithms and Models for the Web-Graph, Lecture Notes in Computer Science, 4863, (2007), 138–149.

Network Properties

- Initial work: Kraetzel et al. (2005)⁶
- General distributions: Young and Sceinerman (2007)⁷
- Small world networks
 - Clustering
 - Small diameter
 - Degree distribution

⁶M. KRAETZEL, C. NICKEL, AND E. SCHEINERMAN: *Random Dot Product Networks: A model for social networks*, Preliminary Manuscript, (2005).

⁷S. YOUNG AND E. SCHEINERMAN: *Random Dot Product Models for Social Networks*, Algorithms and Models for the Web-Graph, Lecture Notes in Computer Science, 4863, (2007), 138–149.

Statistical Applications

• Inverse problem: Scheinerman and Tucker (2010)⁸

- Iterative SVD for approximating $A_{i,j} = \langle X_i, X_j \rangle$
- Angular k-means

¹⁰M. TANG, A. ATHREYA, D. SUSSMAN, V. LYZINSKI, AND C. PRIEBE: *A* nonparametric two–sample hypothesis testing problem for random graphs, Arxiv: 1409.2344v2, (2014), 1–24.

¹¹M. TANG AND C. PRIEBE: Limit theorems for eigenvectors of the normalized Laplacian for random graphs, ArXiv:1607.08601, (2016), 1–52.

⁸E. SCHEINERMAN AND K. TUCKER: *Modeling graphs using dot product representations*, Computational Statistics, 25, (2010), 1–16.

⁹D. SUSSMAN, M. TANG, D. FISHKIND, AND C. PRIEBE: *A consistent adjacency spectral embedding for stochastic blockmodel graphs*, Journal of the American Statistical Association, 107, (2012), 1119–1128.

Statistical Applications

- Inverse problem: Scheinerman and Tucker (2010)⁸
 - Iterative SVD for approximating $A_{i,j} = \langle X_i, X_j \rangle$
 - Angular k-means
- Spectral Embedding and Statistics: Priebe Lab (2012-present)
 - Adjacency embedding⁹
 - Hypothesis testing¹⁰
 - Limit theorems¹¹

⁹D. SUSSMAN, M. TANG, D. FISHKIND, AND C. PRIEBE: *A consistent adjacency spectral embedding for stochastic blockmodel graphs*, Journal of the American Statistical Association, 107, (2012), 1119–1128.

¹⁰M. TANG, A. ATHREYA, D. SUSSMAN, V. LYZINSKI, AND C. PRIEBE: *A* nonparametric two–sample hypothesis testing problem for random graphs, Arxiv: 1409.2344v2, (2014), 1–24.

¹¹M. TANG AND C. PRIEBE: Limit theorems for eigenvectors of the Dartmouth normalized Laplacian for random graphs, ArXiv:1607.08601, (2016), 1–52.

⁸E. SCHEINERMAN AND K. TUCKER: *Modeling graphs using dot product representations*, Computational Statistics, 25, (2010), 1–16.

Why Generalize?

• Weighted Data

¹²C. AICHER, A.JACOBS, AND A. CLAUSET: *Learning Latent Block* Dartmouth Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.

Why Generalize?

- Weighted Data
- Multiplex Networks

¹²C. AICHER, A.JACOBS, AND A. CLAUSET: Learning Latent Block Dartmouth Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.

Why Generalize?

- Weighted Data
- Multiplex Networks
- Missing aspects from previous attempts (mostly network related)

¹²C. AICHER, A.JACOBS, AND A. CLAUSET: Learning Latent Block Dartmouth Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.

Why Generalize?

- Weighted Data
- Multiplex Networks
- Missing aspects from previous attempts (mostly network related)
- Statistical results for WSBM¹²

¹²C. AICHER, A.JACOBS, AND A. CLAUSET: Learning Latent Block Dartmouth Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.

WRDPM

(WRDPM 0): Select a probability distribution $P(p_1, p_2, ..., p_k)$ for the edge weights. Let $S_i \subseteq \mathbb{R}$ the domain for p_i .

WRDPM

(WRDPM 0): Select a probability distribution $P(p_1, p_2, ..., p_k)$ for the edge weights. Let $S_i \subseteq \mathbb{R}$ the domain for p_i . **(WRDPM 1):** Select the number of desired nodes n.

WRDPM

(WRDPM 0): Select a probability distribution $P(p_1, p_2, ..., p_k)$ for the edge weights. Let $S_i \subseteq \mathbb{R}$ the domain for p_i . **(WRDPM 1):** Select the number of desired nodes n. **(WRDPM 2):** For each parameter p_i , select a dimension d_i . **(WRDPM 3):** For each parameter p_i , select a distribution W_i defined over \mathbb{R}^{d_i} so that $\mathbb{P}(\langle X_i, Y_i \rangle \in S_i) = 1$ where X_i and Y_i are drawn independently from W_i .

WRDPM

(WRDPM 0): Select a probability distribution $P(p_1, p_2, ..., p_k)$ for the edge weights. Let $S_i \subseteq \mathbb{R}$ the domain for p_i .

(WRDPM 1): Select the number of desired nodes n.

(WRDPM 2): For each parameter p_i , select a dimension d_i .

(WRDPM 3): For each parameter p_i , select a distribution W_i defined over \mathbb{R}^{d_i} so that $\mathbb{P}(\langle X_i, Y_i \rangle \in S_i) = 1$ where X_i and Y_i are drawn independently from W_i .

(WRDPM 4): For each node, $1 \le j \le n$, select k vectors $1 \le i \le k$ (one from each parameter space), $X_i^j \in \mathbb{R}^{d_i}$, according to distribution W_i .

WRDPM WRDPM

WRDPM

(WRDPM 0): Select a probability distribution $P(p_1, p_2, ..., p_k)$ for the edge weights. Let $S_i \subseteq \mathbb{R}$ the domain for p_i .

(WRDPM 1): Select the number of desired nodes n.

(WRDPM 2): For each parameter p_i , select a dimension d_i .

(WRDPM 3): For each parameter p_i , select a distribution W_i defined over \mathbb{R}^{d_i} so that $\mathbb{P}(\langle X_i, Y_i \rangle \in S_i) = 1$ where X_i and Y_i are drawn independently from W_i .

(WRDPM 4): For each node, $1 \le j \le n$, select k vectors $1 \le i \le k$ (one from each parameter space), $X_i^j \in \mathbb{R}^{d_i}$, according to distribution W_i .

(WRDPM 5): Finally, construct a weighted adjacency matrix, A, for the network, with $A_{j,\ell}$ drawn according to $P(\langle X_1^\ell, X_1^j \rangle, \langle X_2^\ell, X_2^j \rangle, \ldots, \langle X_k^\ell, X_k^j \rangle)$ for $j > \ell$, $A_{j,\ell} = A_{\ell,j}$ for $j > \ell$ and $A_{j,j} = 0$ for all $1 \le j \le n$.

0) Take P to be the normal distribution with parameters μ and σ^2

- 0) Take P to be the normal distribution with parameters μ and σ^2
- 1) Select n = 10.

- 0) Take P to be the normal distribution with parameters μ and σ^2
- 1) Select n = 10.
- 2) Choose $d_{\mu} = 3$ and $d_{sigma^2} = 2$

- 0) Take P to be the normal distribution with parameters μ and σ^2
- 1) Select n = 10.
- 2) Choose $d_{\mu} = 3$ and $d_{sigma^2} = 2$
- 3) Take W_{μ} to be be independently normal in each component with mean 0 and variance 1 and W_{σ^2} to be uniform on $[0, 1] \times [0, 1]$.

Figure: Draws from W_{μ} and W_{σ^2}

Figure: Dot products for the vectors drawn in step 4.

5)

5)

Figure: Once the dot products are computed we can draw graphs from the distributions determined by the vectors.

0) Take P to be the Poisson distribution with parameters λ .

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.
- 2) Choose $d_{\lambda} = 3$

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.
- 2) Choose $d_{\lambda} = 3$
- 3) let Y be a normal random variable with mean 0 and variance .1 and take W_{λ} to be be defined by:

$$W_{\lambda} = \begin{cases} e_1 + Ye_1 + Ye_2 + Ye_3 & \frac{1}{3}\\ e_2 + Ye_1 + Ye_2 + Ye_3 & \frac{1}{3}\\ e_3 + Ye_1 + Ye_2 + Ye_3 & \frac{1}{3} \end{cases}$$

(a) Community 1 Vectors (b) Community 2 Vectors (c) Community 3 Vectors

(a) Dot Products

(b) WRDPM Network

0) Take P to be the Poisson distribution with parameters λ .

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.
- 2) Choose $d_{\lambda} = 3$

- 0) Take P to be the Poisson distribution with parameters λ .
- 1) Select n = 150.
- 2) Choose $d_{\lambda} = 3$
- 3) Let X be an exponential random variable with exponent 2, and take W_{λ} to be be defined by:

$$V_{\lambda} = \begin{cases} Xe_1 + Ye_2 + Ye_3 & \frac{1}{3}\\ Xe_2 + Ye_1 + Ye_3 & \frac{1}{3}\\ Xe_3 + Ye_1 + Ye_2 & \frac{1}{3} \end{cases}$$

(c) Community 1 Vectors (d) Community 2 Vectors (e) Community 3 Vectors

(f) All Vectors

WRDPM WRDPM

Example: Multiresolution Communities

(g) Dot Products

(h) WRDPM Network

Martmouth

Edge Parameterized Models

Theorem

Let *n* be a fixed positive integer. For each pair (i, j) with $1 \le i < j \le n$ let $a_{i,j} = a_{j,i} \in \mathbb{R}$. Then there exist *n* real numbers $a_{\ell,\ell}$ for $1 \le \ell \le n$ such that the matrix $A_{i,j} = a_{i,j}$ is positive definite.

Proof.

Let the $a_{i,j}$ be selected arbitrarily. For $1 \leq \ell \leq n$ choose $a_{\ell,\ell} \in \mathbb{R}$ so that $a_{\ell,\ell} > \sum_{j \neq \ell} |a_{j,\ell}|$. Form a matrix A with $A_{i,j} = a_{i,j}$. This is a real symmetric matrix and so by the spectral theorem A has real eigenvalues. Applying Gershgorin's Circle Theorem to A gives that the eigenvalues of A lie in the closed disks centered at $a_{\ell,\ell}$ with radius $\sum_{j \neq \ell} |a_{j,\ell}|$. Intersecting these disks with the real line gives that the eigenvalues of A must lie in $\bigcup_{\ell=1}^n \left[a_{\ell,\ell} - \sum_{j \neq \ell} |a_{j,\ell}|, a_{\ell,\ell} + \sum_{j \neq \ell} |a_{j,\ell}| \right] \subseteq \mathbb{R}^+$. Thus, all eigenvalues of A are positive and A is positive definite.

🧐 Dartmou

Edge Parameterized Models

Corollary

Any generative network model, on a fixed number of nodes n, where the edge weight between each pair of nodes is drawn independently from a fixed probability distribution, possibly with different parameters for each pair, can be realized under the WRDPN.

Proof.

Let P be the k-parameter distribution from which the edge weights are drawn and for $1 \le i \le k$ let $a_{j,\ell}^i = a_{\ell,j}^i$ be the value of the *i*th parameter between nodes j and ℓ . Applying Theorem 1 to the collection $a_{j,\ell}^i = a_{\ell,j}^i$ gives a positive definite matrix A^i . Thus, there exists an $n \times n$ matrix X^i such that $(X^i)^T X^i = A$. To form the WRDPM that matches the given generative model we take

 $d_i = n$ for all $1 \le i \le k$ and to each node $1 \le j \le n$ assign the collection of vectors given by the *j*th columns of the X^i for $1 \le i \le k$. \Box

Examples

- Erdos-Renyi
 - Single vector for W
 - Simplest null model

¹³J. RANOLA, S. AHN, M. SEHL, D. SMITH, AND K. LANGE: *A Poisson Model for random multigraphs*, Bioinformatics, 26, (2010), 2004–2011.

Examples

- Erdos-Renyi
 - Single vector for W
 - Simplest null model
- Chung–Lu
 - One-dimensional model
 - Expected degree distribution
 - Poisson version: Ranola et al. (2010)¹³

¹³J. RANOLA, S. AHN, M. SEHL, D. SMITH, AND K. LANGE: *A Poisson Model for random multigraphs*, Bioinformatics, 26, (2010), 2004–2011.

Examples

- Erdos–Renyi
 - Single vector for W
 - Simplest null model
- Chung–Lu
 - One–dimensional model
 - Expected degree distribution
 - Poisson version: Ranola et al. (2010)¹³
- WSBM
 - Finite W
 - Community structure
 - Inference

¹³J. RANOLA, S. AHN, M. SEHL, D. SMITH, AND K. LANGE:

Martmouth A Poisson Model for random multigraphs, Bioinformatics, 26, (2010), 2004-2011.

Weighted Clustering Coefficient

• Generative properties for weighted networks are more complex

- Generative properties for weighted networks are more complex
- What is a weighted small world network?

- Generative properties for weighted networks are more complex
- What is a weighted small world network?
- Standard small world + weights

- Generative properties for weighted networks are more complex
- What is a weighted small world network?
- Standard small world + weights
- Reparameterize the Bernoulli model: $1 e^{\langle X_i, X_j \rangle}$
 - Clustering
 - Small diameter

- Generative properties for weighted networks are more complex
- What is a weighted small world network?
- Standard small world + weights
- Reparameterize the Bernoulli model: $1 e^{\langle X_i, X_j \rangle}$
 - Clustering
 - Small diameter
- *k*-skeleton

Methodology

Want to find a collection of $d \times n$ vectors $\{X_i\}$ in order to approximate the entries of $A_{i,j}$ by $\langle X_i, X_j \rangle$. Equivalently, $X^T X \approx A$.

¹⁴E. SCHEINERMAN AND K. TUCKER: *Modeling graphs using dot* product representations, Computational Statistics, 25, (2010), 1–16.

Methodology

Want to find a collection of $d \times n$ vectors $\{X_i\}$ in order to approximate the entries of $A_{i,j}$ by $\langle X_i, X_j \rangle$. Equivalently, $X^T X \approx A$.

- Positive semi-definite approximation
- Extra degrees of freedom along diagonal
- Introduce a diagonal term
- Alternating, iterative optimization¹⁴

¹⁴E. SCHEINERMAN AND K. TUCKER: *Modeling graphs using dot* product representations, Computational Statistics, 25, (2010), 1–16.

Unweighted Collaboration Network

15

¹⁵V. BATAGELJ AND A. MRVAR: *Pajek datasets*, (2006), URL: http://vlado.fmf.uni-lj.si/pub/networks/data/.

Weighted Collaboration Network

16

¹⁶V. BATAGELJ AND A. MRVAR: *Pajek datasets*, (2006), URL: http://vlado.fmf.uni-lj.si/pub/networks/data/.

Interpretability

- Community structure: For most networks with assortative community structure, the approximation algorithm prioritizes separating distinct communities into nearly orthogonal components. Thus, the choice of dimension heavily influences the community representation.
- Centrality: Nodes that connect communities are assigned to longer vectors. This is related to betweeness centrality. Since length depends on community structure this is also affected by the choice of dimension.

Examples

Dimension Selection

Since the dimension of the embedding is intrinsically related to the realized community structure it is natural to try and make use of this relationship to determine the right choice of d. Motivated by the case of disjoint communities, where if we have an effective, normalized embedding we should have

$$\langle X_i, X_j \rangle = \begin{cases} 1 & \text{i and j belong to the same community} \\ 0 & \text{i and j belong to different communities} \end{cases}$$

Thus, the sum of intra-community dot products should be $\sum_{i=1}^{\ell} {\binom{z_{\ell}}{2}}$. Similarly, the sum of the inter-community dot products should be 0. we define a stress function s depending on the community assignments after embedding.

$$s(d) = \sum_{i=1}^{d} {\binom{z_i}{2}} - \operatorname{s}_{\operatorname{intra}}(d) + \operatorname{s}_{\operatorname{inter}}(d)$$

Dimension Example

Coauthorship Revisited

Figure: Comparison of stress values for the computational geometry coauthorship network between the weighted and unweighted realizations. The weighted embedding significantly outperforms the binarized model.

WRDPM Inference

Voting Data

J. LEWIS AND K. POOLE: *Roll Call Data*, voteview.com/dwnl.html.

Multiplex Networks and Multigraphs

- Frequently studied as aggregate objects¹⁷
- If the layers are independent these should be binomial
- Survey data and social networks
- No unbiased estimators¹⁸
- However, edge data is sparse and has large number of observations
- Synthetic examples
- Karnataka Villages data

¹⁸A. DasGupta and H. Rubin: Estimation of binomial parameters when both n,p are unknown, Journal of Statistical Planning and Inference, 130, (2005), 391-404.

¹⁷D. TAYLOR, R. CACERES, AND P. MUCHA: *Detectability of small communities in multilayer and temporal networks: Eigenvector localization, layer aggregation, and time series discretization*, ArXiv 1609.04376, 1–14.

Multiplex Networks and Timeseries

- Estimating parameters for the edge weights requires more than a single sample for multivariate distributions
 - Block models
 - Multiplex networks
 - Time series data
- Fits into a broader program of robust network models for time series data
- Correlation Networks
- World Trade Web

WRDPM Conclusion

Summary

- Network-theoretic analysis of the (W)RDPM
- · Generalizes many previously studied models
- Natural interpretation of vector properties
- Dimension selection
- Current work:
 - Multiplex networks
 - Time series
 - Null models
 - Manifold properties

WRDPM Conclusion

References

- C. AICHER, A.JACOBS, AND A. CLAUSET: Learning Latent Block Structure in Weighted Networks, Journal of Complex Networks, 3(2), (2015), 221–248.
- C. FIDUCCIA, E. SCEINERMAN, A.TRENK, AND J. ZITO: *Dot product representations of graphs*, Discrete Mathematics, 181, (1998), 113–138.
- E. SCHEINERMAN AND K. TUCKER: Modeling graphs using dot product representations, Computational Statistics, 25, (2010), 1–16.
- D. SUSSMAN, M. TANG, D. FISHKIND, AND C. PRIEBE: A consistent adjacency spectral embedding for stochastic blockmodel graphs, Journal of the American Statistical Association, 107, (2012), 1119–1128.
- S. YOUNG AND E. SCHEINERMAN: *Random Dot Product Models* for Social Networks, Algorithms and Models for the Web-Graph, Lecture Notes in Computer Science, 4863, (2007), 138–149.

WRDPM Conclusion

Thank You!

